
Topology notes.
Basic Definitions and Basic Properties.

Topology is the study of those properties of (geometric) objects (spaces)
which are invariant under continuous and reversibly continuous transforma-
tions (i.e. continuous functions.) I assume that everyone has some familiarity
with the concept of a function. So we need to define what it means for a
function to be continuous. Continuity is based on the idea of an open set;
in fact a topology on a space is the collection of open sets defined for the
particular space under consideration.

Intuitively, a topological space X consists of a set of points and a collec-
tion T of special sets called open sets that provide information on how these
points are related to each other. One can think of these points as a general-
ization of geometric points and the open sets as generalizations of geometric
regions such as the inside of spheres or cubes. Thus for the definition of a
topological space we are required to have a set of points for the underlying
space and a collection of these open sets that define the “topology” on this
space of points. We denote the topological space determined by the pointset
X and topology T by (X, T ) though we will frequently refer to X as the
topological space if the underlying topology is known.

Example 0.1. [The standard topology of the reals R.] The set S is said to
be a segment if and only if there are two numbers a < b so that S = {x | a <
x < b}; this segment S is denoted by (a, b). The set U is said to be open if
and only if for each point p ∈ U there is a segment S containing p so that
S ⊂ U . Let T (R) be the collection of all open subsets of R.

Example 0.1 B. [An alternate construction of the topology of the reals R.]
Let B be the set to which S belongs if and only if S is a segment so that there
are two numbers rational numbers a < b so that S = (a, b) = {x | a < x < b}.
The set U is said to be open if and only if for each point p ∈ U there is a
segment S ∈ B containing p so that S ⊂ U . Let T2(R) be the collection of
all open subsets of R.

Argue that T (R) = T2(R).

Exercise 1.1. Define what it means for a set not to be open.
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Exercise 1.2. Determine which of the following sets are open in R:
a. A finite set.
b. The complement of a finite set.
c. {t|2t+ 1 > 5}.
d. {t|2t+ 1 ≥ 5}.
e. The integers.
f. The complement of the integers.
g. Rational numbers.
h. The set R.
i. The empty set ∅.

Definition. If S ⊂ R then the interior of S, written Int(S) is the set to
which p belongs if and only if there is a segment (a, b) so that p ∈ (a, b) ⊂ S.

Exercise 1.2B. Find the interior of the sets of exercise 1.2.

Exercise 1.2C. Find the interior of the following subsets of R; determine
in each case if the set is open.

j. [1, 3] .
k. [1, 3).
l. {t|1− t2 ≤ 5}.
m. ∪∞n=1(

1
2n+1

, 1
2n

).

n. ∪∞n=1[
1

2n+1
, 1
2n

].
o. The complement of the set of (m).
p. The complement of the set of (n).
q. The irrational numbers.

Exercise 1.3. Show that the collection of open sets T (R) have the follow-
ing properties:

1.) The sets R and ∅ are open.
2.) If A is open and B is open, then A ∩B is open.
3.) If G is a collection of open sets, then the union of the elements of

G is an open set. This set is denoted by ∪G so that ∪G = {x ∈ R|x ∈
g for some g ∈ G}.

Exercise 1.4. In analysis a function f : R → R from the reals into the
reals is said to be continuous at the point p if and only if: for each positive
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number ε there exists a positive number δ so that if:

|p− x| < δ

then
|f(p)− f(x)| < ε.

Show that this is equivalent to the statement that f is continuous at the
point p if and only if for every open set V containing f(p) there is an open
set U containing p so that f maps every point of U into V .

Show that if “open set” in the above is replaced with “segment” then this
produces another equivalent definition of continuity at the point p.

Exercise 1.4 b. [Continuation of exercise 1.4.] A function f : R → R is
said to be continuous if and only if it is continuous at each of its points. Show
that the function is continuous if and only if for each open set U ∈ T (R) the
set f−1(U) = {x| f(x) ∈ U} is open.

