Tariffs and Wages in Trade Theory

Henry Thompson*

Abstract
The theory of production and trade is motivated in large part by the effects of tariffs on wages. General equilibrium models that examine these effects include constant costs, factor proportions, specific factors, imperfect competition and noncompetitive factor market. The present paper reviews the effects of tariffs on wages in small open economies across this broad range of trade theory. From this wide perspective, tariffs support wages only under narrow sets of assumptions. There should be no presumption that tariffs support wages.

1. Introduction
The effects of tariffs on wages remain a focus of trade theory motivated by protection of import competing manufactures in developed countries. The general equilibrium of production and trade provides the theoretical setting with all outputs and factor prices adjusting to tariffs. The present paper surveys the thread of the effects of tariffs on wages in general equilibrium from constant costs to factor proportions, imperfect competition, and noncompetitive factor markets. Results also apply to tariffs in developing countries aiming to protect capital or land, and to nontariff barriers that raise prices for import competing industries. The present paper complements Edwards (1988) who surveys a range of models focused on developing countries.

Tariffs may be thought to support wages in developed countries in the face of falling global prices of manufactures as developing countries continue to enter global markets. Developing country tariffs remain high. Tariffs remain part of the political and economic landscape even as trade agreements have proliferated. The simple average US manufacturing tariff has fallen to 4% by 2016 but with a strong skew toward the 19% maximum. Tariffs are higher in other developed countries. Quotas and nontariff barriers that similarly raise domestic prices are more popular than ever.

The present paper examines the general issue of whether tariffs have predictable effects on factor prices in small open economies. The section below reviews tariffs and wages with classical constant cost input coefficients, followed by sections on factor proportions, specific factors, and imperfect competition.

2. Tariffs and wages with constant costs
The Ricardian constant cost model has fixed input coefficients for a single factor of production labor L that is paid the wage w. Fixed coefficients are $a_{L,X}$ in export
production and \(a_{LM} \) in import competing production. Where \(t \) is the tariff, the condition for specializing in \(X \) is \(1 + t < a_{LM}p_X/a_{LX}p_M \) where the \(p_j \) are exogenous prices for the small open economy. The wage \(w \) is determined by competitive pricing of the export, \(w = p_X/a_{LX} \).

Chipman (1965a) reviews this 1\times 2 constant cost model. Jones (1961), Dornbusch et al. (1977) and Eaton and Kortum (2012) extend the model to many goods and countries, and find the link between tariffs and wages is relaxed. Eaton and Kortum (2002) introduce geographic frictions that weaken the link between tariffs and wages.

Jones (1973) considers the constant cost \(2 \times 2 \) model with a second input capital \(K \) added to labor, Jones (1973) shows factor intensity is critical to the effects of tariffs on wages. Assume the import competing good is labor intensive. The condition for production of both goods is that input ratios span the endowment ratio \(a_{KX}/a_{LX} > K/L > a_{KM}/a_{LM} \). Competitive pricing implies price equals cost, \(p_X = a_{LX}w + a_{KX}r \) and \((1 + t)p_M = a_{LM}w + a_{KM}r \) implying \(w = ((1 + t)a_{KX}p_M - a_{KM}p_X)/b \) where \(b \equiv a_{LM}a_{KX} - a_{KM}a_{LX} > 0 \). The tariff is restricted to \((a_{KM}p_X - a_{KX}p_M)/a_{KX}p_M < t < (a_{LM}p_X - a_{LX}p_M)/a_{LX}p_M \).

A tariff raises the wage according to \(\partial w/\partial t = a_{KX}p_M/b > 0 \). A tariff also lowers \(r \) and changes the domestic price of \(M \) according to \(p_Mdt = a_{LM}dw + a_{KM}dr \). The percentage change in the price of \(M \) because of the tariff is \(dt/(1 + t) = \theta_{K}\theta_{K'} + \theta_{LM}w' \) where the prime denotes percentage change and \(\theta_{IM} \) is the income share of factor \(i = K, L \). The constant export price implies \(p_X' = 0 = \theta_{K}X' + \theta_{L}X' \). Since \(w'>0 \) and \(r'<0 \) the tariff raises the real wage in the magnification effect of Jones (1965). This real wage effect is relaxed in the three factor constant cost model as shown by Thompson (2010).

