Lecture 8

QR factorization

- Read 3.4.3 and 5.6.1 of the text.
- Definition 3.1 A matrix $A \in \mathbb{R}_{m \times n}$ with $m \geq n$ admits a QR factorization if there exists an orthogonal matrix $Q \in \mathbb{R}_{m \times m}$ and an upper trapezoidal matrix $R \in \mathbb{R}_{m \times n}$ with zero rows from the $(n+1)$-st row on such that

$$
A=Q R .
$$

This factorization can be constructed by three methods:

1. Gram-Schmidt
2. Householder
3. Givens

- Property 3.3 (Reduced QR) Suppose the rank of $A \in \mathbb{R}_{m \times n}$ is n for which $A=Q R$ is known. Then

$$
A=\widetilde{Q} \tilde{R}
$$

where \widetilde{Q} and \widetilde{R} are submatrices of Q and R given respectively by

$$
\widetilde{Q}=Q=Q(1: m, 1: n), \quad \widetilde{R}=R(1: n, 1: n)
$$

Moreover \widetilde{Q} has orthonormal columns and \widetilde{R} is upper triangular and coincides with the Cholesky factor H of the positive definite matrix $A^{T} A$, that is, $A^{T} A=\widetilde{R}^{T} \widetilde{R}$.

- Gram-Schmidt:

Let $A=\left[a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right] \in \mathbb{R}_{m \times n}$ where the columns are linearly independent. Set
$\tilde{q}_{1}=a_{1} /\left\|a_{1}\right\|_{2}$
and for $k=1, \ldots, n-1$,

$$
\begin{equation*}
q_{k+1}=a_{k+1}-\sum_{j=1}^{k}\left(\tilde{q}_{j}^{T} a_{k+1}\right) \tilde{q}_{j} \tag{1}
\end{equation*}
$$

and set

$$
\tilde{q}_{k+1}=q_{k+1} /\left\|q_{k+1}\right\|_{2}
$$

To recover \widetilde{Q} and \widetilde{R}, rewrite (1) as

$$
a_{k+1}=\left\|q_{k+1}\right\|_{2} \tilde{q}_{k+1}+\sum_{j=1}^{k}\left(\tilde{q}_{j}^{T} a_{k+1}\right) \tilde{q}_{j}
$$

So

$$
\widetilde{Q}=\left[\tilde{q}_{1}\left|\tilde{q}_{2}\right| \cdots \mid \tilde{q}_{n}\right]
$$

and $\tilde{R} \in \mathbb{R}_{n \times n}$ is upper triangular where

$$
\tilde{r}_{j, k+1}=\tilde{q}_{j}^{T} a_{k+1}, \quad j=1, \ldots, k
$$

and

$$
\tilde{r}_{k+1, k+1}=\left\|q_{k+1}\right\|_{2}, \quad \tilde{r}_{11}=\left\|a_{1}\right\|_{2}
$$

- Gram-Schmidt as Triangular Orthogonalization

The above algorithm means after all the steps, we get a product of triangular matrices

$$
A R_{1} R_{2} \cdots R_{n}=\widetilde{Q}
$$

Set $\widetilde{R}=\left(R_{1} R_{2} \cdots R_{n}\right)^{-1}$.

- Disadvantage of (classical) Gram-Schmidt:

Sensitive to rounding error (orthogonality of the computed vectors can be lost quickly or may even be completely lost) \rightarrow modified Gram-Schmidt.

Example:

$$
A=\left[\begin{array}{ccc}
1+\epsilon & 1 & 1 \\
1 & 1+\epsilon & 1 \\
1 & 1 & 1+\epsilon
\end{array}\right]
$$

with very small ϵ such that $3+2 \epsilon$ will be computed accurately but $3+2 \epsilon+\epsilon^{2}$ will be computed as $3+2 \epsilon$. Then

$$
Q \approx\left[\begin{array}{ccc}
\frac{1+\epsilon}{\sqrt{3+2 \epsilon}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{3+2 \epsilon}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{3+2 \epsilon}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

and $\cos \theta_{12}=\cos \theta_{13} \approx \pi / 2$ but $\cos \theta_{23} \approx \pi / 3$.

