
Product Spaces.

Definition. Suppose that X and Y are topological spaces with topologies
TX and TY . Then the topological product space of X and Y denoted by X×Y
is defined as follows:

1. the points of X × Y are the elements of the cartesian product of
the spaces: X × Y = {(x, y)|x ∈ X, y ∈ Y };

2. the collection B = {U × V |U ∈ TX , V ∈ TY } forms a basis for
the topology TX×Y .

Exercise 5.1. Show that the topology for X × Y is well defined; i.e. show
that the set B of the definition above satisfies the hypothesis of theorem 2.3.

Exercise 5.2. Determine for which n it is true that if each of X and Y is
a Tn space then so is X × Y .

Exercise 5.3. Determine for which properties it is true that if X and Y
have the property then so does X × Y . Consider in particular the following
properties:

a. Hausdorff,
b. compact,
c. separable,
d. first countable,
e. completely separable,
f. metric.

Definition. Suppose that for some index set I, {(Xi, TXi
)}i∈I is a collection

of topological spaces. Then the topological product space Πi∈IXi is defined
as follows:

1. Πi∈IXi = {p|p = {pi}i∈I , pi ∈ Xi, for all i ∈ I};
2. the collectionB = {Πi∈IUi|Ui ∈ TXi

, Ui = Xi for all but finitely many i ∈
I} forms a basis for the topology.

Exercise 5.4. Show that the topology for the topological product space
X = Πi∈IXi is well defined.

Repeat the other above exercises for the topological product spaces.
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Definition. The collection G of set is said to have the finite intersection
property if and only if for each finite collection of element from G {gi}Ni=1 we
have ∩Ni=1gi 6= ∅.

Theorem 5.1 A. The space X is compact if and only if for each collection
G of non-empty closed sets with the finite property, ∩{g|g ∈ G} 6= ∅.

Lemma. If each of X and Y is compact then so is X × Y .

Theorem 5.1 B. Suppose that I is an index set and for each i ∈ I, Xi is
a compact space. Then Πi∈IXi is compact.

Definition. Suppose that for some index set I, {(Xi, TXi
)}i∈I is a collec-

tion of topological spaces. Then the topological box product space �i∈IXi is
defined as follows:

1. �i∈IXi = {p|p = {pi}i∈I , pi ∈ Xi, for all i ∈ I};
2. the collection B = {Πi∈IUi|Ui ∈ TXi

, for all i ∈ I} forms a basis
for the topology.

Do the usual exercises.

Exercise 5.5. Show that the countable box product �∞i=1[0, 1] of copies of
the unit interval [0, 1] with the usual topology in the Reals is not compact.

Exercise 5.6. Let I be an index set and for each i ∈ I let Xi be a
topological space. Let F : �i∈IXi → Πi∈IXi be defined by F (x) = x. Show
that F is continuous. Give an example to show that F−1 is not necessarily
continuous. Under what conditions can you be certain that F−1 is continuous.

Notation. If X = Πi∈IXi then the projection map πi onto the ith coor-
dinate is the function πi : X → Xi so that πi(x) = xi where x = {xi}i∈I .

Definition. Suppose X and Y are topological spaces and f : X → Y is
a function. Then f is said to be an open map if and only if f(U) is open
for each open subset U of X; and f is said to be a closed map if and only if
f(M) is closed for each closed subset M of X.
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Exercise 5.7. Give examples of continuous onto functions that are not
open or not closed.

Theorem 5.2. If X = Πi∈IXi is a topological product space, then for each
i ∈ I the projection map πi(x) is continuous and open.

Theorem 5.3. Suppose for each positive integer i that Xi is a metric
space. Then Π∞i=1Xi is a metric space.

Definition. The topological space X is said to be metrizable provided
that there exists a distance function that generates the topology of X.

Theorem 5.4 A. Every completely separable normal space is metrizable.

Theorem 5.4 B. If X is a compact metric space then the metric for X is
complete and bounded.

Definition. The space X is said to be limit compact if and only if every
infinite subset of X has a limit point.

Theorem 5.5. If X is a metric space then X is compact if and only if it
is limit compact.

Notes: the following two theorems are equivalent formulation of Zorn’s
lemma. Zorn’s lemma is equivalent to the Axiom of Choice and the well-
ordering property.

Theorem [Set inclusion version of Zorn’s lemma.] Suppose that G is a
collection of sets such that if J is a monotonic subcollection of G there there
is a set in G which is a subset of every element of J . Then there is an element
of G which contains no other element of G.

Definition. Suppose that A is a set; then the relation “<” is said to be a
partial order if and only if:

1. a ≮ a for all a ∈ A, and
2. if a < b and b < c then a < c.

[In the literature a set with a partial ordered is called a partially ordered
set or a po-set.]
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Theorem [Partial order version of Zorn’s lemma.] Suppose that A is a set
with a partial order < and B is a subset of A which is linearly ordered by <.
Then there exists a maximal linearly ordered subset of A which contains B.
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