Ordered Topological Spaces.

Definition. Let S be a set. The relation < is said to be an order relation
on S iff:
1. If a and b are two points of S then either a < b or b < a;
2. If a <band b < ¢, then a < ¢;
3. If a < bthen b £ a;
4. Foralla € S, a £ a.

Notation: If < is an order relation on the set S then ¢ < b means a < b
or a = b. The relation > is similarly defined.

Definition. Suppose that S is a set with the order relation <. If there is
a point ¢ so that x < ¢ for all x € S, then £ is called the last point of S.

If there is a point f so that x > f for all x € S then f is called the first
point of S.

Definition. Suppose that S is a set with an order relation < then the
order topology on S is constructed as follows:
For a,b € S, define:

(a,b) = {z|la <z <b}.

Let B be the set to which B belong if and only if B = (a,b) for some
pair of elements @ and b in S, B = {z € S|z < a} for some a € S, or
B={x € S|b<z} for somebe S.

Then B in a basis for the order topology.

Theorem 8.1. Suppose that S is a set with an order relation < then the
order topology on S is Hausdorff.

Definition. If S is a set with an order relation < and M C S then M has
a least element means that there exists an element p € M so that p < x for
all v € M.

Definition. Suppose that S is a set with an order relation <. Then the
order relation < is said to be a well ordering if and only if every subset of S
has a least element.



Exercise 8.2. The positive integers is well ordered.

Exercise 8.3. The set of rational numbers with the usual ordering is not
well ordered, but a (necessarily different) ordering can be defined on the
rationals which is a well ordering.

Exercise 8.4. The set Use_o{m+"=|n € Z"} is well ordered by the usual
ordering on the reals.

Theorem 8.5. Every subset of a well ordered set is well ordered.

Definition. If S is a set with the ordering < and M C S, then b is a
lower bound for M means b < x for all x € M; b is a greatest lower bound
for M means that b is a lower bound for M and if b < b then ¥’ is not a
lower bound for M. S is said to have the greatest lower bound property iff
whenever M C S and M has a lower bound, then M has a greatest lower
bound.

The concepts upper bound, least upper bound and least upper bound prop-
erty are similarly defined.

Theorem 8.6. Let .S be a well ordered set with the order topology. Then
S has the greatest lower bound property.

Theorem 8.7. Let S be a well ordered set with the order topology. Then
S has the least upper bound property.

Theorem 8.8. If S is an ordered set with a first and last element and it has
the least upper bound property, then S with the order topology is compact.

Theorem 8.9. Let S be a well ordered set with the order topology which
has a last element. Then S is compact.

Theorem 8.10. There is no infinite decreasing subset of a well ordered
set.

Definitions for Exercise &8.10.

Suppose that A and B are two sets with order relations <4 and <p
respectively. Then A and B are said to be order isomorphic with respect to
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these ordering if and only if there is a 1-1 and onto function f : A — B so
that © <4 y if and only if f(z) <p f(y). If M is a set with order relation
< then [ is said to be an initial segment of M if and only if I C M and if
x€lthen {t e M|t <a}CI.

Exercise 8.11. Let G denote the collection to which the subset g of the
reals belongs if and only if ¢ is well ordered with respect to the usual ordering
on the reals. Define the relation “~” on G by ¢; ~ g5 if and only if ¢g; and
go are order isomorphic. Show that ~ is an equivalence relation on G. Let
G be the collection of equivalence classes of ~; G = {[g]| ¢ € G}. Define
(1] <g [g2] if and only if [g1] # [g2] and g; is order isomorphic to an initial
segment of go. Show that:

1. <g is an order relation on G,

2. <g is a well ordering,

3. G is uncountable,

4. Every initial segment of G is countable.

Theoretical stuff:

Axiom of choice. Suppose that G is a collection of sets; then there exists
a function F : G — UG so that F(g) € g for every g € G.

Well ordering theorem. The Axiom of choice implies that every set can
be well ordered.



