Test01, Math 5500, Qctober 3, 2025
Dr. Michel Smith

Make sure to show all your work. You may not receive full credit if the
accompanying work is incomplete or incorrect. If you do scratch work make
sure to indicate scratch work - I will not take off points for errors in the
scratch work if it is so labeled.

Note that all the proofs must follow logically from the theorems and
definitions stated in the class notes; if you wish to use some lemma that
has not been proven in class, you must prove it first using the theorems and
definitions stated from the class notes. If you are asked to “prove from the
definition” then you must prove the statement from the definition without
using any of the theorems.

Problems [80 points] Do four of the folllowing five problems; you may do
all five for extra credit.

Problem 1. Suppose that X is a Hausdorff space and M C X:
a) Show that int(M) contains no bounday points of M.

Proof. Let p € int(M) then, by definition, there exists an open set U con-
tianing p that is a subset of M. Suppose p is also a boundary point of M
then, by definition, U must contian a point of M and a point not in M. This
is a contradiction, so p is not in the boundary of M.

m

b.) Show that X = int(M) U Bd(M) Uint(X — M).

Proof. Suppose p € X and p is in neither int(M) nor in int(X — M). Let
U be an arbitrary open set containing p. Then, since p ¢ int(M), U must
contain a point of X — M and since p ¢ int(X — M), U must contain a
point of M but this is exactly the definition for a boundary point of M. So
X =int(M)UBd(M) Uint(X — M). O

Problem 2. Prove, from the definition, that a metric space satisfies the
Hausdorff condition (axiom Ts).



Proof. Let x and y be two points of the metric space X amd let d be the
metric on X. Then, d(z,y) > 0. Let ¢ = d(z,y) and consider the § balls
around z and y, Bea(x) and Bjs(y) respectively. Let U = B.o(x) and
V = B2(y). Now assume that UNV # 0 and t € UNV, then

e = d(z,y)
< d(z,t) +d(y,t)
< € € .
2 2 — €.

Which gives us € < € which is a contradiction so U NV = () with x € U and
y € V. This is the needed Hausorff condition. O

Problem 3. Prove that a closed subset of a compact space is compact.

Proof. Let M be a closed subset of the compact space X and let G be a
covering of M with open sets. Since M is closed, for each x € X — M, since
M is closed, there exists an open set U, contianing x and no point of M.
Then the collection GU{U,|x € X — M} is a collection of open sets covering
X so some finite sub collection H also covers: H C GU{U,|lx € X — M}.
Let H = H — {U,|x € X — M}; in other words, H' is the subcollection of
H with all the elements from {U,|z € X — M} that are in H but not in G
removed. So H' C G and since H' C H it’s a finite subcollection of G that
covers M. Therfore, M is compact. ]

Problem 4. Prove that a compact Hausdorff space is regular.

Proof. Let X be a Hausdorff space, let M be a closed subset of X and let p
be a point of X not in M. Since X is Hausdorff, for each point x € M there
exist disjoint open sets V, and U, containing p and z respectively. Since M
is compact (by problem 3 or from class notes), there is a finite collection of
{Uz|z € X — M} that covers M. Let xq1,x9,...,2, be the points so that
UgyUs,, ..., Uy, is the finite subcollection covering M. Then for

U = U?:lUwi



and
Vo= m?zl sz

we have that U and V' are open sets that are disjoint; and V and U contain
p and M respectively. O

Problem 5. Suppose that X and Y are Hausdorff spaces and f: X — VY is
a continuous onto function. Prove that if X is separable, then so is Y.

Proof. Let {r;}32, be the countable set that’s dense in X (i.e. every open
set of X contains some element of {r;}3°,). For each positive integer i let
y; = f(r;); we claim that {y;}22, is dense in Y. So, consider an open set U
of Y. Since f is onto, U contains a point of the image f(z) of X. Since f
is continuous, f~(U) is open (and non-empty) in X and so contains a point
r; in the dense set. So y; = f(r;) € U. Therefore, since U was arbitrary, the
set {y;|i € N} is countable and dense in Y. O



