Uncountable subsets of \mathbb{R}

First some lemmas on countability.
Lemma 1. If each of A and B is a countable set, then $A \cup B$ is countable.
Lemma 2. If each of A and B is a countable set, then $A \times B$ is countable.
Lemma 3. Suppose that for each $i \in \mathbb{N}$ that A_{i} is a countable set. Then $\cup_{i=1}^{\infty} A_{i}$ is countable.

Exercise. The set of rational numbers is countable.
Lemma 4. Suppose that for each $i \in \Gamma, \epsilon_{i}$ is a positive real number. Then, if Γ is uncountable, there exists an integer $n>0$ so that the set $\left\{i \in \Gamma \left\lvert\, \epsilon_{i}>\frac{1}{n}\right.\right\}$ is uncountable.

Lemma 5. If $M \subset \mathbb{R}$ is uncountable, then M has a limit point.
Lemma 6. If $M \subset \mathbb{R}$ is uncountable, then M contains one of its limit points.

