
Test02, Math 5500, November 14, 2025
Dr. Michel Smith

Make sure to show all your work. You may not receive full credit if the
accompanying work is incomplete or incorrect. If you do scratch work make
sure to indicate scratch work - I will not take off points for errors in the
scratch work if it is so labeled.

Note that all the proofs must follow logically from the theorems and
definitions stated in the class notes; if you wish to use some lemma that
has not been proven in class, you must prove it first using the theorems and
definitions stated from the class notes.

Definitions [Use this page for definitions; I’ll accept grammatically equiv-
alent statements; 20 points]:

1. What does it mean to say that a set is connected.?

2. Define what it means for a set to be nowhere dense

3. Define what it means for a set to be well ordered.

4. Given topological spaces X1 and X2 with topologies T1 and T2 respectively;
define the topology of X1 ×X2.

Check the class notes for definitions.
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Problems [80 points] Do four of the folllowing five problems; you may do
all five for extra credit.

Problem 1. Let X be a non-degenerate connected topological space.
a.) Prove that every point of X is a limit point of X.

Proof. Let x ∈ X. Then {x} and X − {x} are disjoint sets whose union is
X. Since X is nondegenerate, neither set is empty. Since X is connected one
of the set must contain a limit point of the other. Since {x} is closed then
X −{x} is open and so cannot contain a limit point of {x} (or you may say,
because {x} is a single point X − {x} cannot contain a limit point of {x}).
So, {x} contains a limit point of X − {x}) , so x is a limit point of X − {x}
, and so of X itself.

b.) Prove that if H is a finite subset of X, then H is nowhere dense in
X.

Proof. Since H is finite, H has no limit points and so is closed. Let U be an
arbitrary nodegenerate open set. If U ∩ H = ∅ then let V = U . Otherwise
U contains a point x of H. By part (a) x is a limit point of X so U contains
infinitely many points of X − {x} and, since H is finite, one of them t is not
in H so there is an open set W containing t and no point of H. In this case
let V = U ∩W . In either case V is non-empty and lies in U . So, since U was
arbitrary, H is nowhere dense in X.

Problem 2. Let R denote the real numbers. Argue that R is uncountable.
[You may use the result of problem 1 to do this.]

Proof. Suppose that R is countable and that {xn}∞n=1 is an enumeration of
the points of R. By problem 1, {xn} is nowhere dense. So R = ∪∞n=1{xn}.
This produces R as the countable union of nowhere dense sets. But this
contradicts the fact that R is a complete metric space (or a locally compact
space).

Problem 3. Show that every infinite well ordered set contains an order iso-
morphic copy of the positive integers.

[Hint: Use induction.]
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Proof. Let S denote an infinite well-ordered set. We will construct an order
preserving function f from the set {n}∞n=1 to S. since S is well-ordered, every
subset of S has a first element. Let s1 denote the first element of S; define
f(1) = s1. Supose that we’ve constructed f to be order preserving from
{1, 2, . . . , n} so that it’s order preserving onto an initial segment of S of size
n. Then let sn+1 be the first element of the set S − {f(1), f(2), . . . , f(n)}
which is non-empty since S is infinite, and define f(n+ 1) = sn+1. Then by
our choice of sn+1, sn+1 follows every sm for m < n + 1 and so f restricted
to {1, 2, . . . , n, n+ 1} is order preserving. So by the induction principle, f is
an order preserving map from the positive integers into S.

Problem 4. Suppose that [a, b] is an interval in R and f : [a, b] → R is
continuous.

a. Use the fact that [a, b] is connected to argue that f([a, b]) is connected.

Proof. If f([a, b]) is not connected then f([a, b]) is the union of two disjoint
compact sets (since we know that f([a, b]) is compact); C1 and C2. There
exist disjoint open sets U1 and U2 containing C1 and C2 respectively. Then
f−1(U1) and f−1(U2) are (non-empty) disjoint open sets whose union contains
[a, b] (and both intersect [a, b]) which contradicts the connectedness of [a, b].

b. [The intermediate value theorem.] Prove that if d is between f(a) and
f(b) then there is a point c with a < c < b so that f(c) = d.

Proof. Let C1 = f−1((−∞, d)) and C2 = f−1((d,∞)). Then C1 and C2 are
open sets and one contains f(a) and the other contains f(b) and so they have
separated f([a, b]) by disjoint open sets which contradicts the connectedness
of f([a, b]).

Problem 5. Prove that the product of two compact spaces is compact.

Solution acceptable for a test. Let X and Y be compact and let G be a cov-
ering of X×Y by open sets. Then for each p ∈ X×Y let Gp be the element
of G that contains p and then there exist open sets Up of X and Vp of Y
so that p ∈ Up × Vp ⊂ Gp. Note that p = (x, y) with x ∈ X and y ∈ Y .
Since for each x ∈ X, {x} × Y is compact we can cover each {x} × Y with
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the open sets Vp’s. For each x with p = (x, y) the common part Ûx of the
corresponding Ux’s is an open set containing x and the collection of all of
them cover X. So a finite subcollection of the Ûx’s cover X. Then taking all
the Ux that makeup these Ûx’s with each corresponding Vy gives you a finite
covering in the form Ux× Vy. So the Gp’s that contain these open sets is the
finite subcollection that we want.

Proof with details. Let X and Y be compact and let G be a covering of
X × Y by open sets. Then for each p ∈ X × Y let Gp be the element of G
that contains p and then there exist open sets Up of X and Vp of Y so that
p ∈ Up × Vp ⊂ Gp. Note that p = (x, y) with x ∈ X and y ∈ Y . Since for
each x ∈ X, {x} × Y is compact, there is a finite subset of {Vp|π1(p) = x}
that covers {x} × Y . Call this finite set {V(x,y(x,1)), V(x,y(x,1)), . . . , V(x,y(x,nx))};
note that the numeber of terms n(x) depend on x and the terms themselves
depend on both coordinates of p hence the need for double subscripts (we

use function notation: where y(x, i) is the ithy associated with x). So for
p ∈ Up × Vp we have, Up = U(x,y(x,i)) and Vp = V(x,y(x,i)) for some integer i.
Define

Ûx =

n(x)⋂
i=1

U(x,y(x,i)).

Then Ûx is an open set containing x so there is a finite subcollection of these
covering X: Ûx1 , Ûx2 , . . . , ÛxN

. Then the following collection covers X × Y :{
U(xi,y(xi,ki)) × V(xi,y(xi,ki)

}n(xi),N

ki=1,i=1
.

And so the collection {
G(xi,y(xi,ki)

}n(xi),N

ki=1,i=1
.

is a finite subcollection of G that covers X × Y .
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