
Upper semi-continuous collections and Open Maps

Definition. Suppose that X is a Hausdorff space and G is a collection of
subsets of X. Then the collection G is said to be an upper semi-continuous
collection mean that if g ∈ G and U is an open set containing g, then there
is an open set V containing g such that each member of G which intersects
V lies in U .

Definition. If G is an upper semi-continuous collection of subsets of the
topological space X and X = ∪G, then the decomposition space, denoted
by X/G, is the space whose points are the elements of G and a basis for the
topology of the space are those subsets of G each of whose union is open in
X. Thus R is a basis element in X/G if and only if ∪R is open in X.

For the theorems in this section suppose that G is an upper semi-continuous
collection of sets filling up the Hausdorff space X. (I.e. X = ∪G.)

Theorem 8.1. No point of X belongs to two elements of G.

Theorem 8.2. No element of G contains a limit point of some other
element of G.

Theorem 8.3. If g ∈ G and D is an open set in X containing g, then the
set of all members of G that lie in D is an open set in X/G.

Theorem 8.4. The element g of G is a limit point of the subset H of G if
and only if g contains a limit point of ∪H − g.

Theorem 8.5. If K is a closed subset of X (with respect to the topology
of X) and H is the set of all members of G which intersect K, then H is
closed in X/G and ∪H is closed in X.

Theorem 8.6. If H is a connected subset of G (with respect to the topology
of X/G) and each member of H is connected (with respect to the topology
of X) then ∪H is connected.
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Theorem 8.7. Suppose H ⊂ G. Then ∪H is closed (in X) if and only if
H is closed (in X/G).

Theorem 8.8. If H ⊂ G and ∪H is connected, then H is connected.

Theorem 8.9. If H ⊂ G and ∪H is compact, then H is compact; if H is
compact and each member of H is compact, then ∪H is compact.

Exercise. Suppose that G is an upper semi-continuous collection filling
up the space X and X is Tn, a Moore space, or a metric space. Then is X/G
a Tn space, a Moore space, or a metric space respectively?

Exercise. Repeat the above exercise in the case that each element of G is
compact.

Exercise. Consider additional topological properties we have developed
such as separability, first or second countability, paracompactness, etc.

Exercise. Suppose G is an upper semi-continuous collection of compact
sets filling up the space X. Consider the function f : X → X/G defined by
f(x) = g iff and only if x ∈ g.

Then is f :
a. continuous?
b. an open map?
c. a closed map?

d. is compactness required for each of these?

Suppose f : X → Y is a continuous onto function and G = {f−1(y)|y ∈
Y }. Then is G necessarily upper semi-continuous? What if we add one (or
more of) the following conditions:

a. f is open.
b. f is closed.
c. f−1(y) is compact for each y ∈ Y.

Theorem 8.10. If X is metric then X/G is Hausdorff.

Theorem 8.11. Let f : X → X/G be defined by f(p) is the element of G
that contains p. Then f is continuous.
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Theorem 8.12. If K is a compact subset of X, then the set of all members
of G which intersect K is compact.

Theorem 8.13. If X is a metric space then X/G is normal.

Exercise. Is there:
a.) an upper semi-continuous collection of non-degenerate compact sets

that fills up the plane?
b.) an upper semi-continuous collection of non-degenerate compact sets

that fills up the unit interval?
c.)an upper semi-continuous collection of non-degenerate continua that

fills up the plane?
d.) an upper semi-continuous collection of non-degenerate continua that

fills up the unit interval?
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