- Modified Gram-Schmidt

The $k+1$ st step (1) of CGS is replaced by a number of steps

$$
\begin{aligned}
a_{k+1}^{(1)} & =a_{k+1}-\left(\tilde{q}_{1}^{T} a_{k+1}\right) \tilde{a}_{1} \\
a_{k+1}^{(i+1)} & =a_{k+1}^{(i)}-\left(\tilde{q}_{i+1}^{T} a_{k+1}^{(i)}\right) \tilde{q}_{i+1}, \quad i=1, \ldots, k-1 .
\end{aligned}
$$

Theoretically

$$
a_{k+1}^{(k)}=q_{k+1} .
$$

- flop count is about $m n^{2}$ for CGS, $2 m n^{2}$ for MGS.
- From a numerical point of view, both these CGS and MGS may produce a set of vectors which is far from orthogonal and sometimes the orthogonality can be lost completely.
Loss of orthogonality:

$$
\begin{array}{rr}
\left\|I-\widehat{Q}^{T} \hat{Q}\right\| \propto K(A) u & \text { (for MGS) } \\
\left\|I-\widehat{Q}^{T} \hat{Q}\right\| \propto K^{2}(A) u & \text { (for CGS) }
\end{array}
$$

provided that the matrix $A^{T} A$ is numerically nonsingular

- For a numerically nonsingular matrix A the loss of orthogonality in MGS occurs in a predictable way and it can be bounded by a term proportional to the condition number $K(A)$ and to the roundoff unit u. Therefore, the loss of orthogonality of computed vectors is close to roundoff unit level only for well-conditioned matrices, while for ill-conditioned matrices it can be much larger leading to complete loss (the loss of linear independence) for numerically singular or rank-deficient problems.
- MGS method can be used to solve least squares problems and that the algorithm is backward-stable.
- CGS resurfaces in some recent articles, especially regarding its usefulness because it takes advantage of BLAS2. Practically a better candidate for parallel implementation than MGS.
- mod_grams (Modified Gram-Schmidt method)

```
0001 function [Q,R] = mod_grams(A)
0002 [m,n]=size(A);
0003 Q=zeros(m,n); Q(1:m,1) = A(1:m,1); R=zeros(n); R(1,1)=1;
0004 for k = 1:n
0005 R(k,k) = norm (A(1:m,k)); Q(1:m,k) = A(1:m,k)/R(k,k);
0006 for j=k+1:n
0007 R (k,j) = Q (1:m,k)' * A(1:m,j);
0008 A (1:m,j) = A (1:m,j) - Q (1:m,k)*R(k,j);
0009 end
0 0 1 0 ~ e n d ~
```

- Impossible to overwrite $Q R$ factorization on A. The matrix \tilde{R} is overwritten on A and \widetilde{Q} is stored separately.
- Compare CGS and MGS for the vectors $a_{1}=(1, \epsilon, 0,0)^{T}, a_{2}=$ $(1,0, \epsilon, 0)^{T}, a_{3}=(1,0,0, \epsilon)^{T}$, where ϵ is so small $1+\epsilon^{2} \approx 1$.

Householder reflections and Givens rotations

Householder QR

- Householder $\mathrm{QR}=$ Orthogonal triangularization
- After all the steps,

$$
P_{(n)} \cdots P_{(2)} P_{(1)} A=R \text { if } m>n
$$

and

$$
P_{(n-1)} \cdots P_{(2)} P_{(1)} A=R \text { if } m=n
$$

Then
$Q=\left(P_{(n)} \cdots P_{(2)} P_{(1)}\right)^{-1}=P_{(1)}^{-1} P_{(2)}^{-1} \cdots P_{(n)}^{-1}=P_{(1)} \cdots P_{(n)}$ if $m>n$ and
$Q=\left(P_{(n-1)} \cdots P_{(2)} P_{(1)}\right)^{-1}=P_{(1)}^{-1} P_{(2)}^{-1} \cdots P_{(n-1)}^{-1}=P_{(1)} \cdots P_{(n-1)}$ if $m=n$
since $P_{(i)}^{-1}=P_{(i)}^{T}=P_{(i)}$ as each $P_{(i)}$ is a Householder reflection matrix.

- The Householder reflection

$$
P=I-2 v v^{T} /\|v\|_{2}^{2}
$$

sends x to $y=P x$ which is the reflection of x with respect to the hyperplane span $v^{\perp}: P v=-v, P u=u$ whenever $u \perp v$.

- $P^{2}=P, P^{T}=P$
- Householder reflection can be used to set to zero a block of components of a given $x \in \mathbb{R}^{n}$: Set

$$
v=x \pm\|x\|_{2} e_{m}
$$

where $e_{m}=(0, \ldots, 1,0, \ldots, 0)^{T} \in \mathbb{R}^{n}$ in which the 1 appears in the mth component. Then

$$
P x= \pm\|x\|_{2} e_{m}
$$

- Let $P_{(k)}$ be the form

$$
P_{(k)}=\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & R_{n-k}
\end{array}\right] \in \mathbb{R}_{n \times n}
$$

where

$$
R_{n-k} x^{(n-k)}=\left[\begin{array}{c}
\left\|x^{(n-k)}\right\| \\
0 \\
\vdots \\
0
\end{array}\right]=\left\|x^{(n-k)}\right\| e_{1}^{(n-k)}
$$

where $x^{(n-k)} \in \mathbb{R}^{n-k}$ is the vector formed by the last $n-k$ compoenents of x and $e_{1}^{(n-k)}$ is the first standard unit vector of \mathbb{R}^{n-k}.