Ruffin (1988, 1992) develops a related \(2 \times 2 \) model with fixed unit inputs of skilled labor \(S \) and labor \(L \) each independently able to produce either good. Trade occurs between labor groups that specialize according to comparative advantage with endowments determining the direction of international trade. Assume labor has the comparative advantage in import competing production, \(a_{SM}/a_{SX} > (1 + t)p_M/p_x > a_{LM}/a_{LX} \). A tariff raises wages to \(w = (1 + t)p_M/a_{LM} \) but does not affect skilled wages \(w_s = p_X/a_{SX} \). The effect on real wages depends on labor’s consumption share of the higher priced import competing good.

With constant cost production and the single input labor, only tariffs that alter specialization have wage effects. In constant cost models including capital, tariffs raise wages assuming labor intensive imports. Including a third factor of production, wage effects depend on factor intensity and real wages on consumption shares as well.

3. Tariffs and wages with substitution

Substitution allows the input mix to adjust to factor price changes owing to tariffs along the contract curve. Stolper and Samuelson (1941) show tariffs raise wages assuming labor intensive import competing production in the model with two factors and two goods. Dixit and Norman (1980) present this fundamental model that is reviewed and refined by Francois and Nelson (1998). Both sectors become more capital intensive to relieve pressure on the labor market as labor intensive production increases. Jones (1965) shows real wages rise regardless of consumption shares in the magnification effect. Thompson (2003) shows the model is robust to parametric relaxation of sufficient technical conditions.
Skilled labor or natural resources are critical to trade for many countries, motivating a third factor of production in the basic two factor model. Factor price adjustments are analyzed in the 3×2 model by Ruffin (1981), Suzuki (1982), Jones and Easton (1983) and Thompson (1985). Suppose labor L is the most intensive input in import competing production and natural resources N in export production, $a_{LM}/a_{LX} > a_{KM}/a_{KX} > a_{NM}/a_{NX}$. A tariff would seem to raise wages based on factor intensity but the link is weak if L and K are similar in intensity with N very intensive in X. If labor is a complement with capital, a rising capital return lowers labor demand and wages may fall as shown by Thompson (1993).

The literature on production and trade with numerous factors of production includes Chipman (1965b), Chang (1979), Ethier (1984) and Thompson (1987). In applications there is empirical support for separating skilled labor groups, capital vintages, energy and various natural resource inputs.

In factor proportions’ models, tariffs on labor intensive imports necessarily raise wages only in the model with two factors. Wage effects depend on factor substitution as well as intensity in models with three or more factors.

4. Tariffs and wages with specific factors

In the specific factors’ model originated by Samuelson (1971) and Jones (1971a) each sector employs shared labor and its own capital K_j. A tariff raises wages but consumption shares determine the effect on real wages in the neoclassical ambiguity of Ruffin and Jones (1977). If labor is specific to import competing production, a tariff raises real wages as applied by Amiti and Davis (2010). As another motivation for specific factors’ models, land or natural resources may be specific to export production.

Suppose labor is specific to import competing production with two shared factors as in Thompson (1989). Tariffs would be expected to raise wages but labor may be a complement with shared capital. Tariffs that raise the capital return would lower labor demand leading to falling wages. Familiar properties of the specific factors’ model rely on the assumption of two inputs in each sector.

To focus on the potential of substitution, consider a specific factors’ model with shared factors, labor L and skilled labor S, in a model not in the literature. Assume import competing production is labor intensive, $a_{LM}/a_{SM} > a_{LX}/a_{SX}$. Substitution terms S_{kh} are positive (negative) when factors k and h are substitutes (complements) as described by Jones and Scheinkman (1977) and Takayama (1993). Own substitution terms S_{kk} are negative. Constant returns imply $wS_{Lh} + sS_{Sh} + r_hS_{K_h} = 0$ for each factor h where s is the skilled wage. The comparative static model (1) has full employment in the first four equations, competitive pricing in the last two, and sector specific capital returns r_j in the system

\[
\begin{pmatrix}
S_{LL} & S_{LS} & S_{LX} & S_{LM} & a_{LX} & a_{LM} \\
S_{LS} & S_{SS} & S_{SX} & S_{SM} & a_{SX} & a_{SM} \\
S_{LX} & S_{SX} & S_{XX} & 0 & a_{XX} & 0 \\
S_{LM} & S_{SM} & S_{MM} & 0 & a_{MM} & 0 \\
\end{pmatrix}
\begin{pmatrix}
dw \\
ds \\
dr_x \\
dr_m \\
dq_x \\
dq_m \\
dK_M \\
dK_X \\
dp_X \\
p_Mdt \\
\end{pmatrix}
= 0
\]

