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Abstract—In this paper, we present a local geometric analysis
to interpret how deep feedforward neural networks extract low-
dimensional features from high-dimensional data. Our study
shows that, in a local geometric region, the optimal weight in one
layer of the neural network and the optimal feature generated
by the previous layer comprise a low-rank approximation of
a matrix that is determined by the Bayes action of this layer.
This result holds (i) for analyzing both the output layer and
the hidden layers of the neural network, and (ii) for neuron
activation functions with non-vanishing gradients. We use two
supervised learning problems to illustrate our results: neural
network based maximum likelihood classification (i.e., softmax
regression) and neural network based minimum mean square
estimation. Experimental validation of these theoretical results
will be conducted in our future work.

I. INTRODUCTION

In recent years, neural network based supervised learning
has been extensively admired due to its emerging applications
in a wide range of inference problems, such as image clas-
sification, DNA sequencing, natural language processing, etc.
The success of deep neural networks depends heavily on its
capability of extracting good low-dimensional features from
high-dimensional data. Due to the complexity of deep neural
networks, theoretical interpretation of feature extraction in
deep neural networks has been challenging, with some recent
progress reported in, e.g., [1]–[13].

In this paper, we analyze the training of deep feedforward
neural networks for a class of empirical risk minimization
(ERM) based supervised learning algorithms. A local geomet-
ric analysis is conducted for feature extraction in deep feedfor-
ward neural networks. Specifically, the technical contributions
of this paper are summarized as follows:
• We first analyze the design of (i) the weights and biases

in the output layer and (ii) the feature constructed by the
last hidden layer. In a local geometric region, this design
problem is converted to a low-rank matrix approximation
problem, where the matrix is characterized by the Bayes
action of the supervised learning problem. Optimal de-
signs of the weights, biases, and feature are derived in
the local geometric region (see Theorems 1-3).

• The above local geometric analysis can be readily applied
to a hidden layer (see Corollaries 2-4), by considering
another supervised learning problem for the hidden layer.

This work was supported in part by the NSF grant CCF-1813078 and the
ARO grant W911NF-21-1-0244.
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Fig. 1: A deep feedforward neural network.

The local geometric analyses of different layers are
related to each other in an iterative manner: The optimal
feature obtained from the analysis of one layer is the
Bayes action needed for analyzing the previous layer.
We use two supervised learning problems to illustrate our
results.

A. Related Work

Due to the practical success of deep neural networks, there
have been numerous efforts [1]–[13] to explain the feature
extraction procedure of deep neural networks. Towards this
end, researchers have used different approaches, for exam-
ple, statistical learning theory approach [1], [2], information
geometric approach [3]–[10], information theoretic approach
[10]–[12], etc. The information bottleneck formulation in [11]
suggested that the role of the deep neural network is to
learn minimal sufficient statistics of the data for an inference
task. The authors in [12] proposed that maximal coding rate
reduction is a fundamental principle in deep neural networks.
In [10], the authors formulated the problem of feature extrac-
tion by using KL-divergence, and provided a local geometric
analysis by considering a weak dependency between the data
and the label. Motivated by [10], we also consider the weak
dependency. Compared to [10], our local geometric analysis
can handle more general supervised learning problems and
neuron activation functions, as explained in Section III.

II. MODEL AND PROBLEM

A. Deep Feedforward Neural Network Model

Consider the deep feedforward neural network illustrated in
Figure 1, which consists of one input layer, m hidden layers,



and one output layer. The input layer admits an input variable
x ∈ X and feeds a vector

f (0)(x) = [h
(0)
1 (x), . . . , h

(0)
k0

(x)]T ∈ Rk0 (1)

to the first hidden layer, where k0 is the number of neurons
in the input layer and h(0)

j : X 7→ R is the activation function
of the j-th neuron in the input layer. For all i = 1, . . . ,m, the
i-th hidden layer admits f (i−1)(x) ∈ Rki−1 from the previous
layer and constructs a vector f (i)(x) ∈ Rki , usually called a
feature, given by

f (i)(x)

=
[
h(i)(w

(i)T
1 f (i−1)(x)+b

(i)
1 ), . . . , h(i)(w

(i)T
ki

f (i−1)(x)+b
(i)
ki

)
]T
,

(2)

where ki is the number of neurons in the i-th hidden layer,
h(i) : R 7→ R is the activation function of each neuron in the
i-th hidden layer, w

