
Lecture 8

QR factorization

• Read 3.4.3 and 5.6.1 of the text.

• Definition 3.1 A matrix A ∈ Rm×n with m ≥ n admits a QR
factorization if there exists an orthogonal matrix Q ∈ Rm×m

and an upper trapezoidal matrix R ∈ Rm×n with zero rows
from the (n + 1)-st row on such that

A = QR.

This factorization can be constructed by three methods:

1. Gram-Schmidt

2. Householder

3. Givens

• Property 3.3 (Reduced QR) Suppose the rank of A ∈ Rm×n is
n for which A = QR is known. Then

A = Q̃R̃

where Q̃ and R̃ are submatrices of Q and R given respectively
by

Q̃ = Q = Q(1 : m,1 : n), R̃ = R(1 : n,1 : n).

Moreover Q̃ has orthonormal columns and R̃ is upper triangu-
lar and coincides with the Cholesky factor H of the positive
definite matrix ATA, that is, ATA = R̃T R̃.
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• Gram-Schmidt:

Let A = [a1|a2| · · · |an] ∈ Rm×n where the columns are linearly
independent. Set

q̃1 = a1/‖a1‖2
and for k = 1, . . . , n− 1,

qk+1 = ak+1 −
k∑

j=1

(q̃T
j ak+1)q̃j (1)

and set

q̃k+1 = qk+1/‖qk+1‖2.
To recover Q̃ and R̃, rewrite (1) as

ak+1 = ‖qk+1‖2q̃k+1 +

k∑
j=1

(q̃T
j ak+1)q̃j

So

Q̃ = [q̃1|q̃2| · · · |q̃n]

and R̃ ∈ Rn×n is upper triangular where

r̃j,k+1 = q̃T
j ak+1, j = 1, . . . , k,

and

r̃k+1,k+1 = ‖qk+1‖2, r̃11 = ‖a1‖2

• Gram-Schmidt as Triangular Orthogonalization

The above algorithm means after all the steps, we get a prod-
uct of triangular matrices

AR1R2 · · ·Rn = Q̃

Set R̃ = (R1R2 · · ·Rn)−1.
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• Disadvantage of (classical) Gram-Schmidt:

Sensitive to rounding error (orthogonality of the computed
vectors can be lost quickly or may even be completely lost)
→ modified Gram-Schmidt.

Example:

A =

[
1 + ε 1 1

1 1 + ε 1
1 1 1 + ε

]

with very small ε such that 3+2ε will be computed accurately
but 3 + 2ε + ε2 will be computed as 3 + 2ε. Then

Q ≈




1+ε√
3+2ε

−1√
2

−1√
2

1√
3+2ε

1√
2

0
1√

3+2ε
0 1√

2




and cos θ12 = cos θ13 ≈ π/2 but cos θ23 ≈ π/3.
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• Modified Gram-Schmidt

The k +1st step (1) of CGS is replaced by a number of steps

a(1)
k+1 = ak+1 − (q̃T

1 ak+1)ã1

a(i+1)
k+1 = a(i)

k+1 − (q̃T
i+1a

(i)
k+1)q̃i+1, i = 1, . . . , k − 1.

Theoretically

a(k)
k+1 = qk+1.

• flop count is about mn2 for CGS, 2mn2 for MGS.

• From a numerical point of view, both these CGS and MGS
may produce a set of vectors which is far from orthogonal and
sometimes the orthogonality can be lost completely.

Loss of orthogonality:

‖I − Q̂T Q̂‖ ∝ K(A)u (for MGS)
‖I − Q̂T Q̂‖ ∝ K2(A)u (for CGS)

provided that the matrix ATA is numerically nonsingular

• For a numerically nonsingular matrix A the loss of orthogonal-
ity in MGS occurs in a predictable way and it can be bounded
by a term proportional to the condition number K(A) and
to the roundoff unit u. Therefore, the loss of orthogonality
of computed vectors is close to roundoff unit level only for
well-conditioned matrices, while for ill-conditioned matrices
it can be much larger leading to complete loss (the loss of
linear independence) for numerically singular or rank-deficient
problems.

• MGS method can be used to solve least squares problems and
that the algorithm is backward-stable.

• CGS resurfaces in some recent articles, especially regarding its
usefulness because it takes advantage of BLAS2. Practically
a better candidate for parallel implementation than MGS.
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• mod grams (Modified Gram-Schmidt method)

0001 function [Q,R] = mod grams(A)
0002 [m,n]=size(A);
0003 Q=zeros(m,n); Q(1:m,1) = A(1:m,1); R=zeros(n); R(1,1)=1;
0004 for k = 1:n
0005 R(k,k) = norm (A(1:m,k)); Q(1:m,k) = A(1:m,k)/R(k,k);
0006 for j=k+1:n
0007 R (k,j) = Q (1:m,k)’ * A(1:m,j);
0008 A (1:m,j) = A (1:m,j) - Q(1:m,k)*R(k,j);
0009 end
0010 end

• Impossible to overwrite QR factorization on A. The matrix R̃
is overwritten on A and Q̃ is stored separately.

