EXCHANGE RATE RISK AND EXPORT REVENUE IN TAIWAN

WEN SHWO FANG Feng Chia University, Taiwan
HENRY THOMPSON* Auburn University, USA

Abstract. The effect of exchange rate risk on export revenue in Taiwan between 1979 and 2001 is investigated in a bivariate GARCH-M model that simultaneously estimates time-varying risk. Depreciation is found to stimulate export revenue in domestic currency, but the quantitative impact is small and any associated increase in exchange risk has a negative impact. Implications for economic policy are discussed.

1. INTRODUCTION

The effects of exchange rate risk have been studied since the collapse of fixed exchange rates in the 1970s, but little consensus regarding its effect on export revenue has emerged. Exchange risk could lower export revenue owing to profit risk, as developed by Ethier (1973); but De Grauwe (1988) suggests that exporters might increase volume to offset potential losses, and Broll and Eckwert (1999) note that the price of an option to export increases with risk. The risk profile of exporting firms and currency inventory practices would certainly be relevant. Depreciation might increase export revenue, but the net effect could be negative if there were increased exchange risk. Policy-makers might be advised to remember exchange risk when considering market intervention aimed at stimulating exports.

Generalized autoregressive conditional heteroskedasticity (GARCH) models have been used to model relationships between means and variances as in

*Address for correspondence: Economics, Comer Hall, Auburn University, AL 36849, USA; Email thomph1@auburn.edu. We would like to thank two anonymous referees for their comments and suggestions. All remaining errors are, of course, our own.

© 2004 Blackwell Publishing Ltd
Bollerslev (1986, 1990), Engle et al. (1987) and Bollerslev et al. (1992). A moving standard deviation of the exchange rate is used as a proxy for risk by various authors including Chowdhury (1993), Arize (1995, 1996a, 1996b, 1997), and Arize et al. (2000). Moving standard deviations, however, have a maintained hypothesis of homoskedasticity while being used to construct a proxy for heteroskedasticity.

Exchange risk has been shown to be conditional and time varying by Hodrick and Srivastava (1984). GARCH methodology allows time dependence in Pozo (1992), McKenzie and Brooks (1997) and Weliwita et al. (1999), but this two-step procedure may result in inefficient estimation. The present paper applies a bivariate GARCH-M model with simultaneous estimation of time-varying risk including volatility and depreciation as explanatory variables. The effects of the exchange rate and risk depend on how quickly exporters respond, and dynamic features of the present model distinguish it from contemporaneous multivariate GARCH-M models such as Kroner and Lastrapes (1993).

There is motivation to examine Taiwan, where fixed exchange rates were abandoned during 1978, and the present paper examines the evidence from 1979 to 2001. Most previous studies have focused on developed countries, but Taiwan industrialized during this period. Taiwan is a small open economy, with export revenue averaging 45% of GDP over this period. Darrat et al. (2000) credit the rapid growth of Taiwan to export promotion, but Chang et al. (2000) raise questions about this conclusion. The Asian financial crisis of 1997 caused dramatic depreciation and exchange rate volatility, and the flattening of export growth suggests a negative impact for exchange risk.

2. AN EMPIRICAL MODEL OF EXPORT REVENUE AND EXCHANGE RISK

Real export revenue \((x)\) is specified as a function of real foreign income \((y)\), the real effective exchange rate \((q)\) and effective exchange risk \((h_q)\) as

\[
x = f(y, q, h_q)
\]

Foreign income would have a positive effect on the demand for normal exports. The exchange rate is defined as the domestic currency price of foreign currency, and the effective exchange rate \(q\) is the export weighted average of real exchange rates across trading partners. An increase in the exchange rate is depreciation, implying cheaper exports abroad and increased real export revenue given the Marshall–Lerner condition. The effect of exchange risk is theoretically ambiguous.