(i)
j ∈ Rki−1 and b

(i)
j ∈ R are the weight

vector and bias of the j-th neuron in the i-th hidden layer,
respectively. Denote W(i) = [w

(i)
1 , . . . ,w

(i)
ki

] and b(i) =

[b
(i)
1 , . . . , b

(i)
ki

]T, then (2) can be expressed compactly as

f (i)(x) = h(i)
(
W(i) Tf (i−1)(x) + b(i)

)
, (3)

where h(i) : Rki 7→ Rki is a vector-valued function deter-
mined by (2). For notational simplicity, let us denote k = km
and f(x) = f (m)(x). The output layer admits f(x) ∈ Rk
from the last hidden layer and generates an output vector
a(x) ∈ Hn, called an action, which is determined by

a(x) =h(WTf(x) + b)

=[h(wT
1 f(x) + b1), · · · , h(wT

n f(x) + bn)]T, (4)

where n is the number of neurons in the output layer, h : R 7→
H is the activation function of each neuron in the output layer,
H is the image set of h with H ⊆ R, wj ∈ Rk and bj ∈ R
are the weight vector and bias of the j-th neuron in the output
layer, respectively, W = [w1, . . . ,wn] and b = [b1, . . . , bn]T.

B. Neural Network based Supervised Learning Problem

The above deep feedforward neural network is used to
solve a supervised learning problem. We focus on a class of
popular supervised learning algorithms called empirical risk
minimization (ERM). In ERM algorithms, the weights and
biases of the neural network are trained to construct a vector-
valued function a : X 7→ A that outputs an action a(x) ∈ A
for each x ∈ X , where A ⊆ Hn ⊆ Rn. Consider two random
variables X ∈ X and Y ∈ Y , where X and Y are finite
sets. The performance of an ERM algorithm is measured by
a loss function L : Y × A 7→ R, where L(y,a(x)) is the
incurred loss if action a(x) is generated by the neural network
when Y = y. For example, in neural network based maximum
likelihood classification, also known as softmax regression, the

loss function is

Llog(y,a) = − log

(
ay∑

y′∈Y ay′

)
, (5)

which is the negative log-likelihood of a distribution QY gen-
erated by the neural network, where QY (y) = ay/

∑
y′∈Y ay′ ,

ay > 0 for all y ∈ Y , and the dimension of a is n = |Y|. In
neural network based minimum mean-square estimation, the
loss function is one half of the mean-square error between
y ∈ Rn and an estimate ŷ = a(x) ∈ Rn constructed by the
neural network, i.e.,

L2(y, ŷ) =
1

2
‖y − ŷ‖22. (6)

Let PX,Y be the empirical joint distribution of X and Y
in the training data, PX and PY be the associated marginal
distributions, which satisfies PX(x) > 0 for all x ∈ X and
PY (y) > 0 for all y ∈ Y . The objective of ERM algorithms
is to solve the following neural network training problem:

min
(W,b),

(W(i),b(i)),i=1,...,m

EX,Y∼PX,Y
[L (Y,a(X))], (7)

where a(x) is subject to (1)-(4), because a(x) is the action
generated by the neural network.

C. Problem Reformulation
Denote Φ = {f : X 7→ A} as the set of all functions from
X to A. Any action function a(x) produced by the neural
network, i.e., any function satisfying (1)-(4), belongs to Φ,
whereas some functions in Φ cannot be constructed by the
neural network. By relaxing the set of feasible action functions
in (7) as Φ, we derive the following lower bound of (7):

min
a∈Φ

EX,Y∼PX,Y
[L(Y,a(X))] (8)

=
∑
x∈X

PX(x) min
a(x)∈A

EY∼PY |X=x
[L(Y,a(x))], (9)

where (8) is decomposed into a sequence of separable opti-
mization problems in (9), each optimizing the action a(x) ∈ A
for a given x ∈ X . Let APY

⊆ A denote the set of optimal
solutions to the following problem:

APY
= arg min

a∈A
EY∼PY

[L(Y,a)] (10)

and use aPY
to denote an element of APY

, which is usually
called a Bayes action. Define the discrepancy

DL(aPY
||a) = EY∼PY

[L(Y,a)]− EY∼PY
[L(Y,aPY

)]. (11)

According to (10) and (11), DL(aPY
||a) ≥ 0 for all a ∈ A,

where equality is achieved if and only if a ∈ APY
. When

a = aQY
, DL(aPY

||aQY
) is a generalized divergence between

PY and QY [14], [15].
By subtracting the lower bound (9) from (7), we obtain the

following problem that is equivalent to (7):

min
(W,b),

(W(i),b(i)),i=1,...,m

∑
x∈X

PX(x)DL(aPY |X=x
||a(x)), (12)



where aPY |X=x
∈ APY |X=x

is a Bayes action associated with
the conditional empirical distribution PY |X=x and a(x) is
subject to (1)-(4).

