
Topology Math 5500/6500 Fall 2021
Dr. Smith

Project 02 Part 1 Key

The project is due Monday Oct. 25 before class. As usual - please send
me your work as a pdf file with the file name beginning with your last name.

As usual - please send me your work on time as a pdf file with the file
name beginning with your last name; failure to do so may cause you to
incur a penalty.

A short course in analysis.

We have developed the tools of topology to the point that some of the
standard theorems of analysis can be proven using the theorems that we
have worked on. It turns out that these theorems will hold for any ordered
topological which is connected and for which intervals [a, b] are compact and
for which the least upper bound principle holds. For the solutions of the
following problems you may use only the theorems from class and be careful
not to assume that your space is metric unless the problems specifically
references the real numbers (as in problem 1).

Make sure to reference the theorems that you are using in your
proofs/solutions that you write up. Some of the conclusions follow almost
trivially from our theorems - make sure to reference them (by number is fine)
when you use them.

You may do 6 of the following 7 problems; if you do all seven I will base
your grade on the best 6 out of 7.

Assume that the reals R has the standard topology. Assume for the
following (except for problem 7) that the interval [0, 1] is compact and con-
nected.

Problem 1. We’ve shown that the unit interval [0, 1] is compact; use Theorem
5.3 to argue that an arbitrary interval in R is compact.

Proof. Let [a, b] be an arbitrary interval in R. Let f : R→ R be defined by

f(x) = = a+ (b− a)x.
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Then f([0, 1]) = [a, b]. For ε > 0 if we let δ = ε/(b − a) then for |x − t| < δ
we have |f(x) − f(t)| < ε. So f is continuous and then the compactness of
[a, b] follows from Theorem 5.3.

Problem 2. Show that if R is connected then so is every interval.

Proof. Suppose some interval [a, b] is not connected and [a, b] = H∪K where
H and K are nonempty mutually separated. (Abbreviating “without loss of
generality” with “wlog.”) Wlog assume a ∈ H.

Case 1. b ∈ K. Then let

Ĥ = H ∪ (−∞, a)

K̂ = K ∪ (b,∞).

Case 1. b ∈ H. Then let

Ĥ = H ∪ (−∞, a) ∪ (b,∞)

K̂ = K.

Then it is straightforward to prove that Ĥ and K̂ are nonempty mutually
separated sets that union to R. This contradicts the assumed connectedness
of R.

Problem 3. Show that a subset of R is compact if and only if it is closed and
bounded.

Proof. Part 1. Suppose that the set M is closed and bounded. Then there
is an interval [a, b] so that M ⊂ [a, b]. Since M is closed and by problem 1,
[a, b] is compact, then by Theorem 5.1 M is compact.

Part 2. Suppose that the set M is compact. Then by Theorem 5.2 it
is closed. Next let G = {(−n, n)|n ∈ N}. Observe that G is a covering
of R with open sets. So G covers M and so by compactness some finite
subcollection G′ of G covers M . So if we let N = max{n|(−n, n) ∈ G′} it
follows that M ⊂ (−N,N) and hence M is bounded.
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Problem 4. Show that every infinite and bounded set has a limit point.

Proof. Let M be an infinite and bounded set. Since it is bounded there is
an interval [a, b] so that M ⊂ [a, b]. Since [a, b] is compact and M is infinite,
by Theorem 5.11, M has a limit point.

Problem 5. [The intermediate value property.] Suppose f : R → R is
continuous. Let a < b and suppose that y is a number between f(a) and
f(b). Then there is a number x between a and b so that f(x) = y. [Hint:
use the results of problem 2.]

Proof. Assume to the contrary that there is a point y between f(a) and f(b)
so that no point of [a, b] maps onto it. We prove the case where f(a) < f(b),
the other case is similar. Let U = {t|y > t} and let V = {t|y < t}. Observe
that U and V are disjoint open sets and that every point of [a, b] is mapped
onto a point of U or a point of V . Since f is continuous f−1(U) and f−1(V )
are open and by construction they are disjoint. Furthermore a ∈ f−1(U) and
b ∈ f−1(V ). So if we let H = f−1(U) ∩ [a, b] and K = f−1(V ) ∩ [a, b], then
H and K are disjoint nonempty sets; since they are subsets of disjoint open
sets, they are mutually separated. Which contradicts problem 2.

Problem 6. [The high point theorem.] Suppose [a, b] is an interval and
f : [a, b] → R is continuous. Then there is a number c ∈ [a, b] so that
f(c) ≥ f(x) for all x ∈ [a, b]. [The value f(c) is the maximum value of f over
the interval [a, b] and the point (c, f(c)) is a high point.]

Proof. Suppose the hypothesis of the theorem. By problem 1, f [a, b] is com-
pact and by problem 3 it is closed and bounded. Since f [a, b] is bounded
it has a least upper bound `. Since it is closed the least upper bound is
an element of f [a, b] so there is a point c so that ` = f(c) therefore since
f(x) ≤ ` for all x ∈ [a, b] it follows that f(x) ≤ f(c) for all x ∈ [a, b].

[Comment. Notice that all that was needed for the proof was that the
domain was compact. The same proof works for f : X → R for X compact.]

Problem 7. Prove the lemma stated in class that I used to prove that the
real numbers is connected. Then complete the proof that R is connected.
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Proof. We assumed that [−n, n] was not connected and that H and K are
mutually separated sets so that [−n, n] = H ∪K. We assumed that a ∈ H
and we let M = {x|[−n, x) ⊂ H}. Observe that if x ∈ M and a < t < x,
then t ∈M . If n ∈ H then there is an open set containing n and no point of
K but that open set must contain a point of M from which it follows from
our observation that M = [a, b) ⊂ H so b ∈ H and so K is empty. Therefore
n /∈M and M has a least upper bound `. Let (u, v) be a segment containing
`; by construction (u, `) contains a point of M so ` is a limit point of M
and hence of H, so ` is not in K and is in H, so by the least upper bound
property, there is a point t in (`, v) not in M so there is a point q in (`, t)
not in H and so q ∈ K. So ` is a limit point of K but this contradicts the
fact that H and K are supposed to be mutually separated.

Therefore for each integer n the set [−n, n] is connected and each of these
intervals contain the point 0. So by Theorem 6.4, R is connected.

Extra Credit: Show that one can deduce the least upper bound property
from that fact that R is connected.

Proof. Suppose that M is a bounded set and that u is an upper bound to
M . Let L = {u|m ≤ u for all m ∈M}. Let K = R− L. Observe that:

1. If u ∈ L and u′ > u then u′ ∈ L.
2. If t ∈ K and t′ < t then t′ ∈ K.
3. If u ∈ L and t ∈ K then t < u.
4. If m ∈M and t < m then t ∈ K.
5. L ∪K = R and L ∩K = ∅.

Then, since R is connected one of the sets K or L contains a limit point of
the other. Call this point `.

Claim 1: ` ∈ L. For if not, then by definition of L there must be a point
m ∈ M so that ` < m. But then, by observations 2 and 4 above, (−∞,m)
is an open set containing ` and no points of L and this contradicts ` being
in one of the sets and a limit point of the other.

Claim 2: no point of L precedes `. For if a point u ∈ L precedes ` then, by
observations 1 and 3 above, (u,∞) is an open set containing ` and no points
of K; so ` lies in L and is not a limit point of K. Again this contradicts `
being in one of the sets and a limit point of the other.

Then ` is an upper bound of M by Claim 1. And by Claim 2 no other
upper bound of M precedes `; so ` is the least upper bound of M .
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