Ordered Topological Spaces.

Definition. Let S be a set. The relation < is said to be an *order relation* on S iff:

- 1. If a and b are two points of S then either a < b or b < a;
- 2. If a < b and b < c, then a < c;
- 3. If a < b then $b \not< a$;
- 4. For all $a \in S$, $a \nleq a$.

Notation: If < is an order relation on the set S then $a \le b$ means a < b or a = b. The relation \ge is similarly defined.

Definition. Suppose that S is a set with the order relation <. If there is a point ℓ so that $x \leq \ell$ for all $x \in S$, then ℓ is called the last point of S.

If there is a point f so that $x \ge f$ for all $x \in S$ then f is called the first point of S.

Definition. Suppose that S is a set with an order relation < then the order topology on S is constructed as follows:

For $a, b \in S$, define:

$$(a,b) = \{x | a < x < b\}.$$

Let \mathcal{B} be the set to which B belong if and only if B=(a,b) for some pair of elements a and b in S, $B=\{x\in S|x< a\}$ for some $a\in S$, or $B=\{x\in S|b< x\}$ for some $b\in S$.

Then \mathcal{B} in a basis for the order topology.

Theorem 8.1. Suppose that S is a set with an order relation < then the order topology on S is Hausdorff.

Definition. If S is a set with an order relation < and $M \subset S$ then M has a least element means that there exists an element $p \in M$ so that $p \leq x$ for all $x \in M$.

Definition. Suppose that S is a set with an order relation <. Then the order relation < is said to be a well ordering if and only if every subset of S has a least element.

Exercise 8.2. The positive integers is well ordered.

Exercise 8.3. The set of rational numbers with the usual ordering is not well ordered, but a (necessarily different) ordering can be defined on the rationals which is a well ordering.

Exercise 8.4. The set $\bigcup_{m=0}^{\infty} \{m + \frac{n-1}{n} | n \in \mathbb{Z}^+\}$ is well ordered by the usual ordering on the reals.

Theorem 8.5. Every subset of a well ordered set is well ordered.

Definition. If S is a set with the ordering < and $M \subset S$, then b is a lower bound for M means $b \leq x$ for all $x \in M$; b is a greatest lower bound for M means that b is a lower bound for M and if b < b' then b' is not a lower bound for M. S is said to have the greatest lower bound property iff whenever $M \subset S$ and M has a lower bound, then M has a greatest lower bound.

The concepts upper bound, least upper bound and least upper bound property are similarly defined.

Theorem 8.6. Let S be a well ordered set with the order topology. Then S has the greatest lower bound property.

Theorem 8.7. Let S be a well ordered set with the order topology. Then S has the least upper bound property.

Theorem 8.8. If S is an ordered set with a first and last element and it has the least upper bound property, then S with the order topology is compact.

Theorem 8.9. Let S be a well ordered set with the order topology which has a last element. Then S is compact.

Theorem 8.10. There is no infinite decreasing subset of a well ordered set.

Definitions for Exercise 8.10.

Suppose that A and B are two sets with order relations $<_A$ and $<_B$ respectively. Then A and B are said to be order isomorphic with respect to

these ordering if and only if there is a 1-1 and onto function $f: A \to B$ so that $x <_A y$ if and only if $f(x) <_B f(y)$. If M is a set with order relation < then I is said to be an *initial segment* of M if and only if $I \subset M$ and if $x \in I$ then $\{t \in M \mid t < x\} \subset I$.

Exercise 8.11. Let G denote the collection to which the subset g of the reals belongs if and only if g is well ordered with respect to the usual ordering on the reals. Define the relation " \sim " on G by $g_1 \sim g_2$ if and only if g_1 and g_2 are order isomorphic. Show that \sim is an equivalence relation on G. Let G be the collection of equivalence classes of \sim ; $G = \{[g] | g \in G\}$. Define $[g_1] <_{G} [g_2]$ if and only if $[g_1] \neq [g_2]$ and g_1 is order isomorphic to an initial segment of g_2 . Show that:

- 1. $<_{\mathcal{G}}$ is an order relation on \mathcal{G} ,
- 2. $<_{\mathcal{G}}$ is a well ordering,
- 3. \mathcal{G} is uncountable,
- 4. Every initial segment of \mathcal{G} is countable.

Theoretical stuff:

Axiom of choice. Suppose that \mathcal{G} is a collection of sets; then there exists a function $F: \mathcal{G} \to \cup \mathcal{G}$ so that $F(g) \in g$ for every $g \in \mathcal{G}$.

Well ordering theorem. The Axiom of choice implies that every set can be well ordered.