III. MAIN RESULTS: FEATURE EXTRACTION IN
DEEP FEEDFORWARD NEURAL NETWORKS

A. Local Geometric Analysis of the Output Layer

We consider the following reformulation of (12) that focuses
on the training of the output layer:

min
W∈Rk×n,
b∈Rn,f∈Λ

∑
x∈X

PX(x)DL(aPY |X=x
||h(WTf(x) + b)), (13)

where Λ is the set of feature functions created by the input
and hidden layers of the neural network.

Recall that Hn is the image set of the vector-valued activa-
tion function h(b) of the output layer. Because APY

⊆ A ⊆
Hn, for any Bayes action aPY

∈ APY
that solves (10), there

exists a bias b̃ = [b̃1, . . . , b̃n]T ∈ Rn such that

h(b̃) = [h(b̃1), . . . , h(b̃n)]T = aPY
. (14)

The following assumption is needed in our study.

Assumption 1. For each i = 1, . . . , n, there exist δ > 0 and
K > 0 such that for all z ∈ (b̃i − δ, b̃i + δ), the activation
function h satisfies∣∣∣h(z)− h(b̃i)

∣∣∣ ≥ K ∣∣∣z − b̃i∣∣∣ . (15)

Lemma 1. If h is strictly increasing and continuously differ-
entiable, then h satisfies Assumption 1.

Proof. See Appendix A.

It is easy to see that the leaky ReLU activation function
[16, pp. 187-188] satisfies Assumption 1. In addition, the
hyperbolic tangent function and the sigmoid function [16,
p. 189] also satisfy Assumption 1, because they are strictly
increasing and continuously differentiable.

Let PY be the set of all probability distributions on Y and
relint(PY) be the relative interior of the set PY .

Assumption 2. If two distributions PY , QY ∈ relint(PY) are
close to each other such that∑

y∈Y
(PY (y)−QY (y))2 ≤ γ2, (16)

then for any aPY
∈ APY

, there exists an aQY
∈ AQY

such
that

‖aPY
− aQY

‖2 = O(γ). (17)

Assumption 2 characterizes the differentiability of the Bayes
action aPY

with respect to PY . The loss functions in (5) and
(6) satisfy Assumption 2, as explained later in Section III-C.

Because of the universal function approximation properties
of deep feedforward neural networks [16]–[18], we make the
following assumption.

Assumption 3. For given ε > 0 and aPY |X=x
∈ APY |X=x

with x ∈ X , there exists an optimal solution (f ,W,b) to (13)
such that for all x ∈ X

‖aPY |X=x
− h(WTf(x) + b)‖22 ≤ ε2. (18)

By Assumption 3, the neural network can closely approxi-
mate the vector-valued function x 7→ aPY |X=x

.

Definition 1. For a given ε > 0, two random variables X
and Y are called ε-dependent, if the χ2-mutual information
Iχ2(X;Y ) is no more than ε2, given by

Iχ2(X;Y ) = Dχ2(PX,Y ||PX ⊗ PY ) ≤ ε2, (19)

where

Dχ2(PX ||QX) =

∫
X

(P (x)−Q(x))2

Q2(x)
dQ(x) (20)

is Neyman’s χ2-divergence [19].

Motivated by the seminal work [10] and [20], we consider
the following assumption.

Assumption 4. For a given ε > 0, X and Y are ε-dependent.

By using the above assumptions, we can find a local
geometric region (21) that is useful for our analysis.

Lemma 2. For a sufficiently small ε > 0, if Assumptions 1-4
hold, then there exists an optimal solution (f ,W,b) to (13)
such that for all x ∈ X and i = 1, . . . , n

wi
Tf(x) + bi − b̃i = O(ε). (21)

Proof. See Appendix B.

