AlgebraNotes04 Isomorphism Theorems.

Lemma 4.1. Suppose that N is a normal subgroup of the group G then $\gamma: G \rightarrow G / N$ defined by $\gamma(x)=N x$ is called the canonical homeomorphism. [You should prove that it is a homomorphism.] For $L \subset G$ define $\gamma(L)=$ $\{\gamma(x) \mid x \in L\}$.

1. If L is a normal subgroup of G that contains N then $\gamma(L)$ is a normal subgroup of G / N.
2. If L_{1} and L_{2} are normal subgroups of G containing N and $L_{1} \neq L_{2}$, then $\gamma\left(L_{1}\right) \neq \gamma\left(L_{2}\right)$.
3. If K is a normal subgroup of G / N then there is a normal subgroup L of G containing N so that $\gamma(L)=K$.

Definition. If N and H are two subsets of the group G then $N H=$ $\{x h \mid x \in N, h \in H\}$.

Lemma 4.2. Suppose that N is a normal of the group G and H is a subgroup of G. Then:

1. $N H=H N$.
2. $N H$ is a subgroup of G.
3. If H is a normal subgroup of G then $N H$ is also a normal subgroup of G.
4. If H is a normal subgroup of G then $N \cap H$ is also a normal subgroup of G.
use these lemmas to prove the second isomorphism theorem:
Theorem 4.1. Suppose that G is a group and each of N and H is a normal subgroup of G. Then $H N$ and $H \cap N$ are normal groups and $H N / N$ is isomorphic to $H /(H \cap N)$.

For the next three lemmas assume the situation for the first isomorphism theorem: Suppose G and H are groups and suppose $\varphi: G \rightarrow H$ is an onto homomorphism with kernel K. So we already know that K is normal and that the collection of cosets $\{K x \mid x \in G\}$ form the group G / K. We also know that the function $\gamma: G \rightarrow G / K$ defined by $\gamma(x)=K x$ is a homomorphism.

Lemma 4.4. If for each $x \in G$, we define $\mu(K x)=\varphi(x)$ then μ is a well defined function.

Lemma 4.5. The function μ of Lemma 4.4 is a homomorphism.
Lemma 4.6. If $\nu: G / K \rightarrow H$ is an onto homomorphism so that

$$
\nu(\gamma(x))=\varphi(x)
$$

then $\nu=\mu$.

Use these lemmas to prove the third isomorphism theorem.
Theorem 4.2. Suppose that each of H and K is a normal subgroup of the group G and that $K \subset H$. Then the group G / H is isomorphic to the group $(G / K) /(H / K)$.

Exercise 0. Consider the group $G=\left(\mathbb{Z}_{24},+_{24}\right)$ and let $\varphi:\left(\mathbb{Z}_{24},+{ }_{24}\right) \rightarrow$ $\left(\mathbb{Z}_{6},+_{6}\right)$ be defined by $\varphi\left([x]_{24}=[5 x]_{6}\right.$. Let K denote the kernel of φ.
a.) Show that G / K is isomorphic to $\left(\mathbb{Z}_{6},+_{6}\right)$. b.) Find an isomorphism $h: G / K \rightarrow \mathbb{Z}_{6}$ and a homomorphism $f: G \rightarrow \mathbb{Z}_{6}$ so that $\varphi\left([x]_{24}\right)=$ $h\left(f\left([x]_{24}\right)\right.$.

Exercise 1. Consider the group $G=\left(\mathbb{Z}_{24},+_{24}\right)$. Let

$$
\begin{aligned}
H & =\{0,3,6,9,12,15,18,21\} \\
N & =\{0,2,4,6,8,10,12,14,16,18,20,22\}
\end{aligned}
$$

a. Calculate the groups $H+{ }_{24} N$ and $H \cap N$.
b. Calculate the group of cosets $(H+N) / N$ and $H /(H \cap N)$ and show that they are isomorphic.
c. Calculate the group of cosets $(H+N) / H$ and $N /(H \cap N)$ and show that they are isomorphic.

Exercise 2. Consider the group $G=\left(\mathbb{Z}_{19}-\{0\},{ }_{19}\right)$.
a. Find the subgroup of G generated by [4] (i.e.: the subgroup $\left\{\left[4^{n}\right]_{19} \mid n \in\right.$ $\mathbb{Z}\}$.
b. Find the subgroup of G generated by [6] (i.e.: the subgroup $\left\{\left[6^{n}\right]_{19} \mid n \in\right.$ $\mathbb{Z}\}$.
[Hint: I used a spreadsheet to do this exercise, I think it appropriate to use a computer for these calculations. By my calculations, both of these are
proper subgroups, in fact they are the same subgroup. Using MS Excel the operation $(\bmod (x, n)$ gives the value of $x \bmod n$.
c. Let H be the subgroup of (a.) and let $N=\{1,7,8,11,12,18\}$. (Use a spreadsheets to show that N is also a subgroup.) Repeat Exercise 1 above with these groups and the operation mod 19 multiplication.

Exercise 3 [on the third isomorphism theorem]. Let $G=\left(\mathbb{Z}_{24},+_{24}\right)$ as in exercise 1 and let:

$$
\begin{aligned}
K & =\{0,6,12,18\} \\
H & =\{0,2,4,6,8,10,12,14,16,18,20,22\}
\end{aligned}
$$

a. Determine the following groups: $G / H, G / K, H / K,(G / K) /(H / K)$.
b. Show that the first and fourth are isomorphic.

