Topology Notes 03
Order Relations, Compactness

Definition. Suppose that M is a set and “<” is a relation on M so that
if each of z,y and z is an element of M then:
1. If x # y then either x < y or y < x;
2. If x <y then y £ x;
3. fz <yandy < zthen z < z.
Then M is said to be ordered with respect to the relation “<”.

Exercise 3.1. Suppose that M is a set and M is ordered with respect to
the relation “<”. Let B. be the set to which U belongs if and only if:
1. there are points z and y so that U = {p € M|z < p < y},
2. there is a point ¢ so that U = {p € M|p < t}, or
3. there is a point t so that U = {p € M|t < p}.
Then:
i. Show that B. satisfies the hypothesis of Theorem 2.3. The topol-
ogy generated by B_ is called the order topology on M.
Determine which topological properties are satisfied by by the order topol-
ogy.
ii. For which n is M a T,, space.
iii. Is M necessarily a first countable space?
iv. Is M necessarily a Moore space?

Definition. Suppose that X is a topological space and that G is a collec-
tion of subsets of X. Then the collection G is said to cover the subset M of
X if and only if each point of M lies in some element of G.

Definition. Suppose that X is a topological space and M C X. Then M
is said to be compact provided it is true that if G is a collection of open sets
that covers M then some finite subcollection covers M.

Recall that we are assuming that all spaces are Hausdorff (T5)

Theorem 3.1. If M is a compact subset of the space X then M is closed.



Theorem 3.2. If M is a compact subset of the space X and H is a closed
subset of M, then H is compact.

Theorem 3.3. Every infinite subset of a compact set has a limit point.

Definition. Suppose that M is ordered with respect to the relation “<”
and H C M. Then p is said to be the first element of H if and only if p € H
and p=x or p < x for every x € H.

Definition. Suppose that M is ordered with respect to the order relation
“<”. Then M is said to be well ordered with respect to “<” if and only if
every subset of M has a first element.

Axiom of Choice. Suppose that G is a collection of sets. Then there is a
function F : G — UG so that F(g) € g for all g € G.

Well ordering Theorem (Axiom of Choice.) If M is a set then there exists
an order relation on M so that M is well ordered with respect to that relation.

Exercise 3.2. Show that if M is well ordered, then M satisfies the Axiom
of Choice.

Exercise 3.3. Show that there exists a well ordering for the set of rational
numbers.

Definition. Suppose that M and N are two sets with orderings <,; and
<y respectively. Then the function ¢ : M — N is said to be an order
isomorphism provided that ¢(z) <y ¢(y) if and only if x <, y for all
x,y € M. If the function is onto then the sets M and N are said to be order
isomorphic (with respect to their respective orderings.)

Definition. If M is well ordered with respect to < then I C M is called
an initial segment of M if and only if there is a point ¢ € M so that I =
{z|x < t}.

Theorem 3.4. If M and N are two well ordered sets then either they
are order isomorphic or one is order isomorphic to an initial segment of the
other. Furthermore this order isomorphism is unique.



Theorem 3.5. Suppose that M is well ordered and M has a last element.
Suppose further that M is given the order topology, then M is compact.

Definition. The collection G of sets is said to be monotonic if and only if
for each pair of sets H and K in G, either H C K or K C H.

Definition. The point set M is said to be perfectly compact if and only if
it is true that if G is a monotonic collection of non-empty subsets of M then
there is a point p that is a point or a limit point of every every element of G.

Theorem 3.6. If M is a compact subset of a Moore space then M is
perfectly compact.

Lemma. If M is a closed and perfectly compact subset of a Moore space
and G is a collection of open sets covering M so that G is well ordered with
respect to some order relation “<”, then there exists an element g € G such
that if J is the collection consisting of g together with the elements of GG that
precede g, then J covers M.

Lemma 2. If M is a closed perfectly compact subset of a metric space X
and X has a countable basis (is completely separable), then M is compact.

Theorem 3.7. If M is a closed perfectly compact subset of a Moore space,
then M is compact.

Definition. If {p;}2, is a sequence of points of the space S, then p is
the sequential limit point of the sequence means that for each open set R
containing p there exists an integer N so that p, € R for all n > N.

Theorem 3.8. Suppose that S is a first countable space, M C S and p
is a limit point of M. Then there exists an infinite sequence of point of M
{pi}32, so that p is the sequential limit point of that sequence.

Theorem 3.9. Suppose that S is a Moore space and M = {p;};°, C S is
a set having the property that every infinite subset has a limit point. Then

some subsequence of the sequence {p;}5°; that has a sequential limit point.

Exercise 3.4. Show that Theorem 3.9 does not hold for a Hausdorff space.



Exercise 3.5. Determine if the following is a theorem: If M is a Hausdorff
space that has the property that every infinite subset of M has a limit point,
then M is compact.

Definition. Suppose that each of X and Y is a topological space and
f: X — Y is a function. Then f is said to be continuous if and only if for
each x € X and each open set U C Y containing f(x) there exists an open
set R C X containing z so that f(z) € U for all z € R. [ Equivalently:
f(R) C U where f(R) ={y|3z € X 5y = f(2)}].

Theorem 3.10. Suppose that each of X and Y is a topological space and
f X — Y is an onto function. Then f is continuous if and only if for each
open set U CY, f~1(U) is open. [Where f~1(U) = {x € X|f(z) € U} /]

Theorem 3.11. The topological space X is normal if and only if for each
pair of disjoint closed subsets H and K of X, there exists a continuous
function f: X — [0,1] such that f(H) =0 and f(K) = 1.

Exercise 3.6. Suppose that each of X and Y is a topological space and
f: X — Y is a continuous onto function.
I. Determine if it is true that if X is has property P then Y must have
property P where property P is:
a. Hausdorff.
b. Regular.
¢. Normal.
d. A Moore space.
e. First countable.
f. Compact.
II. Determine if it is true that if Y is has property P then X must have
property P where property P is as above.

Exercise 3.7 and 3.8. Repeat exercise 3.6 but suppose that each of X and
Y is a topological space and f : X — Y is a continuous 1-1 onto function;
repeat the exercise on the supposition that f is a continuous 1-1 onto function
and that f~! is continuous. [It would be helpful to produce a continuous 1-1
onto function whose inverse is not continuous.|