For any feature f(x) ∈ Rk, define a matrix Ξf ∈ Rk×|X| as

Ξf = [ξf (1), . . . , ξf (|X |)], (22)

where

ξf (x) =
√
PX(x) (f(x)− µf ) , (23)

µf =
∑
x∈X

PX(x)f(x). (24)

In addition, define the following matrix B ∈ Rn×|X| based on
the Bayes actions aPY |X=x

for x ∈ X :

B = [βY (1), . . . ,βY (|X |)], (25)

where

βY (x) =
√
PX(x)

(
aPY |X=x

− µa

)
, (26)

µa =
∑
x∈X

PX(x)aPY |X=x
. (27)

Assumption 5. The function a 7→ L(y,a) is twice continu-
ously differentiable.

The Hessian matrix ML of the function a 7→



EY∼PY
[L(Y,a)] at the point a = aPY

is

ML =
∂2EY∼PY

[L(Y,a)]

∂a∂aT

∣∣∣∣
a=aPY

. (28)

Because aPY
is an optimal solution to (10), ML is positive

semi-definite. Hence, it has a Cholesky decomposition ML =
RT
LRL. The Jacobian matrix of h(b) at the point b = b̃ is

J =
∂h(b)

∂bT

∣∣∣∣
b=b̃

. (29)

Lemma 3. If Assumptions 2, 4, and 5 are satisfied, then in
the local analysis regime (21), the objective function in (13)
can be expressed as∑

x∈X
PX(x)DL(aPY |X=x

||h(WTf(x) + b))

=
1

2
‖B̃−ΞWΞf‖2F +

1

2
η(d, f) + o(ε2), (30)

where B̃ = RLB,

ΞW = RLJWT, (31)

d = b− b̃, (32)

η(d, f) = (aPY
− µa + Jd + JWTµf )TML

× (aPY
− µa + Jd + JWTµf ). (33)

Proof. See Appendix C.

In the local analysis regime, the training of (f ,W,b) in
(13) can be expressed as the following optimization problem
of (ΞW,Ξf ,µf ,d):

min
ΞW,Ξf ,µf ,d

1

2
‖B̃−ΞWΞf‖2F +

1

2
η(d, f). (34)

When (Ξf ,µf ) are fixed, the optimal (Ξ∗W,d∗) are deter-
mined by

Theorem 1. For fixed Ξf and µf , the optimal Ξ∗W to minimize
(34) is given by

Ξ∗W = B̃ΞT
f (ΞfΞ

T
f )-1, (35)

and the optimal bias d∗ is expressed as

d∗ = −WTµf + J-1(µa − aPY
). (36)

Proof. See Appendix D.

By Theorem 1, the rows of Ξ∗W are obtained by projecting
the rows of B̃ on the subspace spanned by the rows of Ξf . The
optimal bias d∗ cancels out the effects of the mean feature µf

and the mean difference µa−aPY
between the Bayes actions

aPY |X=x
and aPY

. The optimal weight W∗ and bias b∗ can
be derived by using (31)-(32) and (35)-(36).

When (ΞW,d) are fixed and the hidden layers have suffi-
cient expression power, the optimal (Ξ∗f ,µ

∗
f ) are given by

Theorem 2. For fixed ΞW and d, the optimal Ξ∗f to minimize
(34) is given by

Ξ∗f = (ΞT
WΞW)-1ΞT

WB̃, (37)

and the optimal mean µ∗f is given by

µ∗f = −(ΞT
WΞW)-1ΞT

W(aPY
− µa + Jd). (38)

Proof. See Appendix E.

By Theorem 2, the columns of Ξ∗f are obtained by project-
ing the columns of B̃ on the subspace spanned by the columns
of ΞW. The optimal feature µ∗f cancels out the effects of d
and µa − aPY

. The optimal feature f∗(x) can be derived by
using (22)-(24) and (37)-(38).

The singular value decomposition of B̃ can be written as

B̃ = UΣVT, (39)

where Σ = Diag(σ1, . . . , σK) is a diagonal matrix with K =
min(n, |X |) singular values σ1 ≥ σ2 ≥ . . . ≥ σK = 0, U
and V are composed by the K leading left and right singular
vectors of B̃, respectively. Denote

√
pX = [

√
PX(1), . . . ,

√
PX(|X |)]T. (40)

Because B̃
√

pX = 0 and ‖√pX‖2 = 1,
√

pX is the right
singular vector of B̃ for the singular value σK = 0. When
(Ξf ,µf ,ΞW,d) are all designable, the optimal solutions are
characterized in the following theorem.