• Compare CGS and MGS for the vectors a1 = (1, ε,0,0)T , a2 =
(1,0, ε,0)T , a3 = (1,0,0, ε)T , where ε is so small 1 + ε2 ≈ 1.
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Householder reflections and Givens rota-

tions

Householder QR

• Householder QR = Orthogonal triangularization


× × ×
× × ×
× × ×
× × ×
× × ×




A

P(1)
→



x x x
0 x x
0 x x
0 x x
0 x x




P(1)A

P(2)
→



× × ×

x x
0 x
0 x
0 x




P(2)P(1)A

→ · · ·

• After all the steps,

P(n) · · ·P(2)P(1)A = R if m > n

and

P(n−1) · · ·P(2)P(1)A = R if m = n
Then

Q = (P(n) · · ·P(2)P(1))
−1 = P−1

(1)
P−1

(2)
· · ·P−1

(n)
= P(1) · · ·P(n) if m > n

and

Q = (P(n−1) · · ·P(2)P(1))
−1 = P−1

(1)
P−1

(2)
· · ·P−1

(n−1)
= P(1) · · ·P(n−1) if m = n

since P−1
(i)

= P T
(i)

= P(i) as each P(i) is a Householder reflection

matrix.
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Householder reflections

• The Householder reflection
P = I − 2vvT/‖v‖22

sends x to y = Px which is the reflection of x with respect to
the hyperplane span v⊥: Pv = −v, Pu = u whenever u ⊥ v.

• P 2 = P , P T = P

• Householder reflection can be used to set to zero a block of
components of a given x ∈ Rn: Set

v = x± ‖x‖2em

where em = (0, . . . ,1,0, . . . ,0)T ∈ Rn in which the 1 appears in
the mth component. Then

Px = ±‖x‖2em

• Let P(k) be the form

P(k) =
[

Ik−1 0
0 Rn−k

]
∈ Rn×n

where

Rn−kx
(n−k) =



‖x(n−k)‖

0
...
0


 = ‖x(n−k)‖e(n−k)

1 ,

where x(n−k) ∈ Rn−k is the vector formed by the last n − k

compoenents of x and e(n−k)
1 is the first standard unit vector

of Rn−k.

•
Rn−k = In−k −

2w(k)(w(k))T

‖w(k)‖22
, w(k) = x(n−k) ± ‖x(n−k)‖2e(n−k)

1

• Q = P(n)P(n−1) · · ·P(1) if m > n and Q = P(n−1) · · ·P(1) if m = n.

• Read p.208-209
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Choice of Householder reflection

• It is convenient to choose the minus sign in w(k) = x(n−k) ±
‖x(n−k)‖2e(n−k)

1 so that Rn−kx
(n−k) is a positive multiple of

e(n−k)
1 .

• If xk+1 > 0 where x(n−k) = (xk+1, . . . , xn)T , in order to avoid
numerical cancellations, rationalization is used:

w(k)
1 =

x2
k+1 − ‖x(n−k)‖2

xk+1 + ‖x(n−k)‖2
=

−
∑n

j=k+2
x2

j

xk+1 + ‖x(n−k)‖2

• Program 32 vhouse: Construction of the Householder vector

0001 function [v,beta]=vhouse(x)
0002 n=length(x);
0003 x=x/norm(x);
0004 s=x(2:n)’*x(2:n);
0005 v=[1; x(2:n)];
0006 if (s==0), beta=0;
0007 else
0008 mu=sqrt(x(1)^2+s);
0009 if (x(1) <= 0)
0010 v(1)=x(1)-mu;
0011 else
0012 v(1)=-s/(x(1)+mu);
0013 end
0014 beta=2*v(1)^2/(s+v(1)^2);
0015 v=v/v(1);
0016 end
0017 return

• Read p.216-217
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Givens rotations

• Alternative to Householder reflections

• A Givens rotation is simply a rotation

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]

rotates x ∈ R2 by θ.

• We can choose θ ∈ R so that
[
cos θ − sin θ
sin θ cos θ

][
xi
xj

]
=

[√
x2

i + x2
j

0

]
,

cos θ =
xi√

x2
i + x2

j

, sin θ =
−xj√
x2

i + x2
j

.

• Read p.209-230

Givens QR

• Zero things bottom-up and left-right.
[× × ×
× × ×
× × ×
× × ×

]
(3,4)
→

[× × ×
× × ×
x x x
0 x x

]
(2,3)
→

[× × ×
x x x
0 x x

× ×

]
(1,2)
→

[
x x x
0 x x

× ×
× ×

]
(3,4)
→

[× × ×
× ×
x x
0 x

]
(2,3)
→

[× × ×
x x
0 x

×

]
(3,4)
→ R

• flop count 3nm2 − m3 (about 50% more than Householder
QR)
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Stability

• A 7→ QA where Q is Householder reflection or Givens rotation:

fl(QA) = Q(A + δA)

where ‖δA‖/‖A‖2 is tiny. Thus the computation of QA is
normwise backward stable.

• MATLAB’s command [Q,R]=qr(A,0) which uses Householder
reflections.

• Read p.213
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