To capture the dynamics, the export equation is modeled as an autoregressive distributed lag (ADL) process:

\[
\Delta l x_i = a_0 + \sum_{i=0}^{n} a_i \Delta l x_{t-i} + \sum_{i=0}^{n} b_i \Delta l y_{t-i} + \sum_{i=0}^{n} c_i \Delta l q_{t-i} + \sum_{i=0}^{n} d_i h_q t-i + \varepsilon_{x,i}
\]

where \(\Delta l x_i = 100 \times (\ln x_i - \ln x_{t-1})\), \(\Delta l y_i = 100 \times (\ln y_i - \ln y_{t-1})\), \(\Delta l q_i = 100 \times (\ln q_i - \ln q_{t-1})\), \(h_q t-i\) is estimated exchange risk, and \(\varepsilon_{x,i}\) is a random disturbance term.

© 2004 Blackwell Publishing Ltd
Risk is specified as time-varying exchange rate volatility constructed with a GARCH(1,1) process following Bollerslev (1986):

\[
\begin{align*}
\Delta lq_t &= s_0 + \sum_{i=1}^{P} s_i \Delta lq_{t-i} + \epsilon_{q,t} \\
\epsilon_{q,t} | \Psi_{t-1} &\sim N(0, h_{q,t}) \\
h_{q,t} &= \beta_0 + \beta_1 \epsilon_{q,t-1}^2 + \beta_2 h_{q,t-1},
\end{align*}
\]

where the variance \(h_{q,t} \) of the error term \(\epsilon_{q,t} \) is conditional on the information set \(\Psi_{t-1} \) available at time \(t - 1 \). The exchange rate is specified as an AR(p) process to capture serial dependence, and \(\epsilon_{q,t} \) should be white noise. Conditions \(\beta_0, \beta_1, \beta_2 \geq 0 \) and \(\beta_1 + \beta_2 < 1 \) are required to ensure positive finite variance and model stability. The contribution of the GARCH model is to allow the variance to vary. If \(\beta_1, \beta_2 \neq 0 \) the variance is time varying, and if \(\beta_2 = 0 \) the model reduces to an ARCH(1) model as developed by Engle (1982). Variation of the exchange rate is taken to be the conditional variance of \(h_{q,t} \), a larger \(h_{q,t} \) indicating more risk.

Equations (2)–(5) constitute two-step estimation with \(h_{q,t} \) generated by (3)–(5) and then used in (2) to estimate its effect on export revenue. A bivariate GARCH(1,1)-M model is used for efficiency in joint estimation:

\[
\begin{align*}
\Delta lq_t &= s_0 + \sum_{i=1}^{P} s_i \Delta lq_{t-i} + \epsilon_{q,t} \\
\Delta x_t &= a_0 + \sum_{i=1}^{n} a_i \Delta x_{t-i} + \sum_{i=0}^{n} b_i \Delta lq_{t-i} + \sum_{i=0}^{n} c_i \Delta q_{t-i} + \sum_{i=0}^{n} d_i h_{q,t-i} + \epsilon_{x,t}
\end{align*}
\]

\[
\epsilon_t = (\epsilon_{x,t}, \epsilon_{q,t}) | \Psi_{t-1} \sim N(0, H_t) \\
H_t = \begin{bmatrix} h_{x,t} & h_{xq,t} \\ h_{xq,t} & h_{q,t} \end{bmatrix}
\]

\[
\begin{align*}
h_{x,t} &= \alpha_0 + \alpha_1 \epsilon_{x,t-1}^2 + \alpha_2 h_{x,t-1} \\
h_{q,t} &= \beta_0 + \beta_1 \epsilon_{q,t-1}^2 + \beta_2 h_{q,t-1} \\
h_{xq,t} &= \gamma_0 + \gamma_1 \epsilon_{x,t-1} \epsilon_{q,t-1} + \gamma_2 h_{xq,t-1}
\end{align*}
\]

where \(h_{x,t} \) is the conditional variance of export revenue, \(H_t \) is the conditional covariance matrix, \(h_{xq,t} \) is the conditional covariance and \(\epsilon_{x,t} \) and \(\epsilon_{q,t} \) are white noise stochastic processes with \((\epsilon_{x,t}, \epsilon_{q,t}) \) distributed bivariate normal.