Theorem 3. If k ≤ min(n, |X |), then any (Ξ∗f ,Ξ
∗
W) satisfy-

ing (41) jointly minimizes (34):

Ξ∗WΞ∗f = UkΣkV
T
k , (41)

where Σk = Diag(σ1, . . . σk), Uk = [u1, . . . ,uk], and Vk =
[v1, . . . ,vk]. Moreover, any bias d∗ and mean µ∗f satisfying
(42) jointly minimizes (34):

J
(
d∗ + WTµ∗f

)
= µa − aPY

. (42)

Proof. See Appendix F.

According to Theorem 3, the optimal (Ξ∗f ,Ξ
∗
W) are given

by the low-rank approximation of B̃, which can be derived
by using the power iteration algorithm [21], or equivalently,
by executing (35) and (37) iteratively. The optimal (d∗,µ∗f )
cancel out the effect of µa − aPY

.
The optimal Ξ∗f in Theorems 2-3 can be achieved only

when the hidden layers have sufficient expression power.
Nonetheless, Ξ∗f plays an important role in the analysis of
the hidden layers, as explained in the next subsection.

B. Local Geometric Analysis of Hidden Layers

Next, we provide a local geometric analysis for each hidden
layer. To that end, let us consider the training of the i-th hidden
layer for fixed weights and biases in the subsequent layers.
Define a loss function L(i) for the i-th hidden layer

L(i)(y,a(i)) =L
(
y,g ◦ g(m) ◦ . . . ◦ g(i+1)(a(i))

)
, (43)

where for k = i, . . . ,m− 1

g(k+1)(a(k)) = h(k+1)(W(k+1) Ta(k) + b(k+1)), (44)

g(a(m)) = h(WTa(m) + b). (45)



Given (W(k),b(k)) for k = i + 1, . . . ,m and (W,b), the
training problem of the i-th hidden layer is formulated as

min
W(i),

b(i),

f (i−1)∈Λi−1

∑
x∈X

PX(x)DL(i)(a
(i)
PY|X=x

||h(i)(W(i)Tf (i−1)(x)+b(i))),

(46)

where Λi−1 is the set of all feature functions that can be cre-
ated by the first (i−1) hidden layers. We adopt several assump-
tions for the i-th hidden layer that are similar to Assumptions
1-5. Let a

(i)
PY

denote the Bayes action associated to the loss
function L(i) and distribution PY . According to Lemma 2,
there exists a bias b̃(i) and a tuple (f (i−1),W(i),b(i)) such
that (i) h(i)(b̃(i)) = a

(i)
PY

is a Bayes action associated to the
loss function L(i) and distribution PY , (ii) (f (i−1),W(i),b(i))
is an optimal solution to (46), and (iii) for all x ∈ X and
j = 1, . . . , ki

wj
(i) Tf (i−1)(x) + b

(i)
j − b̃

(i)
j = O(ε). (47)

Define

Ξf (i) = [ξf (i)(1), . . . , ξf (i)(|X |)], (48)

B(i) = [β
(i)
Y (1), . . . ,β

(i)
Y (|X |)], (49)

where in (48),

ξf (i)(x) =
√
PX(x)

(
f (i)(x)− µf (i)

)
, (50)

µf (i) =
∑
x∈X

PX(x)f (i)(x), (51)

and in (49),

β
(i)
Y (x) =

√
PX(x)

(
a

(i)
PY |X=x

− µa(i)

)
, (52)

µa(i) =
∑
x∈X

PX(x)a
(i)
PY |X=x

. (53)

Similar to (28) and (29), let us define the following two
matrices for the i-th hidden layer

ML(i) =
∂2EY∼PY

[L(i)(Y,a(i))]

∂a∂aT

∣∣∣∣
a=a

(i)
PY

, (54)

where the matrix ML(i) has a Cholesky decomposition
ML(i) = RT

L(i)RL(i) and

J(i) =
∂h(i)(b(i))

∂b(i) T

∣∣∣∣
b(i)=b̃(i)

. (55)

The following result is an immediate corollary of Lemma 3.

