Product Spaces.

Definition. Suppose that X and Y are topological spaces with topologies
Tx and Ty. Then the topological product space of X and Y denoted by X xY
is defined as follows:
1. the points of X x Y are the elements of the cartesian product of
the spaces: X xY = {(z,y)lxr € X, y e Y};
2. the collection B = {U x V|U € Tx, V € Ty} forms a basis for
the topology Txxy -

Exercise 5.1. Show that the topology for X x Y is well defined; i.e. show
that the set B of the definition above satisfies the hypothesis of theorem 2.3.

Exercise 5.2. Determine for which n it is true that if each of X and Y is
a T, space then sois X x Y.

Exercise 5.3. Determine for which properties it is true that if X and Y
have the property then so does X x Y. Consider in particular the following
properties:

a. Hausdorff,
. compact,
separable,
. first countable,
completely separable,
metric.

Definition. Suppose that for some index set I, {(X;, Tx,) }ier is a collection
of topological spaces. Then the topological product space Il;c;.X; is defined
as follows:

L. ier Xy = {plp = {pi}ier, pi € Xy, for all i € I};
2. the collection B = {Il;c;U;|U; € Tx,, U; = X; for all but finitely many i €
I} forms a basis for the topology.

o a0 o

Exercise 5.4. Show that the topology for the topological product space
X = IlcrX; is well defined.
Repeat the other above exercises for the topological product spaces.



Definition. The collection G of set is said to have the finite intersection

property if and only if for each finite collection of element from G {g;} Y, we
have N, g; # 0.

Theorem 5.1 A. The space X is compact if and only if for each collection
G of non-empty closed sets with the finite property, N{glg € G} # 0.

Lemma. If each of X and Y is compact then so is X x Y.

Theorem 5.1 B. Suppose that [ is an index set and for each ¢ € I, X; is
a compact space. Then Il;c;X; is compact.

Definition. Suppose that for some index set I, {(X;, Tx,) }ier is a collec-
tion of topological spaces. Then the topological box product space U;crX; is
defined as follows:

L. Oier Xi = {plp = {pi}ier,pi € X;, for alli € I'};
2. the collection B = {Il;c;U;|U; € Tx,, for all i € I} forms a basis
for the topology.

Do the usual exercises.

Exercise 5.5. Show that the countable box product [J$°, [0, 1] of copies of
the unit interval [0, 1] with the usual topology in the Reals is not compact.

Exercise 5.6. Let I be an index set and for each i € I let X; be a
topological space. Let F' : ;c; X; — I X; be defined by F(z) = x. Show
that F' is continuous. Give an example to show that F'~! is not necessarily
continuous. Under what conditions can you be certain that F'~! is continuous.

Notation. If X = II;c;X; then the projection map m; onto the ith COOTI-
dinate is the function m; : X — X; so that m;(z) = z; where x = {x;}ics.

Definition. Suppose X and Y are topological spaces and f : X — Y is
a function. Then f is said to be an open map if and only if f(U) is open
for each open subset U of X; and f is said to be a closed map if and only if
f(M) is closed for each closed subset M of X.



Exercise 5.7. Give examples of continuous onto functions that are not
open or not closed.

Theorem 5.2. If X = II;c; X is a topological product space, then for each
i € I the projection map m;(x) is continuous and open.

Theorem 5.3. Suppose for each positive integer i that X; is a metric
space. Then II?°, X, is a metric space.

Definition. The topological space X is said to be metrizable provided
that there exists a distance function that generates the topology of X.

Theorem 5.4 A. Every completely separable normal space is metrizable.

Theorem 5.4 B. If X is a compact metric space then the metric for X is
complete and bounded.

Definition. The space X is said to be limit compact if and only if every
infinite subset of X has a limit point.

Theorem 5.5. If X is a metric space then X is compact if and only if it
is limit compact.

Notes: the following two theorems are equivalent formulation of Zorn’s
lemma. Zorn’s lemma is equivalent to the Axiom of Choice and the well-
ordering property.

Theorem [Set inclusion version of Zorn’s lemma.] Suppose that G is a
collection of sets such that if J is a monotonic subcollection of GG there there
is a set in G which is a subset of every element of J. Then there is an element
of G which contains no other element of G.

Definition. Suppose that A is a set; then the relation “<” is said to be a
partial order if and only if:
1. a £ aforallae A, and
2. ifa<band b < cthena<ec.
[In the literature a set with a partial ordered is called a partially ordered
set or a po-set.]



Theorem [Partial order version of Zorn’s lemma.| Suppose that A is a set
with a partial order < and B is a subset of A which is linearly ordered by <.
Then there exists a maximal linearly ordered subset of A which contains B.



