MATH5630/6630 Dr. Smith, Formula Sheet.

1.) Divided Difference Table: The rows are number $k=0,1,2,3,\ldots$ and there is a column of the x values (column #-1?) after which the columns are numbered $\ell=0,1,2,3,\ldots$

where the entries are calculated as follows:

2.) Polynomial Approximation Error:

Suppose $f \in C^{[n+1]}[a,b]$ and P(x) is a polynomial approximation for f(x) that contains the points $\{(x_i,y_i)\}_{i=0}^n$. Then for any x between $\min\{x_0,x_1,\ldots,x_n\}$ and $\max\{x_0,x_1,\ldots,x_n\}$ there exists a number ξ_x also between $\min\{x_0,x_1,\ldots,x_n\}$ and $\max\{x_0,x_1,\ldots,x_n\}$ so that

$$f(x) = P(x) + \frac{f^{[n+1]}(\xi_x)}{(n+1)!}(x - x_0)(x - x_1)\dots(x - x_n).$$

3.) Taylor's Theorem. Suppose that $f \in C^{[n+1]}[a,b]$ then for each $x \in (a,b)$ there exists number $\xi_x \in (a,b)$ so that:

$$f(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2!} + \ldots + f^{[n]}(a)\frac{(x-a)^n}{n!} + f^{[n+1]}(\xi_x)\frac{(x-a)^n}{n!}.$$