Corollary 1. In the local analysis regime (47), the objective
function in (46) can be expressed as∑

x∈X
PX(x)DL(i)(a

(i)
PY|X=x

||h(i)(W(i)Tf (i−1)(x)+b(i)))

=
1

2
‖B̃(i) −ΞW(i)Ξf (i−1)‖2F +

1

2
η(d(i), f (i−1)) + o(ε2),

(56)

where B̃(i) = RL(i)B(i), ΞW(i) = RL(i)J(i)W(i) T, d(i) =
b(i) − b̃(i), and

η(d(i), f (i))

=(a
(i)
PY
− µa(i) + J(i)d(i) + J(i)W(i) Tµf (i−1))TM

(i)
L

× (a
(i)
PY
− µa(i) + J(i)d(i) + J(i)W(i) Tµf (i−1)). (57)

In the local analysis regime, the training of
(ΞW(i) ,Ξf (i−1) ,d(i),µf (i−1)) in (46) can be expressed
as the following optimization problem:

min
Ξ

W(i) ,Ξf(i−1)

d(i),µ
f(i−1)

1

2
‖B̃(i) −ΞW(i)Ξf (i−1)‖2F +

1

2
η(d(i), f (i−1)).

(58)

Similar to Theorems 1-3, we can get

Corollary 2. For fixed Ξ
(i−1)
f and µf (i−1) , the optimal Ξ∗

W(i)

to minimize (58) is given by

Ξ∗W(i) = B̃(i)Ξ
(i−1) T
f (Ξ

(i−1)
f Ξ

(i−1) T
f )-1, (59)

and the optimal bias d(i)∗ is expressed as

d(i)∗ = −W̄(i) Tµf (i−1) + (J(i))-1(µa(i) − a
(i)
PY

). (60)

Corollary 3. For fixed ΞW(i) and d(i), the optimal Ξ∗
f (i−1)

to minimize (58) is given by

Ξ∗f (i−1) = (ΞT
W(i)ΞW(i))-1ΞT

W(i)B̃
(i), (61)

and the optimal mean µ∗f is given by

µ∗f (i−1) = −(ΞT
W(i)ΞW(i))-1ΞT

W(i)(a
(i)
PY
− µ(i)

a + J(i)d(i)).
(62)

Corollary 4. If ki−1 ≤ min(ki, |X |), then any (Ξ∗
f (i)
,Ξ∗

W(i))
satisfying (63) jointly minimizes (58):

Ξ∗W(i)Ξ
∗
f (i) = U

(i)
ki−1

Σ
(i)
ki−1

V
(i) T
ki−1

, (63)

where Σ
(i)
ki−1

= Diag(σ
(i)
1 , . . . σ

(i)
ki−1

) is a diagonal matrix

associated with ki−1 leading singular values of B̃(i), U
(i)
ki−1

and V
(i)
ki−1

are composed by the corresponding left and right
singular vectors of B̃(i), respectively. Moreover, any bias d(i)∗

and mean µ∗
f (i)

satisfying (64) jointly minimizes (58):

J(i)
(
d(i)∗ + W(i)T

µ∗f (i)
)

= µa(i) − a
(i)
PY
. (64)

Compared to the local geometric analysis for softmax
regression in [10], Theorems 1-3 and Corollaries 2-4 could
handle more general loss functions and activation functions.
In addition, our results can be applied to multi-layer neural
networks in the following iterative manner: For fixed (W,b)

in the output layer, the Bayes action a
(m)
PY |X=x

needed for
analyzing the m-th hidden layer is the optimal feature f∗(x)
provided by Theorem 2. Similar results hold for the i-th hidden
layer. For fixed weights and biases in subsequent layers, the
Bayes action a

(i−1)
PY |X=x

needed for analyzing the (i − 1)-th
hidden layer is the optimal feature f (i−1)∗(x) in Corollary



3. Hence, the optimal features obtained in Theorem 2 and
Corollary 3 are useful for the local geometric analysis of
earlier layers.

C. Two Examples

1) Neural Network based Maximum Likelihood Classifica-
tion (Softmax Regression): The Bayes actions aPY

associated
to the loss function (5) are non-unique. The set of all Bayes
actions is APY

= {αPY : α > 0}, which satisfies Assumption
2. By choosing one Bayes action aPY

= PY , one can derive
the matrices ML and B used in Theorems 1-3: The (y, y′)-th
element of ML is

(ML)y,y′ =
δ(y, y′)
PY (y)

− 1, (65)

where δ(y, y′) = 1, if y = y′; and δ(y, y′) = 0, if y 6= y′. The
(y, x)-th element of B is

(B)y,x =
√
PX(x)(PY |X=x(y|x)− PY (y)). (66)

To make our analysis applicable to the softmax activation
function [16, Eq. (6.29)], we have used a loss function (5)
that is different from the log-loss function in [10], [14]. As
a result, our local geometric analysis with (65) and (66) is
different from the results in [10].