$$
R_{n-k}=I_{n-k}-\frac{2 w^{(k)}\left(w^{(k)}\right)^{T}}{\left\|w^{(k)}\right\|_{2}^{2}}, \quad w^{(k)}=x^{(n-k)} \pm\left\|x^{(n-k)}\right\|_{2} e_{1}^{(n-k)}
$$

- $Q=P_{(n)} P_{(n-1)} \cdots P_{(1)}$ if $m>n$ and $Q=P_{(n-1)} \cdots P_{(1)}$ if $m=n$.
- Read p.208-209
- It is convenient to choose the minus sign in $w^{(k)}=x^{(n-k)} \pm$ $\left\|x^{(n-k)}\right\|_{2} e_{1}^{(n-k)}$ so that $R_{n-k} x^{(n-k)}$ is a positive multiple of $e_{1}^{(n-k)}$.
- If $x_{k+1}>0$ where $x^{(n-k)}=\left(x_{k+1}, \ldots, x_{n}\right)^{T}$, in order to avoid numerical cancellations, rationalization is used:

$$
w_{1}^{(k)}=\frac{x_{k+1}^{2}-\left\|x^{(n-k)}\right\|_{2}}{x_{k+1}+\left\|x^{(n-k)}\right\|_{2}}=\frac{-\sum_{j=k+2}^{n} x_{j}^{2}}{x_{k+1}+\left\|x^{(n-k)}\right\|_{2}}
$$

- Program 32 vhouse: Construction of the Householder vector

```
0001 function [v,beta]=vhouse(x)
0002 n=length(x);
0003 x=x/norm(x);
0004 s=x(2:n)'*x(2:n);
0005 v=[1; x(2:n)];
0006 if (s==0), beta=0;
0 0 0 7 ~ e l s e
0008 mu=sqrt(x(1)^2+s);
0009 if (x(1) <= 0)
0010 v(1)=x(1)-mu;
0 0 1 1 ~ e l s e
0012 v(1)=-s/(x(1)+mu);
0013 end
0014 beta=2*v(1)^2/(s+v(1)^2);
0015 v=v/v(1);
0016 end
0 0 1 7 \text { return}
```

- Read p.216-217

Givens rotations

- Alternative to Householder reflections
- A Givens rotation is simply a rotation

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

rotates $x \in \mathbb{R}^{2}$ by θ.

- We can choose $\theta \in \mathbb{R}$ so that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{j}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{x_{i}^{2}+x_{j}^{2}} \\
0
\end{array}\right],} \\
& \cos \theta=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}, \quad \sin \theta=\frac{-x_{j}}{\sqrt{x_{i}^{2}+x_{j}^{2}}} .
\end{aligned}
$$

- Read p.209-230

Givens QR

- Zero things bottom-up and left-right.

$$
\begin{align*}
& {\left[\begin{array}{lll}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{lll}
\times & \times & \times \\
\times & \times & \times \\
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x}
\end{array}\right] \xrightarrow[\rightarrow]{(2,3)}\left[\begin{array}{lll}
\times & \times & \times \\
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} \\
& \times & \times
\end{array}\right]} \tag{1,2}\\
& {\left[\begin{array}{lll}
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} \\
& \times & \times \\
& \times & \times
\end{array}\right]} \\
& \xrightarrow[(3,4)]{ }\left[\begin{array}{lll}
\times & \times & \times \\
& \times & \times \\
& \mathrm{x} & \mathrm{x} \\
& 0 & \mathrm{x}
\end{array}\right] \\
& \xrightarrow[(2,3)]{ }\left[\begin{array}{lll}
\times & \times & \times \\
& \mathrm{x} & \mathrm{x} \\
& 0 & \mathrm{x} \\
& & \times
\end{array}\right]
\end{align*}
$$

- flop count $3 n m^{2}-m^{3}$ (about 50% more than Householder QR)

Stability

- $A \mapsto Q A$ where Q is Householder reflection or Givens rotation:

$$
f l(Q A)=Q(A+\delta A)
$$

where $\|\delta A\| /\|A\|_{2}$ is tiny. Thus the computation of $Q A$ is normwise backward stable.

- MATLAB's command $[Q, R]=q r(A, 0)$ which uses Householder reflections.
- Read p. 213