In the GARCH model conditional variances and covariances vary with time. Each element of the covariance matrix follows a univariate GARCH model driven by the corresponding element of the cross-product matrix \(\epsilon_{x,t-1}, \epsilon_{q,t-1} \). Any shock that increases variances of the two correlated series would raise their covariance. The presence of \(h_{q,t-1} \) in the conditional mean export equation implies that the system (6)–(11) is a bivariate GARCH-M model as developed by Engle and Kroner (1995).

Foreign income and the exchange rate are assumed exogenous as in Kroner and Lastrapes (1993). The benefits of endogenizing variables would have to be
weighed against the costs of increased complexity of modeling and estimation. All parameters of (6)–(11) are estimated by maximum likelihood with the BHHH algorithm of Berndt et al. (1974).

3. DATA AND ESTIMATION OF TIME VARYING VARIANCE

Monthly data run from January 1979 to May 2001, a total of 269 observations. Seasonally adjusted real export revenue is nominal export revenue in domestic currency deflated by the wholesale price index. Foreign income is the export-weighted average of industrial production indexes of Taiwan’s ten major exporting partners: the United States, Japan, Korea, Germany, Malaysia, Netherlands, the United Kingdom, France, Canada and Italy. The real effective exchange rate is a similar weighted average. The base year is 1995. All data come from the International Financial Statistics of the IMF, OECD Main Economic Indicators and the AREMOS data bank of Taiwan.

The correct specification of a GARCH model depends on whether variables are cointegrated. If so, the model should include an error correction term. Tests of the order of integration and cointegration, the augmented Dickey–Fuller (ADF) test for unit roots of Dickey and Fuller (1981), are reported in Table 1. None of the series exhibits a time trend. After selecting the minimum lag length required to assure lack of autocorrelation in the ADF regression, non-stationarity cannot be rejected at the 5% level. Non-stationarity can be rejected at the 5% level for every differenced series, implying the series are individually integrated of order one, I(1). Valid inference in GARCH models requires stationarity.

The I(1) series are tested for cointegration and Table 2 presents results from the Johansen (1988, 1991) approach with both maximal eigenvalue (λ_{max}) and trace statistics (‘Trace’). The lag length of the VAR system is selected using

\begin{table}[h]
\centering
\caption{ADF unit root testsa}
\begin{tabular}{lcc}
\hline
\textbf{Level} & \textbf{First difference} \\
\hline
lxt & \text{-1.6566(14)} & \text{-3.4702(13)*} \\
lly & \text{0.1668(13)} & \text{-4.1576(12)*} \\
lqt & \text{-1.6231(13)} & \text{-4.8412(12)*} \\
\end{tabular}
a[Lag length]-selected to assure zero autocorrelation in ADF regression residuals. *Significance at the 5% level.
\end{table}

\begin{table}[h]
\centering
\caption{Cointegration tests (VAR lag = 4)}
\begin{tabular}{lcccccc}
\hline
\textbf{Eigenvalue} & \textbf{H}_0 & \textbf{λ}_{max} & \textbf{95\%} \textbf{critical value} & \textbf{Trace} & \textbf{95\%} \textbf{critical value} \\
\hline
0.0627 & \text{r = 0} & 17.08 & 20.97 & 26.5095 & 29.68 \\
0.0350 & \text{r \leq 1} & 9.42 & 14.07 & 9.4292 & 15.41 \\
0.00002 & \text{r \leq 2} & 0.0065 & 3.76 & 0.0065 & 3.76 \\
\end{tabular}
a r is the number of cointegration vectors critical values from Osterwald-Lenum (1992).
\end{table}

© 2004 Blackwell Publishing Ltd
AIC and SC criteria, and both suggest four lags. A Ljung–Box Q test on residuals finds no evidence of autocorrelation, suggesting that the model represents the autocorrelation structure. There is no evidence of cointegration. The Johansen test fails to reject the null hypothesis of zero cointegrating vectors, shown by insignificant λ_{max} and Trace statistics at the 5% level. There is no call for an error correction term in the GARCH export model.

