
Topology Notes 01.
Basic Axioms and Definitions.

A topological space is a pair (X, T ) where X consists of a set of objects
called points and T is a collection of subsets of X called open sets such that
the following are satisfied:

1. ∅ ∈ T and X ∈ T .
2. If A ∈ T and B ∈ T then A ∩B ∈ T .
3. If U ⊂ T then ∪{u|u ∈ U} ∈ T .

The collection T is called the topology of X. The statement “(X, T ) is
a topological space” is generally abbreviated by “X is a (topological) space”
when the associated topology is otherwise understood.

Axiom T0. If p and q are two points of of the space X then there is an
open set that contains one of these points and not the other.

Axiom T1. If p and q are two points of the space X then there is an open
set that contains p and not q.

Axiom T2. If p and q are two points of the space X then there exist
disjoint open sets A and B containing p and q respectively. A topological
space that satisfies Axiom T2 is called a Hausdorff space.

Exercise 1.1. Determine the implications among these three axioms. In
other words, determine which axiom does or does not imply the other. Find
examples for the case where axiom i does not imply axiom j.

Exercise 1.2. Let X be a point set.
Let T1 = {∅, X}.
Let T2 = {U |U ⊂ X}.

Show that (X, T1) and (X, T2) are topological spaces. Determine if these
spaces are Hausdorff.

Definition. If X is a set and T1 and T2 are two topologies for X and
T1 ( T2 then the topology T1 is said to be a courser topology than T2 and
T2 is said to be a finer topology than T1
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Technique 1.1: Given a set of points X one way to potentially produce
a topology on X is to define a collection of subsets B of X that has the
property that if A,B ∈ B and x ∈ A ∩B then there is an element C of B so
that x ∈ C ⊂ A∩B; and define T (X) by U ∈ T (X) if and only if there is a
subcollection G ⊂ T (X) so that U = ∪{g|g ∈ G}.

Question: Given a set X will technique 1.1 always produce a topology for
a space X.

Example 1.1 The Reals.
(a.) Let R denote the real numbers. Then define U ∈ T if and only if

for each point u ∈ U there are two numbers a and b with a < u < b so that
the (a, b) = {x|a < x < b} ⊂ U . [Note: (a, b) = {x|a < x < b} is called a
segment.]

(b.) Let B be the set of all segments of the real numbers with rational
endpoints, then does technique 1.1 produce the same topology for the reals
as in part (a)?

Example 1.2: The Sorgenfrey Line.
(a.) Let R denote the real numbers. Then define U ∈ T if and only if

for each point u ∈ U there are two numbers a and b with a ≤ u < b so that
[a, b) = {x|a ≤ x < b} ⊂ U .

(b.) Let B be the set of all sets of the form [a, b) with with rational
endpoints a and b, then does technique 1.1 produce the same topology for
the reals as in part (a)?

Example 1.3: The plane E2.
(a.) Let E2 = {(x, y)|x, y ∈ R}. Then define U ∈ T if and only if

for each point u = (p, q) ∈ U there is a number r > 0 so that Br(u) =
{(x, y)|

√
(x− p)2 + (y − q)2 < r} ⊂ U .

(b.) Let B = {Bε(P )|P ∈ E2, ε > 0 and ε is rational }. Then does
technique 1.1 produce the same topology for the reals as in part (a)?

Example 1.4: The Taxicab plane E2. Let E2 = {(x, y)|x, y ∈ R}. Then
define U ∈ T if and only if for each point u = (p, q) ∈ U there is a number
r > 0 so that BT

r (u) = {(x, y)| |x− p|+ |y − q| < r} ⊂ U .
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Exercise 1.3. For each of the above examples, show that collection T is a
topology and that the space satisfies axioms T0,T1, and T2.

Example 1.5. Another topology on the Reals. Let R denote the real
numbers. For each p ∈ R and ε > 0 define Rε(p) = {x ∈ R| |x − p| <
ε if x is irrational and |x− p| < 2ε if x is rational}. Let U ∈ T if and only if
for each u ∈ U there is a number ε so that Rε(u) ⊂ U .