Lemma (hint) for Exercise 1.4. The set U is open (in the reals R) if and
only if for each point p ∈ U there exists a positive number ε > 0 so that
(p− ε, p+ ε) ⊂ U .

Intuitively the boundary of an object is something right at the “edge”
of the object and so is close to the object. Our intuition tells us that the
boundary of the segment S = (a, b) is the set of points {a, b}. An interval is
a segment with these boundary points added. We use the notation [a, b] to
denote the interval [a, b] = {x ∈ R|a ≤ x ≤ b}. Our goal in topology is to
define concepts in terms of points and open sets.

Definition. If M is a set then the boundary of the set M , denoted by
Bd(M), is the set to which p belongs if and only if every open set containing
p contains a point in M and a point not in M .

Exercise 1.5. Calculate the boundary of the sets from Exercise 1.2.

Exercise 1.6. Give an example of a set with the property that neither it
nor its complement is open.

Theorem 1.1. If U ⊂ R is open, then U does not contain any of its
boundary points.
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Theorem 1.2. If M ⊂ R then R−Bd(M) is open.

Building on our analysis of the topology of the reals we now provide a
formal definition of a topological space.

Definition. A topological space is a pair (X, T ) such that X is of a set
of objects called points and T is a collection of subsets of X such that the
following are satisfied:

1. ∅ ∈ T and X ∈ T ;
2. If A ∈ T and B ∈ T then A ∩B ∈ T ;
3. If U ⊂ T then ∪{u|u ∈ U} ∈ T .

The elements of the collection T are called open sets and the collection T is
called the topology of X.

If X and Y are two topological spaces, I may use the notation T (X) and
T (Y ) to denote their respective topologies in order to avoid confusion.

Since the topology of a space is dependent on the collection of open sets,
the same underlying set of points may have different topologies. For any
given set of points X we can consider the following two topologies.

Example 1.1. Let X be a set of points; let T = {∅, X}.

Example 1.2. Let X be a set of points; let T = {H|H ⊂ X}.

Example 1.1 is often called the trivial or degenerate topology. Example
1.2 is called the discrete topology on a set. The first example describes the
minimal topology based on the minimal requirements for a collection to be
a topology on a space. The second is the largest topology possible for a set
since it contains all the subsets of the space.

Exercise 1.7. Let X be a topological space. Suppose that for each positive
integer i, Ui is an open set. Show that ∪∞i=1Ui is open and that if N is an
integer then ∩Ni=1Ui is open.

Exercise 1.8. Show in the reals that there is a sequence of open sets
{Ui}∞i=1 so that ∩∞i=1Ui is not open.
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Since the Euclidean plane can so easily be represented on the blackboard
we define the standard topology for two dimensional Euclidean space E2. Let
X = {(x, y)| x,∈ R} denote the Euclidean plane. For each point P = (a, b)
and ε > 0 let

Bε(P ) = {(x, y)|
√

(a− x)2 + (b− y)2 < ε}.

Then the set U is said to be open in X if and only if for each point P ∈ U
there is a positive number ε so that Bε(P ) ⊂ U . Let T◦ denote this collection
of open sets.

Exercise 1.9. Show that (E2, T◦) is a topological space.

Exercise 1.10. Let X be the Euclidian plane E2. For each point P = (a, b)
and ε > 0 let

B̂ε(P ) = {(x, y)| |x− a|+ |y − b| < ε}.

Then the set U is said to be open in X if and only if for each point P ∈ U
there is a positive number ε so that B̂ε(P ) ⊂ U . Let T♦ denote this collection
of open sets.

Show that (E2, T♦) is a topological space.

Exercise 1.11. Show that T◦ = T♦.

Now we give some common axioms that tell us something about the
relationship of the points of a space and the open sets.

Axiom T0. If p and q are points of X then there is an open set that
contains one of these points and not the other.

Axiom T1. If p and q are points of X then there is an open set that
contains p and not q.

Axiom T2. If p and q are points of X then there exist disjoint open sets
A and B containing p and q respectively. A topological space that satisfies
Axiom T2 is called a Hausdorff space.