The 1997 Asian financial crisis might have caused a structural break leading to the lack of cointegration. Gregory and Hansen (1996) suggest residual-based cointegration tests in the presence of potential structural breaks that could take the form of a change in intercept, a change in intercept with a time trend or a change in cointegrating slope coefficients. Residual-based ADF statistics testing for cointegration for these three structural breaks are -3.11 (11), -2.36 (11), and -3.40 (12), with lag truncation in parentheses selected on the basis of a t-test as suggested by Perron and Vogelsang (1992). Maximum lag length is set to 12 and tested downward until the last lag of the first difference is significant at the 5% level. Critical values from Gregory and Hansen (1996) at the 5% level are -4.92, -5.29 and -5.50 for the three cases, and ADF statistics fail to reject the null hypothesis of no cointegration. The 1997 Asian financial crisis does not change the conclusion of rejecting the null hypothesis of cointegration tests.

To specify a more appropriate bivariate GARCH-M model, consider preliminary statistics for log differences of export revenue and the exchange rate. Table 3 reports skewness statistics close to zero for Δlqt, and the hypothesis that Δlxt is distributed symmetrically can be rejected at the 5% level. Kurtosis statistics for Δlxt and Δlqt are significantly different from 3 at the 5% level, both variables are leptokurtic, and the Jarque–Bera test rejects normality. The Ljung–Box Q statistic tests for autocorrelation and the number of lags (k) affects its performance. Tsay (2002) suggests that the choice of $k = \ln(T)$ would provide better power performance. In the present data $k = \ln 269 = 5.59$ and autocorrelations are tested up to nine lags. Ljung–Box statistics indicate higher order autocorrelations in Δlxt and Δlqt. Ljung–Box statistics for the squared series suggest the possible presence of time-varying variance for Δlxt and Δlqt.

Squared serially correlated data may favor heteroskedasticity, and time-varying variance with a formal ARCH LM test as in Engle (1982) is reported in Table 4. After considering autocorrelations, LM statistics for an AR(9) process of Δlqt, and an AR(11) process of Δlxt indicate that Δlqt has significant higher-order heteroskedasticity, while Δlxt has only weak first-order heteroskedasticity significant at the 10% level.

GARCH(1,1) models are estimated to identify changing variance for Δlxt and Δlqt. Ljung–Box Q-statistics for standardized residuals in Table 5 show no autocorrelations up to nine lags, suggesting that the AR processes are appropriately modeled to obtain white noise. The two GARCH(1,1) models capture heteroskedasticity, as shown by the low Ljung–Box statistics for the squared standardized residuals, $LB Q(k)$ up to nine lags. Nevertheless, for Δlqt, the estimate of the AR term β_2 in the conditional variance is not significant at the 5% level. For Δlxt, both MA and AR terms β_1 and β_2 are insignificant.
More parsimonious ARCH(1) models are estimated for the two series as reported in Table 5, and Δlqt behaves well. The two estimates in the conditional variance equation are significant at the 5% level, implying time-varying variance with short memory. The variance process is positive, finite and stationary, with $\beta_0 > 0$ and $1 > \beta_1 = 0.25 > 0$. There is no autocorrelation or heteroskedasticity in ϵ_q, as shown by Ljung–Box statistics for both the standardized (LB Q) and the squared standardized (LB Q^2) residuals up to nine lags. For Δlxt, there is no ARCH effect – not surprising, given the weak evidence of an ARCH effect in Table 4. ADF test statistics show that GARCH or ARCH processes are stationary, a common characteristic because volatility does not diverge and is often stationary. Finally, the likelihood ratio statistic tests whether the AR(1) term in the GARCH(1,1) process is zero, that is whether $\beta_2 = 0$ in (10), and it has a χ^2 distribution with one degree of freedom. The low LR value suggests the ARCH(1) specification sufficiently captures variance processes for Δlqt or Δlxt, although evidence shows no GARCH or ARCH
The mean of the derived risk variable $h_{t,t}$ in this ARCH model is 2.21 with a standard deviation of 0.98 and a range of 1.66–11.1.