Consider a ceteris paribus change in the import price p_Mdt owing to a tariff in the vector of exogenous changes. Solve for the wage effect $\partial w/\partial t$ with Cramer’s rule.
For simplicity rescale the capital inputs to $a_{MM} = a_{XX} = 1$, skilled labor S and labor L to $a_{SX} = a_{LX} = 1$, and the import competing good M to $a_{SM} = 1$. Assume skilled labor is a uniform substitute and labor a similar substitute for export capital in the substitution terms $S_{LS} = S_{LX} = S_{SX} = S_{SM} = 1$. Labor intensity is then described by the single term a_{LM} and import capital substitution by the single term S_{LM}. Assume labor intensive imports $a_{LM} = 1.1$ with labor and import capital complements $S_{LM} = -0.1$. A tariff lowers wages according to $\partial w/\partial t = -0.02$, an elasticity with the scaling. The higher price of capital in import competing production lowers demand for labor. In contrast $S_{LM} = 1$ implies $\partial w/\partial t = 0.18$ with real wages falling if labor spends more than 18% of its income on the imported good.

In specific factors’ models with mobile labor, tariffs necessarily raise wages assuming the only other input is sector specific capital. Even then, real wages depend on consumption shares. If labor specific to import competing production, tariffs necessarily raise wages only assuming a single shared input.

5. Tariffs and Wages with Imperfect Competition

Price searching involves demand as in the analysis of a monopoly exporter by Melvin and Warne (1973) and Casas (1989). In a similar model not in the literature, consider an import competing monopoly facing domestic demand but taking the world price p_M. The monopoly chooses optimal output x_M based on marginal revenue and marginal cost. If the world price p_M is less than the associated optimal price p_O then the monopoly produces x_M assuming price covers average cost. Imports are the difference between the quantity demanded q_D and output x_M. Tariffs raising p_M to $(1 + t)p_M$ have no effect on x_M but lower q_D and imports. Tariffs do not affect wages.

Monopolistic pricing can also be treated as the parametric relaxation of competitive pricing as in Thompson (2002). Consider an import competing monopoly in a small open economy. In an otherwise competitive economy, a tariff might not raise wages owing to the weak price link. This parametric pricing condition provides a first order approximation to any price searching model. Oligopoly models involve some degree of price searching implying similar weakened links between tariffs and wages.

Labor unions introduce monopsony power to labor markets, reducing competition. Gaston and Trefler (1995) find tariffs may lower wages for unionized labor when the import competing industry is a price searcher. Fisher and Wright (1999) find tariffs lower wages in a unionized import competing industry when imports are from a unionized foreign industry.

Imperfect competition in product markets or factor markets weakens and may reverse the effects of tariffs on wages.

6. Conclusion

General equilibrium trade theory suggests that tariffs are not reliable policy to raise or support wages. In constant cost models with only labor input, tariffs that reduce
specialization lower wages. Including other inputs, the effects of tariffs on wages depend on factor intensity and perhaps consumption shares. In factor proportions’ models with two factors, tariffs raise wages if imports are labor intensive. With more than two factors, the effects on wages may reverse. In specific factors’ models, tariffs may not raise wages. Imperfect competition in product markets weakens or reverses any positive effect of tariffs on wages. Noncompetitive factor markets similarly lead to ambiguous effects on wages. These same conclusions hold for developing country tariffs aiming to support capital rents or natural resources prices.

Falling global prices of manufactures promise to continue as developing countries enter global markets. Continued or increased pressure for tariffs and other forms of protection can be anticipated. Trade theory contributes by making the point that tariffs should not be presumed to have positive effects on wages. The long run implications of tariffs for wages considering the potential of investment, economic growth and labor skill upgrading are much bleaker than the present comparative static effects. The bottom line is that tariffs aiming to support wages or other factor prices remain as ill-advised as ever.

References

© 2016 John Wiley & Sons Ltd
