Lecture 8

QR factorization
e Read 3.4.3 and 5.6.1 of the text.

e Definition 3.1 A matrix A € R,,x» With m > n admits a QR
factorization if there exists an orthogonal matrix @ € Ry,xm
and an upper trapezoidal matrix R € R,,xn With zero rows
from the (n 4 1)-st row on such that

A= QR.
This factorization can be constructed by three methods:
1. Gram-Schmidt
2. Householder
3. Givens
e Property 3.3 (Reduced QR) Suppose the rank of A € R, xn iS
n for which A = QR is known. Then
A=QR
where ) and R are submatrices of Q and R given respectively
by
Q=Q=Q(1:m,1:n), R=R(1:n,1:n).

Moreover Q has orthonormal columns and R is upper triangu-
lar and coincides with the Cholesky fac;cor H of the positive
definite matrix ATA, that is, ATA = RTR.



e Gram-Schmidt:

Let A = [ai]az]| - |an] € Rixn Where the columns are linearly
independent. Set

g1 = ai/|la1]|2
and for k=1,...,n—1,

k

Th+1 = k41 — E (@] art+1)3; (1)
J=1

and set
Qr+1 = qr+1/llqu+1l2.
To recover Q and R, rewrite (1) as
k
ap+1 = l|qr+1ll2Gr+1 + E (@] ar+1)d
=1

So

Q = [q1]G2] - - - |n]
and R € R,,«n is upper triangular where

'Fj,kz—l—l - quak:—i-la .] — 17"'7k7

and

Trht1k+1 = ||qe+1ll2, 711 = |Ja1]|2

e Gram-Schmidt as Triangular Orthogonalization

The above algorithm means after all the steps, we get a prod-
uct of triangular matrices

~

ARlRQRn:Q
Set R = (RiR>---Ry)~L.



e Disadvantage of (classical) Gram-Schmidt:

Sensitive to rounding error (orthogonality of the computed
vectors can be lost quickly or may even be completely lost)
— modified Gram-Schmidt.

Example:
1+ ¢ 1 1
A= 1 1+ ¢ 1
1 1 1+e¢

with very small € such that 34 2¢ will be computed accurately
but 3 4 2¢ 4+ €2 will be computed as 3 4+ 2¢. Then

14e -1 -1
V3F2e V2 V2
Q ~ 1 1 0
~ \/3f—26 V2 )
V3F2¢ 0 V2

and cos#io = cosbiz ~ 7/2 but cosbrz ~ 7/3.



e Modified Gram-Schmidt

The k4 1st step (1) of CGS is replaced by a number of steps

1 - -
(1) =  Qag41 — (Q1Tal~c+1)(l1

py1
S . y N '
al(;_tl) = ag_l — (qa-la;ilj_l)qu: 1=1,...,k— 1.

Theoretically

NON.
k41 — k+1-

e flop count is about mn? for CGS, 2mn? for MGS.

e From a numerical point of view, both these CGS and MGS
may produce a set of vectors which is far from orthogonal and
sometimes the orthogonality can be lost completely.

Loss of orthogonality:

1T — QTQ| x K(A)u (for MGS)
1T — QTQ|| < K?(A)u (for CGS)

provided that the matrix AT A is numerically nonsingular

e For a numerically nonsingular matrix A the loss of orthogonal-
ity in MGS occurs in a predictable way and it can be bounded
by a term proportional to the condition number K(A) and
to the roundoff unit w. Therefore, the loss of orthogonality
of computed vectors is close to roundoff unit level only for
well-conditioned matrices, while for ill-conditioned matrices
it can be much larger leading to complete loss (the loss of
linear independence) for numerically singular or rank-deficient
problems.

¢ MGS method can be used to solve least squares problems and
that the algorithm is backward-stable.

e CGS resurfaces in some recent articles, especially regarding its
usefulness because it takes advantage of BLAS2. Practically
a better candidate for parallel implementation than MGS.
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e mod_grams (Modified Gram-Schmidt method)

0001 function [Q,R] = mod grams(A)

0002 [m,n]=size(A);

0003 Q=zeros(m,n); Q(1:m,1) = A(1:m,1); R=zeros(n); R(1,1)=1;
0004 for k = 1:n

0005 R(k,k) = norm (A(1:m,k)); Q(1:m,k) = A(1:m,k)/R(k,k);
0006 for j=k+1:n

0007 R (k,j) = Q (1:m,k)’ * A(1:m,j);

0008 A (1:m,j) = A (1:m,j) - Q(1:m,k)*R(k,j);
0009 end

0010 end

e Impossible to overwrite Q~R factorization on A. The matrix R
is overwritten on A and ( is stored separately.

