Section I. Exercises on isomorphism theorems.
Exercise 5.1. Do exercise 3 on the AlgebraNotes04.
Exercise 5.2. Define $\varphi:\left(\mathbb{Z}_{24},+_{24}\right) \rightarrow\left(\mathbb{Z}_{8},+_{8}\right)$ by $\varphi\left([x]_{24}\right)=[x]_{8}$.
a. Show that φ is well defined.
b. Show that φ is onto.
c. Find the kernel of φ.
d. Find the function μ defined in Lemma 4.4 and verify that it is well defined.
e. Show that μ is a homomorphism.

Exercise 5.3. Consider the group $G=\left(\mathbb{Z}_{19}-\{0\},{ }_{19}\right)$. Use the multiplication chart I sent you earlier. Note that I will omit the subscript 19 and the brackets $[\ldots]$ so that $[8]_{19} \cdot[9]_{19}=[15]_{19}$ will be written $8 \cdot 9=15$.
a. Find the subgroup of G generated by 4 (i.e.: the subgroup $\left\{\left[4^{n}\right]_{19} \mid n \in\right.$ $\mathbb{Z}\}$ denote this subgroup by H.
b. Find the subgroup of G generated by 7 (i.e.: the subgroup $\left\{\left[7^{n}\right]_{19} \mid n \in\right.$ $\mathbb{Z}\}$, denote this subgroup by K.
c. Show that $K \subset H$.
d. Determine the following groups: $G / H, G / K, H / K,(G / K) /(H / K)$. [Write their multiplication charts.]
e. Argue that G / H is isomorphic to $(G / K) /(H / K)$.
f. Exercise from class 10/14/19: Is G cyclic? If yes find an isomorphism from G onto $\left(\mathbb{Z}_{n},+_{n}\right)$ for the appropriate n. [Hint: does $[m] \rightarrow\left[2^{m}\right]$ work? and why did I pick 2?]

Section II. Exercises on possible group structures.
Exercise 5.4. Suppose that G is a group and ℓ is a particular element of G.
a. Define $\varphi: G \rightarrow G$ by $\varphi(g)=\ell g$.
i. Prove that φ is one-to-one and onto.
ii. Prove that φ is an isomorphism if and only it $\ell=e$.
b. Define $\varphi: G \rightarrow G$ by $\varphi(g)=\ell g \ell^{-1}$. Prove that φ is an isomorphism.

Exercise 5.5. Suppose that G is a group, N is a normal subgroup of G, and $\varphi: G \rightarrow H$ is a homomorphism of G onto the (non-degenearate) group H with kernel K. Answer the following questions.
a. If $|G|=35$, what are the possible values for $|K|$. [Recall that $|K|$ is the number of elements in K.
b. If $|G|=36$ and $|K|=6$ then what are the possible values of $|H|$.
c. If $|G|=19$ then prove that φ is one-to-one.

Exercise 5.6. The number 4 is the smallest integer n so that there are nonisomorphic groups of size n.
a. For $n=4$ find all the non-isomorphic groups of size n.
b. Repeat exercise (a) for $n=5$ and $n=6$.

Exercise 5.7. Find the smallest integer n so that there is a non-abelian group of size n.

Exercise 5.8. For each of the groups found in exercise 5.4 above find an integer n so that the group is a subset of S_{n} the group of permutations on n elements.