4. ESTIMATION OF THE EXCHANGE RISK MODEL

The lag length of the ADL specification of the export equation has to be determined, and Table 3 shows that Δl_{xt} has autocorrelation. Too few lags might not resolve autocorrelation in residuals, but too many would reduce the...
degrees of freedom and estimation efficiency. According to the model in (2),
the univariate ARCH process (3)–(5) generates $h_{q,t-i}$. Three model selection
criteria – LR, AIC and SC values – are used to determine the optimal ADL
form. Alternatively, the bivariate GARCH model (6)–(11) can be used to
choose lag length, but the reported approach is much more time efficient and
the results are nearly the same. Table 6 reports the AIC and SC values along
with LR statistics for testing lag k against $k - 1$ beginning at $k = 6$. The
minimum AIC and SC are found at $k = 4$ and 3, respectively, and the first
significant LR statistic is $k = 5$ at the 5% level. Models with $k = 4$ and 3 are
considered, the model shows autocorrelations in residuals when $k = 3$, and
$k = 4$ are chosen as the lag length.

Summarizing, there is statistical evidence of stationarity, lack of cointe-
gration, leptokurticity, and heteroskedasticity in Tables 1–4. Univariate GARCH
estimation in Table 5 and ADL lag length selection in Table 6 suggest the
following eclectic bivariate GARCH-M model:

$$\Delta l_{x_t} = a_0 + \sum_{i=1}^{4} a_i \Delta l_{x_{t-i}} + \sum_{i=0}^{4} b_i \Delta l_{y_{t-i}} + \sum_{i=0}^{4} c_i \Delta l_{q_{t-i}} + \sum_{i=0}^{4} d_i h_{q_{t-i}} + \varepsilon_{x,t}$$

$$\Delta l_{q_t} = s_0 + \sum_{i=1}^{9} s_i \Delta l_{q_{t-i}} + \varepsilon_{q,t}$$

$$h_{x,t} = \alpha_0$$

$$h_{q,t} = \beta_0 + \beta_1 \varepsilon_{q,t-1}^2$$

$$h_{x,t} = \gamma_0 + \gamma_1 \varepsilon_{x,t-1} \varepsilon_{q,t-1} + \gamma_2 h_{q,t-1}$$

This model simultaneously estimates time-varying risk ($h_{q,t-i}$). Variance of
the export series is constant, and the variance of the exchange rate is identified
as an ARCH process in Table 5, reducing the bivariate GARCH-M model to
an ARCH-M model but retaining the property that exchange rate variance
appears in the mean of the export equation. The information matrix of the
system is not block diagonal, and joint estimation is efficient as developed by
Table 7. Estimates for the bivariate ARCH-M model

