We would like to thank Maedeh Abbasi Oskouei, Dr. Hassan Tavakkoli, and their team for discovering the error in calculating the threshold values in our simulations.

The error has been discovered in the following works:

The error occurred when calculating β in the simulation of the optimal sampling policy, where $E[D_{i+1} - D_i]$ was being computed incorrectly. This affected the following figures:

In [1]:
- **Figure 2**: β was incorrectly calculated. The figure will be replaced with a new figure with new transmission times.

![Figure 2](image)

Fig. 2. A sample-path illustration of the optimal sampling policy (14) and (15), where the service time Y_i is equal to either 1 or 7 with equal probability. On this sample-path, the service times are $Y_0 = 1$, $Y_1 = 7$, $Y_2 = 7$, $Y_3 = 1$, and $Y_4 = 7$.
In [2]:
- Above (57), the parameter c is not necessarily a positive number; instead, c can take any real value.
- **Figure 5:** β was incorrectly calculated. The updated figure and caption are shown below.

![Diagram](image)

Fig. 5. A sample-path illustration of the optimal sampling policy (45) and (46), where $\beta = 0.142$, Y_i is either 1 or 7 with equal probability, S_i and D_i are sampling time and delivery time of the i-th sample. On this sample-path, the service times are $Y_0 = 1$, $Y_1 = 7$, $Y_2 = 7$, $Y_3 = 1$, and $Y_4 = 7.$
Figure 8: The average penalty was calculated incorrectly. The new figure 8 is shown below:

![Figure 8](image)

The average age penalty of an exponential penalty function $p_{\text{exp}}(\Delta t) = e^{\alpha \Delta t} - 1$ versus the coefficient α, where the service times Y_i follow a discretized log-normal distribution.

Figure 9: The average penalty was calculated incorrectly. The new figure 8 is shown below:

![Figure 9](image)

Fig. 9. Average age penalty of an exponential penalty function $p_{\text{exp}}(\Delta t) = e^{\alpha \Delta t} - 1$ versus the coefficient σ of discretized log-normal service time distribution.