
Math 5500/6500, Fall 2021, Dr. Smith
Test 01, Key

Instructions: The test is due by before class Monday September 27. The
test is open book and open notes; this includes my notes on the website and
class notes on the canvas website. You may not receive any other outside
assistance and may not discuss the test with anyone. Please affirm at the
beginning of your hand-in work that you have abided by these conditions.

Email to me as an attachment your solutions to the problems as a pdf file
with the file name beginning with your last name: e.g. smithxyztest01.pdf.

Problem instructions: Math5500 students may omit one question (if you
do all, I’ll omit the one with least credit); Math6500 should do all the ques-
tions. You may assume any of the theorems in the notes or any lemmas
or exercises proven in class. You must prove any other lemmas that you
use. If (X, Td) is a metric space then Td denotes the topology and d is the
metric that generates the topology. The symbol R denotes the real numbers
with the standard topology unless otherwise indicated (as in problem part B
of problem 4); Q denotes the rational numbers and N denotes the positive
integers 1, 2, 3, . . .. If M is a set sup(M) denotes the least upper bound of
M .

Problem 1. Suppose (X, Td) is a metric space.
Part A. Suppose p ∈ X and ε > 0. Prove that if d(x, p) < ε and 0 < δ <

ε− d(x, p) then:

Bδ(x) ⊂ Bε(p).

Proof. Assume the hypothesis and let t ∈ Bδ then

d(t, x) < δ

< ε− d(x, p)

d(t, x) + d(x, p) < ε

d(t, p) < d(t, x) + d(x, p) < ε

∴ t ∈ Bε(p)

∴ Bδ(x) ⊂ Bε(p).
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Part B. Prove that for each p ∈ X that the following collection Bp is a
local basis at p:

Bp = {B 1
n
(p)| n ∈ N}.

Comment: Some students used the fact that {Bε(p)}ε>0 is a local basis;
this is fine. The following essentially reproves this, which is what many of
you did; and that’s fine too.

Proof. Let p ∈ X and let U be an open set containing p. Then there is
q ∈ X and ε > 0 that determine a basis element Bε(q) that contains p and
is a subset of U . Let n be such that 1

n
< ε− d(p, q). Then by part A of this

problem we have

B 1
n
(p) ⊂ Bε(q)

⊂ U.

Problem 2. Consider the topological space (R, Td) with the usual metric d.
Determine the sequential limit of the following sequence and prove that it is
the sequential limit: {

2 +
3

4
√

2n− 5

}∞
n=1

.

Solution. The limit is 2. For ε > 0, select any integer Nε so that

Nε >
1

2

( 3

4ε

)2
+

5

2
.

(In fact, any integer greater than this, such as 1
ε2

+ 5
2
, will also work.)

Then prove that for every n > Nε we have∣∣∣2 +
3

4
√

2n− 5
− 2
∣∣∣ < ε.

Problem 3. Suppose (X, T ) is a Hausdorff space, M ⊂ X and M ′ is the set
of limit points of M . Prove that if p is a boundary point of M ′ then p is a
limit point of M .
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Proof. Some students found different proofs using some of the theorems
proven in class.

Let p is a boundary point of M ′ and let U be an arbitrary open set
containing p. Then U contains a point of M ′ and a point not in M ′. Since it
contains a point x in M ′ it also contains a point t of M (which may or may
not be p) distinct from x. If t 6= p then we have found a point of M in U
distinct from p. If t = p then by the Hausdorff condition, there are disjoint
open sets V and W containing t and x and respectively. Then W ∩ U is an
open set and so contains a point distinct from x in M . This point is also in
U and cannot be p and so, in either case, U contains a point of M distinct
from p and therefore p is a limit point of M .

Problem 4. Consider the following subsets Mi of R:

M1 =
{

1− 1

n

}∞
n=1

⋃{
2 +

2

n

}∞
n=1

⋃{
3− 4

n

}∞
n=1

M2 = {x|x2 < 5} ∪ [5, 7]

M3 = {x|x ≤ −7} ∪ ((2, 3) ∩Q) ∪ (5, 6).

Part A. Using the standard topology of R, determine
(i) the set of limit points of Mi;
(ii) the interior of Mi;
(iii) the boundary of Mi.

Part B. Repeat part A but with the topology T̂ on R generated by the
basis B̂ = {[a, b)| a < b}.

Problem 5. Suppose (X, Td) is a metric space, {xi}∞i=1 is a sequence of point
that has sequential limit p and f : X → R is a continuous function. Prove
that f(p) is the sequential limit of the sequence {f(xi)}∞i=1.

Proof. Assume the hypothesis of the theorem and suppose that U is an open
set in Y containing f(p). Then, by the definition of continuity, f−1(U) is
an open set in X and it contains p. So there exists an integer N so that if
n > N , then xn ∈ f−1(U). If xn ∈ f−1(U) then f(xn) ∈ U . Therefore we
have found an integer N so that for n > N , we have f(xn) ∈ U . Therefore,
f(p) is the sequential limit of the sequence {f(xi)}∞i=1.
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Problem 6. Suppose (X, Td) is a metric space, p ∈ X and ε > 0.
Part A. Prove that if x is a boundary point of Bε(p) then d(x, p) = ε.

Proof Outline. Case 1. Assume d(x, p) < ε; then for δ > 0 so that δ <
ε− d(x, p), by part A of problem 1 we have Bδ(x) ⊂ Bε(p) so x cannot be a
boundary point.

Case 2. Assume d(x, p) > ε use an argument similar to the one for
problem 1 A to show that if δ is a positive number so that δ < d(x, p) − ε
then Bδ(x) does not intersect Bε(p) and so is not a boundary point of Bε(p).

The only possibility left is that d(x, p) = ε.

Part B. Prove that if δ < ε then Bδ(p) ⊂ Bε(p).

Proof Outline. Argue the following lemma: M = M ∪ Bd(M). Then part B
follow from part A plus this lemma.

Problem 7. Let X = C([0, 1]) denote the set of continuous functions from
[0, 1] into itself. For each n ∈ N define fn as follows:

fn(x) =

{
1− nx if 0 ≤ x ≤ 1

n

0 if 1
n
< x ≤ 1

and let h be the identically 0 function: h(x) = 0 for all x ∈ [0, 1].

Part A: Define a metric d on X by d(f, g) =
∫ 1

0
|f−g|dx. Show that with

this metric the point h is a sequential limit point of the sequence {fn}∞n=1.

Proof Outline. Show that d(h, fn) = 1
2n

then for Nε >
1
2ε

we have: if n > Nε

then d(h, fn) < ε.

Part B: Define a metric ρ on X by ρ(f, g) = sup{|f(x)−g(x)|
∣∣ x ∈ [0, 1]}.

Show that with this metric the point h is a not a sequential limit point of
the sequence {fn}∞n=1.

Proof Outline. Argue that ρ(h, fn) = 1. Then for ε = 1
2
, Bε(h) (with respect

to the ρ metric) contains h but no points of the sequence {fn}∞n=1.
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