Topology 5500/6500 Fa21 - Dr. Smith Section 01 - Various Proofs

Theorem 1.1. Let $(X, \mathcal{T}(X))$ be a topological space. Let $U \in \mathcal{T}(X)$ be an open set, then U does not contain any of its boundary points.

Proof. Let U be an open set and suppose $p \in Bd(U)$. If O is an open set containing the boundary point p, then O contains a point of U and a point not in U. But U is an open set so it cannot contain p, since in order for it to do so, it would have to contain points not in U which is a contradiction. \Box

Theorem 1.2. Let $(X, \mathcal{T}(X))$ be a topological space. If $M \subset X$ then X - Bd(M) is open.

Proof. Suppose the hypothesis of the theorem and suppose that $p \in X - Bd(M)$.

Case 1: $p \in M$. Since p is not a boundary point of M. There must exist an open set U_p so that either U_p contains no point of M or no point of X - M. Since $p \in M$ it follows that $p \in U_p \subset M$ and so U_p does not contain any boundary points of M. So $U_p \subset X - Bd(M)$.

Case 2: $p \notin M$. Then $p \in X - M$. Since p is not a boundary point of M. There must exist an open set U_p so that either U_p contains no point of M or no point of X - M. Since $p \in X - M$ it follows that $p \in U_p \subset X - M$ and so, as in case 1, U_p does not contain any boundary points of M and again we have $U_p \subset X - Bd(M)$.

Since $(X, \mathcal{T}(X))$ be a topological space, it follows that the set

$$O = \bigcup_{p \in X - \operatorname{Bd}(M)} U_p$$

is open. Since each point of X - Bd(M) is in O and each U_p is a subset of X - Bd(M) it follows that O = X - Bd(M).

Exercise. Let $(X, \mathcal{T}(X))$ be a topological space and $M \subset X$. Then Bd(M) = Bd(X - M).

Proof. Suppose the hypothesis of the theorem so that $M \subset X$. Let $p \in Bd(M)$. Then if U is an open set containing p, U contains a point of M and a point of X - M. Therefore

$$Bd(M) \subset Bd(X - M). \tag{1}$$

Let $p \in Bd(X - M)$. Then if U is an open set containing p, U contains a point of X - M and a point of M. Therefore

$$\operatorname{Bd}(X - M) \subset \operatorname{Bd}(M).$$
 (2)

Together equations (1) and (2) imply that Bd(M) = Bd(X - M).