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th></th>
<th>Simple</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>Std error</td>
<td>Coefficient</td>
<td>Std error</td>
</tr>
<tr>
<td>a_0</td>
<td>1.9966</td>
<td>2.5410</td>
<td>1.1676</td>
<td>1.3661</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.8719^*</td>
<td>0.0611</td>
<td>-0.9092^*</td>
<td>0.0609</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.5976^*</td>
<td>0.0844</td>
<td>-0.6039^*</td>
<td>0.0830</td>
</tr>
<tr>
<td>a_3</td>
<td>-0.2933^*</td>
<td>0.0928</td>
<td>-0.3325^*</td>
<td>0.0984</td>
</tr>
<tr>
<td>a_4</td>
<td>-0.0755</td>
<td>0.0712</td>
<td>-0.0975</td>
<td>0.0673</td>
</tr>
<tr>
<td>b_0</td>
<td>2.2643*</td>
<td>0.5954</td>
<td>1.9394*</td>
<td>0.5586</td>
</tr>
<tr>
<td>b_1</td>
<td>0.2221</td>
<td>0.7163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_2</td>
<td>2.0350*</td>
<td>0.6365</td>
<td>2.3582*</td>
<td>0.6248</td>
</tr>
<tr>
<td>b_3</td>
<td>-1.0865^{**}</td>
<td>0.5905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_4</td>
<td>0.7998</td>
<td>0.6477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_0</td>
<td>0.3358</td>
<td>0.4512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>0.4947**</td>
<td>0.2753</td>
<td>0.5012*</td>
<td>0.2547</td>
</tr>
<tr>
<td>c_2</td>
<td>0.2151</td>
<td>0.2780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_3</td>
<td>0.2852</td>
<td>0.2781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_4</td>
<td>0.3605</td>
<td>0.2533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_0</td>
<td>-0.0905</td>
<td>0.6548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_1</td>
<td>0.3452</td>
<td>0.7110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>-2.0988</td>
<td>1.4848</td>
<td>-1.3003^{**}</td>
<td>0.7747</td>
</tr>
<tr>
<td>d_3</td>
<td>2.2158</td>
<td>1.5098</td>
<td>1.2285**</td>
<td>0.7034</td>
</tr>
<tr>
<td>d_4</td>
<td>-0.8400</td>
<td>0.8413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_0</td>
<td>0.0698</td>
<td>0.0991</td>
<td>0.0598</td>
<td>0.0960</td>
</tr>
<tr>
<td>s_1</td>
<td>0.0647</td>
<td>0.0638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>0.0333</td>
<td>0.0716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>0.1011</td>
<td>0.0633</td>
<td>0.0978**</td>
<td>0.0565</td>
</tr>
<tr>
<td>s_4</td>
<td>0.1106**</td>
<td>0.0623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td>0.1090**</td>
<td>0.0630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_6</td>
<td>0.1051*</td>
<td>0.0482</td>
<td>0.1051**</td>
<td>0.0539</td>
</tr>
<tr>
<td>s_7</td>
<td>-0.0277</td>
<td>0.0571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_8</td>
<td>0.1492*</td>
<td>0.0671</td>
<td>0.1288**</td>
<td>0.0693</td>
</tr>
<tr>
<td>s_9</td>
<td>-0.1722^*</td>
<td>0.0571</td>
<td>-0.1101^*</td>
<td>0.0561</td>
</tr>
<tr>
<td>α_0</td>
<td>34.0171*</td>
<td>3.2936</td>
<td>33.9229*</td>
<td>2.8489</td>
</tr>
<tr>
<td>β_0</td>
<td>1.833*</td>
<td>1.889</td>
<td>1.7320*</td>
<td>0.1481</td>
</tr>
<tr>
<td>β_1</td>
<td>0.1870**</td>
<td>0.1106</td>
<td>0.2269*</td>
<td>0.1037</td>
</tr>
<tr>
<td>γ_0</td>
<td>-1.9652</td>
<td>1.4773</td>
<td>-0.7006</td>
<td>0.9287</td>
</tr>
<tr>
<td>γ_1</td>
<td>-0.2169^*</td>
<td>0.0642</td>
<td>-0.0681</td>
<td>0.0970</td>
</tr>
<tr>
<td>γ_2</td>
<td>-0.1763</td>
<td>0.2247</td>
<td>-0.3333</td>
<td>0.8563</td>
</tr>
<tr>
<td>LR(15)a</td>
<td></td>
<td></td>
<td>18.5512</td>
<td></td>
</tr>
<tr>
<td>LR(2)b</td>
<td></td>
<td></td>
<td>9.061*</td>
<td></td>
</tr>
</tbody>
</table>

aLR(15): likelihood statistic that tests restriction from general to the simple model.
bLR(2): statistic tests significance of the two estimates of exchange rate risk in simple model.
*5% **10%.

Table 7 reports estimated coefficients and asymptotic t-statistics for a general unrestricted model and for a simple restricted version with insignificant variables deleted. A likelihood ratio statistic with χ^2 distribution and degrees of freedom equal to the number of restrictions is used to test validity of deleting variables.

