AlgebraNotes07 Rings

Definition. A ring $(R, +, \cdot)$ is a set with two binary operations such that

i. (R, +) is a commutative (addition) group;

ii. the multiplication operator \cdot is associative;

iii. the operation \cdot distributes over the operation + so that for elements $a,b,c\in R$ we have:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

(b+c) \cdot a = b \cdot a + c \cdot a.

Theorem 8.1. For the ring $(R, +, \cdot)$ with additive identity 0 and $a, b \in R$ we have:

$$0a = a0 = 0$$

$$a(-b) = (-a)b = -(ab)$$

$$(-a)(-b) = ab.$$

Definition. If $(R_1, +_1, \cdot_1)$ and $(R_2, +_2, \cdot_2)$ are rings and $\varphi : R_1 \to R_2$ is a function then φ is a ring homomorphism means that, for $a, b \in R_1$:

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b).$$

Definition. If $(R, +, \cdot)$ is a ring then it is called a division ring if R has a multiplicative identity 1 with $1 \neq 0$ and each element x of R has a multiplicative inverse so that:

$$xx^{-1} = x^{-1}x = 1.$$

Definition. R is a field means that R is a division ring in which the multiplication operation is commutative.

Definition. If R is a ring then the element $a \neq 0$ is called a zero divisor if there is an element $b \in R$ with $b \neq 0$ so that either ab = 0 or ba = 0.

Exercise. 8.1. If $R = (\mathbb{Z}_n, +_n, \cdot_n)$, then R is a finite ring.

[Notation: The statement "*R* is the ring Z_n " is a shorthand statement that means that, with the canonical operations $+_n, \cdot_n, R$ is the ring $(\mathbb{Z}_n, +_n, \cdot_n)$.]

Theorem 8.2. Let R be the ring \mathbb{Z}_n then $a \neq 0$ is a zero divisor in \mathbb{Z}_n if and only if $gcd(a, n) \neq 1$.

Definition. The ring R is an integral domain means that R is a commutative ring (with respect to multiplication as well as addition) with a multiplicative identity $1 \neq 0$ which has no zero divisors.

Theorem 8.3. If F is a field and $a, b \in F$ are such that ab = 0, then either a = 0 or b = 0.

Exercises 8.2:

a. What are the zero divisors of the ring \mathbb{Z}_{14} ? of the ring $\mathbb{Z}_3 \times \mathbb{Z}_6$; what is the multiplicative identity?

b. Verify that with the natural definition of operations on products, that if each of R_1 and R_2 is a ring then $R_1 \times R_2$ is a ring.

c. Show that the ring \mathbb{Z}_{pq} for p and q integers greater than 1, is not a division ring.

d. Determine for which integers n the ring \mathbb{Z}_n is a division ring.

Exercises 8.3. Suppose that $\varphi : R_1 \to R_2$ is a ring homomorphism verify the following (add additional assumptions that you need - e.g. multiplicative inverses etc.)

$$\begin{array}{rcl} \varphi(0) &=& 0\\ \varphi(-x) &=& -\varphi(x)\\ \varphi(1) &=& 1\\ \varphi(x^{-1}) &=& (\varphi(x))^{-1}. \end{array}$$

Theorem 8.4. Suppose that $(R, +, \cdot)$ is a ring with a multiplicative identity. Then the set of all invertible elements of R form a Group.

Theorem 8.5. Let $R_p = \{a + p\mathbb{Z} | a \in \mathbb{Z}\}$ be set of cosets of pZ in the ring \mathbb{Z} . Define \oplus and \otimes on R_p by:

$$(a + p\mathbb{Z}) \oplus (b + p\mathbb{Z}) = (a + b) + p\mathbb{Z}$$
$$(a + p\mathbb{Z}) \otimes (b + p\mathbb{Z}) = ab + p\mathbb{Z}$$

Then (R_p, \oplus, \otimes) is a ring and is isomorphic to \mathbb{Z}_p .

Theorem 8.6. If p is a prime number then for any integer a > 1 such that p does not divide a we have $a^{p-1} \equiv_p 1$.

Theorem 8.7. Let $G_n = \{x \in Z_n | x \neq 0, x \text{ is not a zero divisor }\}$. Then (G_n, \cdot_n) is a group.

Theorem 8.8. Suppose $a, b \in \mathbb{Z}_n$ and $d = \gcd(a, n)$. Then the equation ax = b has a solution if and only if d|b. Furthermore, in that case it has exactly d solutions.

Exercise 8.4. For the selected rings, solve the indicted equations or determine if they do not have solutions. [Note that I am suppressing the equivalence class notation $[\cdot]_n$.]

a.) $R = \mathbb{Z}_{13}$

$$7x = 4$$

$$6 - 4x - 5$$

$$3x - 2 = 2$$

$$3x - 5 = 4$$

$$x^{2} = 0$$

$$6x = 0$$

$$(2x - 4)(7x + 3) = 0.$$

b.) $R = \mathbb{Z}_{15}$

$$7x = 4$$

$$6 - 4x - 5$$

$$3x - 2 = 2$$

$$3x - 5 = 4$$

$$x^{2} = 0$$

$$6x = 0$$

$$(2x - 4)(7x + 3) = 0.$$