
Topology Notes 03
Order Relations, Compactness

Definition. Suppose that M is a set and “<” is a relation on M so that
if each of x, y and z is an element of M then:

1. If x 6= y then either x < y or y < x;
2. If x < y then y ≮ x;
3. If x < y and y < z then x < z.

Then M is said to be ordered with respect to the relation “<”.

Exercise 3.1. Suppose that M is a set and M is ordered with respect to
the relation “<”. Let B< be the set to which U belongs if and only if:

1. there are points x and y so that U = {p ∈M |x < p < y},
2. there is a point t so that U = {p ∈M |p < t}, or
3. there is a point t so that U = {p ∈M |t < p}.

Then:
i. Show that B< satisfies the hypothesis of Theorem 2.3. The topol-

ogy generated by B< is called the order topology on M .
Determine which topological properties are satisfied by by the order topol-

ogy.
ii. For which n is M a Tn space.
iii. Is M necessarily a first countable space?
iv. Is M necessarily a Moore space?

Definition. Suppose that X is a topological space and that G is a collec-
tion of subsets of X. Then the collection G is said to cover the subset M of
X if and only if each point of M lies in some element of G.

Definition. Suppose that X is a topological space and M ⊂ X. Then M
is said to be compact provided it is true that if G is a collection of open sets
that covers M then some finite subcollection covers M .

Recall that we are assuming that all spaces are Hausdorff (T2)

Theorem 3.1. If M is a compact subset of the space X then M is closed.
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Theorem 3.2. If M is a compact subset of the space X and H is a closed
subset of M , then H is compact.

Theorem 3.3. Every infinite subset of a compact set has a limit point.

Definition. Suppose that M is ordered with respect to the relation “<”
and H ⊂M . Then p is said to be the first element of H if and only if p ∈ H
and p = x or p < x for every x ∈ H.

Definition. Suppose that M is ordered with respect to the order relation
“<”. Then M is said to be well ordered with respect to “<” if and only if
every subset of M has a first element.

Axiom of Choice. Suppose that G is a collection of sets. Then there is a
function F : G→ ∪G so that F (g) ∈ g for all g ∈ G.

Well ordering Theorem (Axiom of Choice.) If M is a set then there exists
an order relation on M so that M is well ordered with respect to that relation.

Exercise 3.2. Show that if M is well ordered, then M satisfies the Axiom
of Choice.

Exercise 3.3. Show that there exists a well ordering for the set of rational
numbers.

Definition. Suppose that M and N are two sets with orderings <M and
<N respectively. Then the function φ : M → N is said to be an order
isomorphism provided that φ(x) <N φ(y) if and only if x <M y for all
x, y ∈M . If the function is onto then the sets M and N are said to be order
isomorphic (with respect to their respective orderings.)

Definition. If M is well ordered with respect to < then I ⊂ M is called
an initial segment of M if and only if there is a point t ∈ M so that I =
{x|x < t}.

Theorem 3.4. If M and N are two well ordered sets then either they
are order isomorphic or one is order isomorphic to an initial segment of the
other. Furthermore this order isomorphism is unique.
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Theorem 3.5. Suppose that M is well ordered and M has a last element.
Suppose further that M is given the order topology, then M is compact.

Definition. The collection G of sets is said to be monotonic if and only if
for each pair of sets H and K in G, either H ⊂ K or K ⊂ H.

Definition. The point set M is said to be perfectly compact if and only if
it is true that if G is a monotonic collection of non-empty subsets of M then
there is a point p that is a point or a limit point of every every element of G.

Theorem 3.6. If M is a compact subset of a Moore space then M is
perfectly compact.

Lemma. If M is a closed and perfectly compact subset of a Moore space
and G is a collection of open sets covering M so that G is well ordered with
respect to some order relation “<”, then there exists an element g ∈ G such
that if J is the collection consisting of g together with the elements of G that
precede g, then J covers M .

Lemma 2. If M is a closed perfectly compact subset of a metric space X
and X has a countable basis (is completely separable), then M is compact.

Theorem 3.7. If M is a closed perfectly compact subset of a Moore space,
then M is compact.

Definition. If {pi}∞i=1 is a sequence of points of the space S, then p is
the sequential limit point of the sequence means that for each open set R
containing p there exists an integer N so that pn ∈ R for all n > N .

Theorem 3.8. Suppose that S is a first countable space, M ⊂ S and p
is a limit point of M . Then there exists an infinite sequence of point of M
{pi}∞i=1 so that p is the sequential limit point of that sequence.

Theorem 3.9. Suppose that S is a Moore space and M = {pi}∞i=1 ⊂ S is
a set having the property that every infinite subset has a limit point. Then
some subsequence of the sequence {pi}∞i=1 that has a sequential limit point.

Exercise 3.4. Show that Theorem 3.9 does not hold for a Hausdorff space.
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Exercise 3.5. Determine if the following is a theorem: If M is a Hausdorff
space that has the property that every infinite subset of M has a limit point,
then M is compact.

Definition. Suppose that each of X and Y is a topological space and
f : X → Y is a function. Then f is said to be continuous if and only if for
each x ∈ X and each open set U ⊂ Y containing f(x) there exists an open
set R ⊂ X containing x so that f(x) ∈ U for all x ∈ R. [ Equivalently:
f(R) ⊂ U where f(R) = {y|∃x ∈ X 3 y = f(x)}].

Theorem 3.10. Suppose that each of X and Y is a topological space and
f : X → Y is an onto function. Then f is continuous if and only if for each
open set U ⊂ Y , f−1(U) is open. [Where f−1(U) = {x ∈ X|f(x) ∈ U}.]

Theorem 3.11. The topological space X is normal if and only if for each
pair of disjoint closed subsets H and K of X, there exists a continuous
function f : X → [0, 1] such that f(H) = 0 and f(K) = 1.

Exercise 3.6. Suppose that each of X and Y is a topological space and
f : X → Y is a continuous onto function.

I. Determine if it is true that if X is has property P then Y must have
property P where property P is:

a. Hausdorff.
b. Regular.
c. Normal.
d. A Moore space.
e. First countable.
f. Compact.

II. Determine if it is true that if Y is has property P then X must have
property P where property P is as above.

Exercise 3.7 and 3.8. Repeat exercise 3.6 but suppose that each of X and
Y is a topological space and f : X → Y is a continuous 1-1 onto function;
repeat the exercise on the supposition that f is a continuous 1-1 onto function
and that f−1 is continuous. [It would be helpful to produce a continuous 1-1
onto function whose inverse is not continuous.]
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