
SIR Model of Infectious Diseases.

We suppose that the have a population S of susceptible hosts for a
disease, a population I of infectious host and a population R of recov-
ered hosts. Roughly the situation may be flow charted as in the figure
below:

Figure 1. SIR Model

We have entrances to the group of susceptibles through births and
immigrations and removals through deaths and emigration. Let N(t)
denote the total number of hosts:

N(t) = S(t) + I(t) +R(t).

Simplified SIR Model 01:

For our fist simplified model we will assume:
• No births (or equivalently, birth rates = death rates);
• neither immigration nor emigration;
• removed = 0;
• no loss of immunity.

This simplifies the flow chart to the following:

S = susceptible −→ I = Infective −→ R = Recovered

These assumptions imply N(t) is constant, N(t) = N(0) = N0. Each
of the variables S, I, R is a function of time t where, in our cases, t will
be in days.
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For some quantity A let ∆A denote the change of quantity A from
day m at midnight to day m + 1 at midnight; so ∆A denotes the
“(average) change of quantity A per day”.

∆S = −new infections

∆I = new infections− new recovered

∆R = newly recovered.

We have:

∆I = −∆S −∆R.

To set up the differential equations we consider an encounter between
a susceptible and an infectious. We assume that there is a constant
probability α of infection with each encounter. So assume an average of
n encounters per day between members of the population; a particular
infectious individual will infect nα S

N0
individuals per day. (Note, there

is the possibility of two infectious encountering the same susceptible,
this is on the order of ( n

N0
)2 and for large populations n << N0 this

quantity, along with higher order multiple encounters is negligible.) So
the total number of individuals infected by the infectious group per
day is

nα
S

N0

I.

Let λ = nα
N0

. This gives us equation (1):

dS

dt
= S ′ = −λIS.(1)

Assume that infectious individuals become cured at a constant rate
proportional to the number of infectious individuals; assume this hap-
pens with proportionality constant γ so that gives us equation (2)

dR

dt
= R′ = γI.(2)

Finally since the change of I is the change of S moving into I and
minus the change of R coming from I we have equation (3) and it’s
equivalent, equation (4):

dI

dt
= I ′ = −dS

dt
− dR

dt
= −S ′ −R′

= λIS − γI(3)

= (λS − γ)I.(4)
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Following are some conclusions that can be made regarding this sys-
tem of equations without solving them. Observe that by assumption
N(t) is constant so:

N(t) = N(0) = N0

S(t) + I(t) +R(t) = N0

S ′(t) + I ′(t) +R′(t) = 0.

Since S, I and λ are all positive, equation (1) tells us that S ′(t) < 0 so,

S ′(t) < 0

∴ S(t) < S0 for all t > 0

So λS − γ < λS0 − γ
(λS − γ)I < (λS0 − γ)I

I ′ < (λS0 − γ)I.

If I ′ < 0 then the epidemic fizzles out. So using this result with equa-
tion (3) from above we have that if λS0 − γ < 0 then the epidemic
fizzles; this happens when

λS0 − γ < 0

λS0 < γ

S0 <
γ

λ
.

For a fixed disease we have no control over the constant γ. But we
have some control over the “constant” λ: since we assume that N(t) is
the constant N0 we have

λ =
nα

N0

where, again, α is probability of an infection in an encounter between
an infectious and a susceptible; it is a constant related to the disease.
But we can decrease α by making it less likely that when a susceptible
meets an infectious that there will be a new infection by using masks,
and social distancing will decrease the constant n. Assuming we do
this to obtain α′ a smaller α. Then since we would need I ′ < 0, we
want:

S0 <
γ

λ

S0 <
γN0

nα′

nα′S0 < γN0

n <
γN0

α′S0

.



4

Assuming S0 ≈ N0 so that N0

S0
≈ 1 this gives us a way to combat an

epidemic. Obviously the smaller the value of n, the smaller the average
number of interactions between members of our population, the faster
the epidemic will end. But we must at least have n < γ

α′ in order to
have any hope that the epidemic can be stopped. So the strategy of
decreasing n by sequestering enough individuals well below the n < γ

α′

threshold will eventually cause the epidemic to end.