The general model with lag length $k = 4$ is estimated first in Table 7. Although there is neither autocorrelation nor heteroskedasticity, there are insignificant coefficients making it difficult to gauge the impact of the risk. Following Hendry’s (1985) ‘general to simple’ approach, fifteen insignificant
variables are eliminated. Advantages of parsimony include higher precision of estimates resulting from reduced multicollinearity, increased degrees of freedom, more reliable estimates, greater power of tests and a simpler model. In this parsimonious process, the insignificant likelihood ratio statistic LR(15) = 18.5 at the 5% level suggests no explanatory difference between models. The variance process of exchange rate depreciation is positive and convergent with $\beta_0 > 0$ and $1 > 0.23 = \beta_1 > 0$. The mean of the risk variable $h_{q,t}$ in this ARCH-M model is 2.24 with a standard deviation of 0.92 and a range of 1.73–11.0.

Diagnostic tests support the statistical appropriateness of the bivariate ARCH-M model. Coefficients on exchange risk in the export equation are significantly different from zero at the 10% level. The likelihood ratio statistic LR(2) = 9.06 jointly tests the significance of $h_{q,t-2}$ and $h_{q,t-3}$. The null hypothesis that the export variable is independent of ARCH exchange risk is rejected at the 5% level. The LR test is more powerful than asymptotic t-tests as addressed by Kroner and Lastrepes (1993). Lagrange multiplier (LM) statistics test for autocorrelation and heteroskedasticity up to nine lags. A low LM statistic fails to reject the null hypothesis of no autocorrelation in residuals of $\varepsilon_{x,t}$ with LM(9) = 13.3 and in those of $\varepsilon_{q,t}$ with LM(9) = 6.35 at the 5% level, and both are white noise. The LM statistics for the squared standardized residuals, LM(9) = 2.50 for $\varepsilon_{x,t}$ and LM(9) = 6.55 for $\varepsilon_{q,t}$, suggest a lack of heteroskedasticity.

5. ESTIMATED EFFECTS OF EXCHANGE RISK

The estimated export revenue function is

$$\Delta l_{x_t} = 1.17 - 0.91\Delta l_{x_{t-1}} - 0.60\Delta l_{x_{t-2}} - 0.33\Delta l_{x_{t-3}} - 0.10\Delta l_{x_{t-4}}$$

$$+ 1.94\Delta l_{y_t} + 2.36\Delta l_{y_{t-2}} + 0.50\Delta l_{q_{t-1}} - 1.30h_{t-2} + 1.23h_{t-3}$$

$$\Delta l_{x_t} = 1.17 - 0.91\Delta l_{x_{t-1}} - 0.60\Delta l_{x_{t-2}} - 0.33\Delta l_{x_{t-3}} - 0.10\Delta l_{x_{t-4}}$$

$$+ 1.94\Delta l_{y_t} + 2.36\Delta l_{y_{t-2}} + 0.50\Delta l_{q_{t-1}} - 1.30h_{t-2} + 1.23h_{t-3}$$

(17)

Foreign income increases export revenue, as is characteristic of developed countries. The contemporaneous foreign income elasticity of export revenue equals the coefficient in (17) given the zero intercept term, $\%\Delta l_{x_t}/\%\Delta l_{y_t} = \Delta l_{x_t}/\Delta l_{y_t} = 1.94$, assuming no changes in other variables and no risk. The two-month-lagged effect is even larger and the cumulative foreign income elasticity is 4.30, reflecting the small open property of the economy. This quick adjustment is consistent with Arize's (1996a, 1997) evidence that exports increase instantaneously for G7 and eight European countries.

Quantitative impacts in (17) can be gauged by properties of exogenous variables. The mean value of the percentage change in foreign income Δl_{y_t} is 0.20%, implying an average cumulative effect after two months of $4.30 \times 0.20% = 0.86%$. The maximum percentage change in foreign income of 1.82% over the period implies a jump of 7.8% in export revenue. The largest monthly decline in foreign income was -2.31%, implying a shock of -9.9% to export revenue. Foreign recessions would evidently lead to declines in export revenue, and

© 2004 Blackwell Publishing Ltd
possibly to recessions, in Taiwan. The standard deviation of foreign income is 0.67%, implying that most observations fall in the range of 0.87% to −0.47% with associated effects on export revenue in the range of 3.7% to −2.0%. The average effect of foreign income is small, but it creates a lot of noise in export revenue.

