AlgebraNotes06 Product Groups.

Definition. Suppose that G and H are groups with the operations * and \star respectively. Then the algebraic product of G and H, denoted by $G \times H$ is the set of elements $\{g, h) g \in G, h \in H\}$ with the operation $\cdot=* \times \star$ so that:

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right)
$$

Theorem 6.1. If G and H are groups the the algebraic product $G \times H$ of G and H is a group.

Theorem 6.2. If G and H are groups then $G \times H$ is Abelian if and only if each of G and H is Abelian.

Exercises 6.1.
a.) Let $G=\left(\mathbb{Z}_{3},+_{3}\right)$ and $H=\left(\mathbb{Z}_{5},+_{5}\right)$. Determine if $G \times H$ is isomorphic to $\left(\mathbb{Z}_{15},{ }_{15}\right)$.
b.) Let $G=\left(\mathbb{Z}_{2},+_{2}\right)$ and $H=\left(\mathbb{Z}_{4},+_{4}\right)$. Determine if $G \times H$ is isomorphic to $\left(\mathbb{Z}_{8},+_{8}\right)$.

Exercises 6.2. Consider the permutation group $G=S_{5}$. If α and β are two elements of G then the subgroup generated by α and β is the set of all elements of G in the form $\alpha^{n_{1}} \beta^{n_{2}} \alpha^{n_{3}} \beta^{n_{4}} \ldots \alpha^{n_{2 k-1}} \beta^{n_{2 k}}, n_{i} \in \mathbb{Z}$. [Note: you should verify that it is indeed a subgroup.]
a.) Let α and β be the two permutations $\alpha=(12)$ and $\beta=(345)$. Do α and β commute? Determine if the subgroup generated by α and β is isomorphic to some $\left(\mathbb{Z}_{n},+_{n}\right)$.
b.) Repeat exercise 6.2 a with $\alpha=(13)$ and $\beta=(345)$.

Theorem 6.3. If G and H are groups then $N=\left\{\left(g, e_{H}\right) \mid g \in G, e_{H}\right.$ is the identity of $\left.H\right\}$ is a normal subgroup of $G \times H$. [Note: first prove it's a subgroup then prove it's normal.]

Theorem 6.3b. If G and H are groups and N is a normal subgroup of G then $\{(x, e) \mid x \in N\}$ is a normal subgroup of $G \times H$.

Exercises 6.3.
a.) Consider $\left(\mathbb{Z}_{10},{ }^{10}\right)$. Let $H=\left\{z \in \mathbb{Z}_{10} \mid z\right.$ has a multiplicative inverse $\}$. Then is H a group with the $\bmod 10$ multiplication operator? If yes is it cyclic?
b.) Repeat exercise 6.3 a . with $\left(\mathbb{Z}_{12},{ }^{12}\right)$.

Exercises 6.4. Let G be a group.
a.) We've proven that if ℓ is a fixed element of G then $f_{\ell}: G \rightarrow G$ defined by $f_{\ell}(g)=\ell g$ is a one-to-one function. (The subscript is to tell us that the function is dependent upon our choice of ℓ.) So for each $x \neq y \in G, f_{x}$ is likely to be a different function than f_{y}. Let $\mathcal{F}(G)=\left\{f_{x} \mid x \in G\right\}$. Show that $\mathcal{F}(G)$ with the composition operator is a group. [Composition operator: $\left(f_{x} \circ f_{y}\right)(g)=f_{x}\left(f_{y}(g)\right)$.]
b.) Calculate $\mathcal{F}(G)$ for $G=\left(Z_{7}-\{0\}, \cdot{ }_{7}\right)$. Is it cyclic?
c.) Calculate $\mathcal{F}(G)$ for $G=\left(Z_{11}-\{0\}, \cdot{ }_{11}\right)$. Is it cyclic?

