
Ordered Topological Spaces.

Definition. Let S be a set. The relation < is said to be an order relation
on S iff:

1. If a and b are two points of S then either a < b or b < a;
2. If a < b and b < c, then a < c;
3. If a < b then b ≮ a;
4. For all a ∈ S, a ≮ a.

Notation: If < is an order relation on the set S then a ≤ b means a < b
or a = b. The relation ≥ is similarly defined.

Definition. Suppose that S is a set with the order relation <. If there is
a point ` so that x ≤ ` for all x ∈ S, then ` is called the last point of S.

If there is a point f so that x ≥ f for all x ∈ S then f is called the first
point of S.

Definition. Suppose that S is a set with an order relation < then the
order topology on S is constructed as follows:

For a, b ∈ S, define:

(a, b) = {x|a < x < b}.

Let B be the set to which B belong if and only if B = (a, b) for some
pair of elements a and b in S, B = {x ∈ S|x < a} for some a ∈ S, or
B = {x ∈ S|b < x} for some b ∈ S.

Then B in a basis for the order topology.

Theorem 8.1. Suppose that S is a set with an order relation < then the
order topology on S is Hausdorff.

Definition. If S is a set with an order relation < and M ⊂ S then M has
a least element means that there exists an element p ∈ M so that p ≤ x for
all x ∈M .

Definition. Suppose that S is a set with an order relation <. Then the
order relation < is said to be a well ordering if and only if every subset of S
has a least element.
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Exercise 8.2. The positive integers is well ordered.

Exercise 8.3. The set of rational numbers with the usual ordering is not
well ordered, but a (necessarily different) ordering can be defined on the
rationals which is a well ordering.

Exercise 8.4. The set ∪∞m=0{m+ n−1
n
|n ∈ Z+} is well ordered by the usual

ordering on the reals.

Theorem 8.5. Every subset of a well ordered set is well ordered.

Definition. If S is a set with the ordering < and M ⊂ S, then b is a
lower bound for M means b ≤ x for all x ∈ M ; b is a greatest lower bound
for M means that b is a lower bound for M and if b < b′ then b′ is not a
lower bound for M . S is said to have the greatest lower bound property iff
whenever M ⊂ S and M has a lower bound, then M has a greatest lower
bound.

The concepts upper bound, least upper bound and least upper bound prop-
erty are similarly defined.

Theorem 8.6. Let S be a well ordered set with the order topology. Then
S has the greatest lower bound property.

Theorem 8.7. Let S be a well ordered set with the order topology. Then
S has the least upper bound property.

Theorem 8.8. If S is an ordered set with a first and last element and it has
the least upper bound property, then S with the order topology is compact.

Theorem 8.9. Let S be a well ordered set with the order topology which
has a last element. Then S is compact.

Theorem 8.10. There is no infinite decreasing subset of a well ordered
set.

Definitions for Exercise 8.10.
Suppose that A and B are two sets with order relations <A and <B

respectively. Then A and B are said to be order isomorphic with respect to
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these ordering if and only if there is a 1-1 and onto function f : A → B so
that x <A y if and only if f(x) <B f(y). If M is a set with order relation
< then I is said to be an initial segment of M if and only if I ⊂ M and if
x ∈ I then {t ∈M | t < x} ⊂ I.

Exercise 8.11. Let G denote the collection to which the subset g of the
reals belongs if and only if g is well ordered with respect to the usual ordering
on the reals. Define the relation “∼” on G by g1 ∼ g2 if and only if g1 and
g2 are order isomorphic. Show that ∼ is an equivalence relation on G. Let
G be the collection of equivalence classes of ∼; G = {[g]| g ∈ G}. Define
[g1] <G [g2] if and only if [g1] 6= [g2] and g1 is order isomorphic to an initial
segment of g2. Show that:

1. <G is an order relation on G,
2. <G is a well ordering,
3. G is uncountable,
4. Every initial segment of G is countable.

Theoretical stuff:

Axiom of choice. Suppose that G is a collection of sets; then there exists
a function F : G → ∪G so that F (g) ∈ g for every g ∈ G.

Well ordering theorem. The Axiom of choice implies that every set can
be well ordered.
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