Topology 7500, Fall 2023

Dr. Michel Smith
Hand In Project 1
Problems 2 and 3 are due Monday Sept 18. Problem 1 will be due sometime after a proof of the compactness of an interval in the reals has been presented - students are allowed to look up their old proofs (e.g. from analysis) for this theorem and they may collaborate on this proof for \mathbb{R}.

Problem 1. Let X be an ordered topological space with respect to the order $<$.

Definitions: If $M \subset X$, then the point $u \in X$ is called an upper bound for M iff for all $x \in M$ we have $x \leq u$. If ℓ is an upper bound for the set M and whenever $x<\ell$ then x is not an upper bound for M then ℓ is called a least upper bound for M. The ordered space X is said to satisfy the least upper bound property if and only if every subset of M has a least upper bound.

Prove the following:
Theorem P01.1. If X is an ordered topological space which has a first and last point, and X has the least upper bound property, then X is compact.

Theorem P01.1. If X is a well-ordered topological space which has a last point, then X is compact.

Problem 2. Let X denote the real numbers with the following basis \mathcal{B} for the topology: If x is irrational and $\epsilon>0$ then $B_{\epsilon}(x)=\{t| | t-x \mid<\epsilon\}$ is in \mathcal{B}; if x is rational then $\{x\}$ is in \mathcal{B}.
(a.) Show that X is first countable.
(b.) Determine whether or not X is regular.
[Hint: show that $\mathcal{T}(\mathbb{R})$, the standard topology on the reals is a subset of $\mathcal{T}(X)$ the topology of X.]

Problem 3. Let X be the upper half plane: $X=\left\{(x, y) \in \mathbb{E}^{2} \mid y \geq 0\right\}$. Define a basis for the topology as follows. If $P=(p, q)$ and $q>0$ then if $\epsilon>0$ then the set $\left\{(x, y) \mid \sqrt{(x-p)^{2}+(y-q)^{2}}<\epsilon\right\} \cap\{(x, y) \mid y>0\}$ is a basis
element; if $P=(p, q)$ and $q=0$ then the set $\left\{(x, y) \mid \sqrt{(x-p)^{2}+(y-\epsilon)^{2}}<\right.$ $\epsilon\} \cup\{(p, 0)\}$ is a basis element. This is called the "tangent disc" space.
(a.) Show that X is Hausdorff.
(b.) Show that X is first countable.
(c.) Determine whether or not X is regular.
[Note: you may use anything you know about plane geometry to do this.]

