Metric Spaces

Definition: Let X be a set and \mathbb{R} the real numbers. The function d : $X \times X \rightarrow \mathbb{R}$ is called a metric for X provided:

1. $d(x, y) \geq 0$ for all $(x, y) \in X \times X$;
2. $d(x, y)=0$ if and only if $x=y$;
3. $d(x, y)=d(y, x)$ for all $(x, y) \in X \times X$;
4. $d(x, z) \leq d(x, y)+d(y, z)$ for all x, y, z in X.

Definition: Suppose that X is a set, $x \in X$ and d is a metric for X. Then the set $B_{\epsilon}(x)=\{t \in X \mid d(t, x)<\epsilon\}$ is called the ϵ-ball around x.

Observation: you should notice that if X is a topological space and d is a metric for X. Then $\mathcal{B}=\left\{B_{\epsilon}(x) \mid x \in X, \epsilon>0\right\}$ satisfies the hypothesis of theorem 2.2 and so is a basis for X.

Definition: (X, d) is said to be a metric space means that X is a topological space generated by the basis $\mathcal{B}=\left\{B_{\epsilon}(x) \mid x \in X, \epsilon>0\right\}$.

Theorem 3.1. A metric space is Hausdorff.
Theorem 3.2. A metric space is first countable.
Theorem 3.3 A metric space is separable if and only it it is completely separable.

Definition. The topological space X is said to be regular iff for each point $x \in X$ and each closed subset $H \subset X$ of X not containing x, that there exist disjoint open sets U and V so that $x \in U$ and $H \subset V$.

Theorem 3.4. A metric space is regular.
Exercise 3.1. Show that the following "metrics" all produce the standard topology on \mathbb{R}^{2}.
a. $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1},-y_{2}\right)^{2}}$, this is called the standard metric;
b. $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1},-y_{2}\right|$, this is called the taxicab metric;
c. $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\min \left\{\left|x_{1}-x_{2}\right|,\left|y_{1},-y_{2}\right|\right\}$.
[Hint: In each case sketch a picture of the basic open sets.]
Exercise 3.2. Suppose that X is a space and d_{1} and d_{2} are two metrics for X. Then d_{1} and d_{2} produce the same topology if and only if for each point p and for positive number ϵ there are numbers r and s so that: $\left\{x \mid d_{1}(x, p)<\right.$ $r\} \subset\left\{x \mid d_{2}(x, p)<\epsilon\right\}$ and $\left\{x \mid d_{2}(x, p)<s\right\} \subset\left\{x \mid d_{1}(x, p)<\epsilon\right\}$.

Definition. The space X is said to me normal if and only if for each pair of disjoint closed sets H and K there exist disjoint open sets U and V so that $H \subset U$ and $K \subset V$.

Theorem 3.5. If X is a metric space then X is normal.
Theorem 3.6. Let X be a topological space.
a. Suppose that for each pair of points a and b that there exists a continuous function from X into $[0,1]$ so that $f(a)=0$ and $f(b)=1$. Then X is Hausdorff.
b. Suppose that if a is a point and B is a closed set not containing a then there exists a continuous function from X into $[0,1]$ so that $f(a)=0$ and $f(B)=1$. Then X is regular.
c. Suppose that for each pair of disjoint closed sets A and B that there exists a continuous function from X into $[0,1]$ so that $f(A)=0$ and $f(B)=1$. Then X is normal.
[Notes. These (3.6 a-c) really are not hard once you look at them for awhile.
3.6 b . This is the definition of completely regular. To find a space that is completely regular but not regular is hard.
3.6 c . is actually an if and only if theorem; but the other direction is harder.

There is an example of a normal non-metric space.]
Theorem 3.7. Suppose that X and Y are topological spaces and there is a continuous, 1-1 and reversibly continuous onto function $f: X \rightarrow Y$. Then:
a. If X is Hausdorff, then so is Y,
b. If X is regular, then so is Y,
c. If X is normal, then so is Y.

Hand-in homework, due Friday September 27: Exercise 3.2 and prove Theorems 3.1, 3.2, 3.5, 3.6 and 3.7.

Additional Exercises

Exercise: Let $X=\mathbb{R}$ and define a metric d on \mathbb{R} by $d(x, y)=|y-x|$. Show that this metic induces the usual topology of the reals. As a hint to the proofs of the theorems above; prove them first for the space \mathbb{R} with the usual topology.

Exercise: Let $X=\mathbb{R}$ and define a metric d on \mathbb{R} by $d(x, y)=\min \{\mid y-$ $x \mid, 1\}$. Show that this metric is equivalent to the one above. (I.e. generates the same topology.)

Exercise: Let $X=\mathbb{R} \times \mathbb{R}$. Define the following metric d on X :

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\{\begin{array}{cl}
\min \left\{\left|y_{1}-y_{2}\right|, 1\right\} & \text { if } x_{1}=x_{2} \\
1 & \text { if } x_{1} \neq x_{2} .
\end{array}\right.
$$

Prove that d is in fact a metric and that the metric space produced is not separable.