Depreciation raises export revenue after only one month. Export adjustment speed in Taiwan is relatively quick, as Weliwita et al. (1999) find that at least eight months are required for a positive effect in Sri Lanka. The small exchange rate elasticity, however, implies that a 1% depreciation would raise export revenue by only 0.5%, holding foreign income and exchange risk constant. Depreciation of the nominal exchange rate would raise export revenue in terms of domestic currency but decrease it in terms of foreign currency, and there is no evidence of a subsequent J-curve.

The mean value of the change in the exchange rate is −0.018%. The coefficient for the exchange rate in (17) implies an almost trivial average monthly impact of −0.018% × 0.5 = −0.009%, although the leptokutic variable has long tails. The maximum and minimum ∆lqt yield a range of potential monthly impacts from 6.36 × 0.5 = 3.18% to −4.66 × 0.5 = −2.33%. The standard deviation of 1.55 suggests that most exchange rate changes fall in the range of 1.57 to −1.53, implying a range of effects on the exchange rate of 0.79% to −0.77%. While depreciation raises export revenue, effects of this size would hardly be noticed. Taiwan specializes in electronic products in small to medium-sized firms that can readily respond to the exchange rate.

Regarding exchange risk, the likelihood ratio statistic LR(2) indicates significant coefficients at the 5% level. The second and third month lagged effects of −1.30 and 1.23 are offsetting and sum to only −0.07. Regarding the size of this effect, the mean value of exchange risk hq,t in the ARCH-M model is 2.24. The ceteris paribus average impacts of risk on export revenue are 2.24 ×

![Figure 1. Export revenue](image-url)
\(-1.30\) = \(-2.91\)% after two months and \(2.24 \times 1.23 = 2.76\)% after three months. While these two effects are sizeable separately, their net impact is only \(-0.15\)%.

The maximum value of exchange risk over the period is 11.0, implying very large monthly impacts of \(-14.4\)% and 13.5%. These large effects are offsetting and sum to only 0.9%. The standard deviation of \(h_{it}\) of 0.92 implies that most observations of risk fall in the range of 3.16 to 1.32. The implied range of effects after two months is \(-4.11\)% to \(-1.72\)% and after three months 3.89% to 1.62%. While the transitory effects of exchange risk are large, exporters appear to be able to adjust rather quickly and completely to exchange rate risk.

As an experiment, a time trend of ‘fundamental’ export revenue is simulated to gauge the net effect of the exchange rate and its risk. Initial export revenue is used with the estimated coefficients in (17), except for the exchange rate and risk, to generate a fundamental model of export revenue. Figure 1 displays time plots for the actual and simulated fundamental series, and the difference is white noise. The mean of \(-0.001\), a Ljung–Box \(Q\)-statistic of 15.6, and an LM ARCH test of 14.1, both up to the ninth lag, indicate that the difference is an independently identically distributed sequence with finite mean and variance at the 5% level. The exchange rate and its risk only add noise to the fundamentals of export revenue.

6. CONCLUSION

Time-varying real exchange rate risk has a negative impact on Taiwan’s export revenue in a dynamic model, holding real foreign income and the real effective exchange rate constant. The negative impact of risk suggests that policy-makers should consider carefully any exchange market intervention that might be viewed by the market as transitory and unpredictable. Further, depreciation appears to lower export revenue in foreign currency, holding exchange risk constant.

Increased exchange rate risk has a large negative impact on export revenue in Taiwan after two months, but exporters appear to be able to adjust by the third month. Forward exchange rate cover is evidently incomplete, although adjustment to risk is quick and the net effect of risk is negligible. The exchange rate and its risk only add noise to underlying export revenue fundamentals, suggesting that exporters are able to sift through the noise of exchange rates and exchange risk.

REFERENCES