Exercise 1.12. Determine the implications among these three axioms.
In other words determine if it is true that a topological space that satisfies
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Axiom Ti also satisfies Axiom Tj. If an axiom Ti space does not satisfy
Axiom Tj then give an example of a set of points X with a topology T so
that (X, T ) satisfies Axiom Ti but does not satisfy Tj.

Exercise 1.13. Let X be a point set.
Let T1 = {∅, X}.
Let T2 = {U |U ⊂ X}.

Determine whether or not these spaces are Hausdorff.

Unless otherwise stated, from this point on assume that all spaces are
Hausdorff. Furthermore assume that X is always a topological space with a
topology.

Definition. If (X, T ) is a topological space and M ⊂ X is a point set
then the point p is said to be a limit point of the set M if and only if each
open set containing p contains a point of M distinct from p.

Theorem 1.3. If X is a finite Hausdorff space then no point of X is a
limit point of X.

Exercise 1.14. Give an example of a finite set and three different topolo-
gies for that set. Can all three be Hausdorff?

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then the
derived set of M denoted by M ′ is the set of limit points of M . The closure
of M denoted by M is the set M ∪M ′.

Theorem 1.4. If (X, T ) is a topological space and M ⊂ X then M = M .

Definition. The set M ⊂ X is said to be closed if and only if every limit
point of M is in M .

Theorem 1.5. Suppose (X, T ) is a topological space and M ⊂ X. Then
M is closed if and only if X −M is open.

Theorem 1.6. Suppose (X, T ) is a topological space and M ⊂ X. Then
M ′ is closed.
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Theorem 1.7. If p is a limit point of the set M , then every open set
containing p contains infinitely many points of M .

Theorem 1.8. If each of A and B is a closed subset of the space X, then
A ∩B and A ∪B are closed.

Question: Does Theorem 1.8 hold if X is not required to be Hausdorff?
Is every space satisfying the conditions of Theorem 1.8 for arbitrary closed
sets a Hausdorff space?

The definition of the boundary of a set given above in the case of the
reals generalizes to arbitrary topological spaces. We state the definition for
an arbitrary space.

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then
the point p is called a boundary point of M iff every open set containing p
contains a point in M and a point not in M . We denote the boundary of the
set M by Bd(M).

Exercise 1.15.
a. Find an example of a set that has no boundary point.
b. Find an example of a set every point of which is a boundary point.

[Note that as part of this exercise you need to define a space X and a
topology on that space, and then find a set in that space that has the required
property.]

Theorem 1.9. If X is a topological space and M ⊂ X, then Bd(M) =
M ∩ (X −M).

Corollary 1.9. If X is a topological space and M ⊂ X, then Bd(M) is
closed.

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then the
interior of M , denoted by Int(M) is the set to which x belongs if and only
if there is an open set containing x lying in M .

Exercise 1.16. In all the above theorems determine whether or not the
theorem holds under the weaker T0 or T1 axioms.
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Exercise 1.17. Suppose X is a topological space and A,B,M etc. are
subsets of X. Prove the following. [In each case determine the weakest
axiom that is needed to prove the statement. Caution: at least one of these
is false! Note that I may not warn you in the future. In all the cases where
the statement is false you should provide a counter example.]

a. Int(M) is open.
b. Int(Bd(M)) = ∅.
c. Int(Int(M)) = Int(M).
d. Bd(Bd(M)) = Bd(M).
e. Int(A ∩B) = Int(A) ∩ Int(B).
f. Bd(A ∩B) = Bd(A) ∩Bd(B).
g. Int(M) ∩ Int(X −M) = ∅.
h. (X − Int(M))− Int(X −M) = Bd(M).
i. M is open iff M ∩Bd(M) = ∅.
j. A ∪B = A ∪B.
k. A ∩B = A ∩B.
l. U is open iff U = Int(U).
m. X − Int(A) = X − A.
n. X = Int(M) ∪Bd(M) ∪ Int(X −M).
o. A is closed iff Bd(A) ⊂ A.
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