MATH5310 Dr. Smith Test 1 prep.

1. Suppose that for $x, y \in \mathbb{Z}$ the relation \sim is defined by $x \sim y$ if and only if $5 \mid 4 y+x$.
a.) Show that \sim is an equivalence relation.
b.) List the elements of [7], the equivalence class of 7 .
2. Define $f:\left(\mathbb{Z}_{20},+_{20}\right) \rightarrow\left(Z_{10},+_{10}\right)$ by $f\left([x]_{20}\right)=[12 x]_{10}$.
a.) Show that f is well defined.
b.) Is f one-ton-one?
c.) Is f onto?
e.) Show that f is a homomorphism.
f.) Find the kernel of f.
3. Let $G=\left(Z_{18},{ }_{18}\right)$ and $H=\{0,6,12\}$ (where I'm using the shorthand 6 for $[6]_{18}$, etc.) Show that G / H is isomorphic to $\left(Z_{6},+_{6}\right)$.
4. Exercises 1 and 2 of AlgebraNotes01.
5. Make sure you can do Theorems 03, 04 and 05 also Lagrange's theorem (Theorem 06); also theorems 3.3-3.6.
6. Consider $G=\left(\mathbb{Z}_{100},{ }_{100}\right)$.
a.) Argue that G is not a group.
b.) Show that although G is not a group, G has an identity and that $[59]_{100}$ and $[39]_{100}$ are inverses of one another.
c.) Let $f: \mathbb{Z}_{100} \rightarrow \mathbb{Z}_{100}$ be defined by $f\left([x]_{100}=[59 x+17]_{100}\right.$. Show that f is well-defined.
d.) Use (b) to prove that the function f is one-to-one and onto.
7. Prove for $\left(\mathbb{Z}_{n},{ }_{n}\right)$ that $[n-1]_{n}$ is always its own inverse.

8a. Prove that if G is a group, $g \in G$ and $H=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$. Then H is a cyclic subgroup of G.
8b. Prove that if G is a finite group, $|G|=p$ and p is a prime number, then G is a cyclic group and therefore abelian.

