AlgebraNotes07 Euler's ϕ function.

A theorem about cyclic groups that we have been using.
Theorem 7.1 Suppose that each of G and H is a cyclic group of order n with generators a and b respectively. Then $\varphi: G \rightarrow H$ defined by

$$
\varphi\left(a^{k}\right)=b^{k} \quad \text { for each } k \in \mathbb{Z}
$$

is an isomorphism.

Theorem 7.2. Suppose that G is a cyclic group of order n with generator a. Then a^{k} generates G if and only if $k=1$ or n and k are relatively prime.

Theorem 7.3. Consider $\left(\mathbb{Z}_{n},{ }_{n}\right)$; let $M_{n}=\left\{x \in \mathbb{Z}_{n} \mid x\right.$ has a multiplicative inverse $\}$. Then $\left(M_{n},{ }_{n}\right)$ is a group.

Definition [Euler's ϕ function]. Let n be a positive integer, then the Euler phi-function, written as $\phi(n)$, is the number of positive integers less than or equal to n that have a greatest common divisor of 1 with n.

Theorem 7.4. [Euler's theorem]. If each of a and n are positive relatively prime integers, then

$$
a^{\phi(n)} \equiv_{n} 1 .
$$

Equivalently

$$
n \mid a^{\phi(n)}-1
$$

I think the following is a corollary to 7.5: If each of a and n are positive relatively prime integers, then for any positive integer k :

$$
n \mid\left(a^{k \phi(n)}-1\right)
$$

Let's test this out with 5 and 9 ; and then with 8 and 10.
I also think the following is a corollary to 7.5: If k is a positive integer then

$$
n \mid \phi\left(k^{n}-1\right) .
$$

Again let's test this out with some values.
Exercise 7.5. Argue that if p and q are relatively prime, then $\phi(p q)=$ $\phi(p) \phi(q)$.

Another important theorem of Group Theory:
Theorem 7.6. [Cayley's Theorem.] If G is a group and $|G|=m$, then G is isomorphic to a subgroup of the permutation group on m elements, S_{m}.

Hints:
a. For each $g \in G$, define $f_{g}: G \rightarrow G$ by $f_{g}(x)=g x$. Show that f_{g} is a permutation of the elements of G.
b. Show that $S(G)=\left\{f_{g} \mid g \in G\right\}$ is a group with the composition operator \circ.
c. Show that $S(G)$ is isomorphic to G.

Exercise 7.7. Suppose $\gamma: G \rightarrow G$ is one-to-one and onto. Show that $\gamma=f_{g}$ for some $g \in G$. Where f_{g} is as defined in 7.5a. above.

Exercise 7.8. Suppose that G is a group and $|G|=2 p$ for some prime number p. Show that
a. G has a subgroup of order p.
b. Show that the subgroup of order p from part (a) is normal.
c. What can you say if $|G|=p q$ where p and q are distinct primes.

Helpful observations regarding Exercise 7.8.
Part a. Assume that G is a group and $|G|=2 p$ with p a prime number. [Note: by the order of a group is meant the cardinality of the group. By the order of an element g of a group G we mean the smallest positive integer n so that $g^{n}=e$.]

Observation 1. If g and h are two elements of G, the order of g is p, h is not in the subgroup generated by g and for some i we have an integer j so that $h^{i}=g^{j} \neq e$. Then G is cyclic and h generates G.

Observation 2. G contains a subgroup of order p.

Observation 3. If J is a group and g and h are elements of J with $g \neq h$ and so that $g^{2}=h^{2}=(g h)^{2}=e$, then J contains a subgroup of order 4.

Part b. Stay tuned.
Part c. Find a generalization of observation 1 above useful for the case that $|G|=p q$ with both p and q prime.