Exercise 1.3e. Is T of example 1.5 a topology for the Reals? If so what
is its relation to the topologies of examples 1.1 and 1.2?

Example 1.6. (The co-finite topology). Let X be an arbitrary set. Define
the set U ⊂ X to be open if and only if X − U is finite.

Exercise. For X equal the reals, determine the subset relation (courser
and finer topologies) among the topologies defined on the reals above. (I.e.
for the topologies defined by Exercise 1.2, examples 1.1, 1.2, 1.5 and 1.6.)

Definition. If (X, T ) is a topological space and M ⊂ X is a point set
then the point p is said to be a limit point of the set M if and only if each
open set containing p contains a point of M distinct from p.

For the following theorems assume that all spaces are Hausdorff; deter-
mine if the theorems are true for T0 or T1 spaces (I think some are not.)

Theorem 1.1. If X is a finite Hausdorff space then no point of X is a
limit point of X.

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then the
derived set of M denoted by M ′ is the set of limit points of M . The closure
of M denoted by M is the set M ∪M ′.

Theorem 1.2. If (X, T ) is a topological space and M ⊂ X then M = M .

Definition. The set M ⊂ X is said to be closed if and only if every limit
point of M is in M .
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Theorem 1.3. Suppose (X, T ) is a topological space and M ⊂ X. Then
M is closed if and only if X −M is open.

Theorem 1.4. Suppose (X, T ) is a topological space and M ⊂ X. Then
M ′ is closed.

Theorem 1.5. If p is a limit point of the set M , then every open set
containing p contains infinitely many points of M .

Theorem 1.6. If each of A and B is a closed subset of the space X, then
A ∩B and A ∪B are closed.

Question: Does Theorem 1.6 hold if X is not required to be Hausdorff?
Is every space satisfying the conditions of Theorem 1.6 for arbitrary pairs of
closed sets a Hausdorff space?

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then
the point p is called a boundary point of M iff every open set containing p
contains a point in M and a point not in M . We denote the boundary of the
set M by BdX(M). Note that the subscript may be omitted if the underlying
space is understood.

Exercise 1.4.
a. Find an example of a set that has no boundary point.
b. Find an example of a set every point of which is a boundary point.
c & d. Repeat a and b above with the added requirement that the

set be open (c) or closed (d).
[Note that as part of this exercise you need to define a space X and a

topology on that space, and then find a set in that space that has the required
property.]

Theorem 1.7. If X is a topological space and M ⊂ X, then Bd(M) =
M ∩ (X −M).

Corollary 1.7. If X is a topological space and M ⊂ X, then Bd(M) is
closed.

Definition. Suppose (X, T ) is a topological space and M ⊂ X. Then the
interior of M , denoted by Int(M) is the set to which x belongs if and only

4



if there is an open set containing x lying in M .

Exercise 1.5. In all the above theorems determine whether or not the
theorem holds under the weaker T0 or T1 axioms.

Exercise 1.6. Suppose X is a topological space and M ⊂ X. Prove the
following. [In each case determine the weakest axiom that is needed to prove
the statement. Caution: at least one of these is false! Note that I may not
warn you in the future. In all the cases where the statement is false you
should provide a counter example.]

a. Int(M) is open.
b. Int(Bd(M)) = ∅.
c. Int(Int(M)) = Int(M).
d. Bd(Bd(M)) = Bd(M).
e. Int(A ∩B) = Int(A) ∩ Int(B).
f. Bd(A ∩B) = Bd(A) ∩Bd(B).
g. Int(M) ∩ Int(X −M) = ∅.
h. (X − Int(M))− Int(X −M) = Bd(M).
i. M is open iff M ∩Bd(M) = ∅.
j. A ∪B = A ∪B.
k. A ∩B = A ∩B.
l. U is open iff U = Int(U).
m. X − Int(A) = X − A.
n. X = Int(M) ∪Bd(M) ∪ Int(X −M).
o. A is closed iff Bd(A) ⊂ A.
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