e Compare CGS and MGS for the vectors a1 = (1,¢,0,0)7, ar =
(1,0,6,0)7, a3 = (1,0,0,¢)T, where € is so small 1 + €2 ~



Householder reflections and Givens rota-
tions

Householder QR

e Householder QR = Orthogonal triangularization

(X X x| [x x x| (X X X ]
X X X 0O x x X X
X X X Py 0O x x P2y 0 x
X X X — 0O x x — 0 x -
| X X X _O X X 0 X
e After all the steps,
and
P(n—l) s P(Q)P(l)A =Rifm=n
Then
_ 1p— - :
Q= (P(n) P(Q)P(l)) (l)P(Q) P( ) = P(l) s P(n) ifm>n
and
_ - 1p-—1 -1 _ : _
Q= (Pn-1)-- PyPy)) ™ = Py Py iy = Py -+ Py ifm = m

1 T
since P( N = P( )

matrix.

= P(;y as each P is a Householder reflection



Householder reflections

e T he Householder reflection
P=1-— 2UUT/||UH§

sends z to y = Px which is the reflection of z with respect to
the hyperplane spanvt: Pv = —v, Pu = u whenever u L v.

e P2=pP, PT=p

e Householder reflection can be used to set to zero a block of
components of a given z € R": Set

v=2x = ||z|2em
where e, = (0,...,1,0,...,0)T € R® in which the 1 appears in
the mth component. Then

Pz = +||x||2em

e Let P(k) be the form

R 0
P(k) _— I O Rn—k E Ran
where
RESe
Ry ") = = Pl ™,
0

where z(»k) ¢ R"* js the vector formed by the last n — k
compoenents of z and e&”_k) is the first standard unit vector
of R %,

20 () (1 ())T

B PO

w(k) — SU(n_k) + Hx(n—k’)”Qeg’n—k)

° Q = P(n)P(n—l) cee P(l) if m >mn and Q = P(n—l) ce P(l) if m=n.
e Read p.208-209



Choice of Householder reflection

e It is convenient to choose the minus sign in w®) = gk 4+

||x(n—k)|\2€§"_k) so that R, _pz(" % is a positive multiple of

(n—Fk)
ey :

o If z;41 > 0 where ("% = (z341,...,2,)7, in order to avoid
numerical cancellations, rationalization is used:

2 —k _ n 2
(k) — Tht1 — [l P _ Zj:k—l—Q Tj
zp1 + 2P g + 2R

e Program 32 vhouse: Construction of the Householder vector

0001 function [v,betal=vhouse(x)
0002 n=length(x);

0003 x=x/norm(x) ;

0004 s=x(2:n)’*x(2:n);

0005 v=[1; x(2:n)];

0006 if (s==0), beta=0;

0007 else

0008 mu=sqrt (x(1) “2+s);

0009 if (x(1) <= 0)

0010 v(1)=x(1)-mu;

0011 else

0012 v(1)=-s/(x(1)+mu) ;
0013 end

0014 beta=2*v (1) "2/ (s+v(1)"2);
0015 v=v/v(1);

0016 end

0017 return

e Read p.216-217



Givens rotations
e Alternative to Householder reflections
e A Givens rotation is simply a rotation
RO)= S0 o8

rotates x € R? by 6.

e We can choose 0 € R so that
cosf® —sinf] [z ] _ x? + a3
sing  cosf x| 0 ’

Ccos O = sinfg =

xI; —ZBj
2 2’ 2 2
1/x2.—|—xj «/ycz.—l—a:j
e Read p.209-230
Givens QR

e Zero things bottom-up and left-right.

X X X X X X X X X
x X x| (3,4) | x x x| (2,3) |x x x
X X X — X X X — 0O x x
X X X 0O x x X X
X X X X X X X X X
0O x x| (3,4 x x| (2,3) X X
X X — X X — 0 x
X X 0 x X

e flop count 3nm? — m3 (about 50% more than Householder

QR)



Stability

e A+— QA where (Q is Householder reflection or Givens rotation:
fllQA) = Q(A+0A)

where ||§A||/||All2 is tiny. Thus the computation of QA is
normwise backward stable.

e MATLAB's command [Q,R]=qr(A,0) which uses Householder
reflections.

e Read p.213
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