2) Neural Network based Minimum Mean-square Estima-
tion: Consider the minimum mean-square estimation of a
random vector Y = [Y1, . . . , Yn]T. The Bayes action asso-
ciated to the loss function (6) is aPY

= E[Y], which satisfies
Assumption 2 because E[Y] is a linear function of PY. One
can show that ML = I is an identity matrix and the (j, x)-th
element of B is

(B)j,x =
√
PX(x)(E[Yj |X = x]− E[Yj ]). (67)

IV. CONCLUSION

In this paper, we have analyzed feature extraction in deep
feedforward neural networks in a local region. We will conduct
experiments to verify these results in our future work.
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APPENDIX A
PROOF OF LEMMA 1

Because h is strictly increasing, h′(b̃i) > 0. Since h is
continuously differentiable, there exists a δ > 0 such that for
all z ∈ (b̃i − δ, b̃i + δ)

|h′(z)− h′(b̃i)| ≤
h′(b̃i)

2
. (68)

It follows from (68) that for all z ∈ (b̃i − δ, b̃i + δ)

h′(z) ≥ h′(b̃i)
2

. (69)

From (69), we can get that for all z ∈ (b̃i − δ, b̃i + δ)

|h(z)− h(b̃i)|
|z − b̃i|

≥ h′(b̃i)
2

. (70)

Let K = h′(b̃i)
2 , then (70) implies (15), which completes the

proof.



APPENDIX B
PROOF OF LEMMA 2

Lemma 4. If Assumptions 2 and 4 hold, then for any action
aPY

∈ APY
and any x ∈ X , there exists an aPY |X=x

∈
APY |X=x

such that

‖aPY |X=x
− aPY

‖2 = O(ε). (71)

Proof. By Assumption 4 and (19), for all x ∈ X∑
y∈Y

(PY |X(y|x)− PY (y))2

PY (y)
≤ ε2, (72)

where PY (y) > 0 for all y ∈ Y . This implies for all x ∈ X
and y ∈ Y

|PY |X(y|x)− PY (y)| ≤
√
PY (y)ε. (73)

From (73), we obtain that for all x ∈ X∑
y∈Y

(PY |X(y|x)− PY (y))2 ≤ ε2. (74)

Using (74) and Assumption 2, we get that for any action
aPY

∈ APY
, there exists an action aPY |X=x

∈ APY |X=x
such

that

‖aPY |X=x
− aPY

‖2 = O(ε). (75)

This concludes the proof.

The Bayes action aPY
, as an optimal solution to (10), is

determined only by the marginal distribution PY and the loss
function L. Hence, aPY

is irrelevant of the parameter ε in
Assumptions 3-4. Recall that the bias b̃ = [b̃1, . . . , b̃n]T ∈ Rn
satisfies (14). Hence, the bias b̃ is also irrelevant of ε.

Due to Assumption 1, there exist δ > 0 and K > 0 such
that for all z ∈ (b̃i − δ, b̃i + δ)

|h(z)− h(b̃i)|
|z − b̃i|

≥ K. (76)

Hence, if |z − b̃i| ≥ δ, then

|h(z)− h(b̃i)| ≥ Kδ. (77)

We note that δ and K depend only on the function h and the
bias b̃. Hence, δ and K are irrelevant of ε.

On the other hand, by using (14), Assumption 2, As-
sumption 4, and Lemma 4, for any x ∈ X there exists an
aPY |X=x

∈ APY |X=x
that satisfies

‖aPY |X=x
− h(b̃)‖2 = O(ε). (78)

In addition, due to Assumption 3, there exists an optimal
solution (f ,W,b) to (13) such that

‖aPY |X=x
− h(WTf(x) + b)‖2 = O(ε). (79)

Combining (78) and (79), yields

‖h(b̃)− h(WTf(x) + b)‖2
=‖h(b̃)− aPY |X=x

+ aPY |X=x
− h(WTf(x) + b)‖2

≤‖h(b̃)− aPY |X=x
‖2 + ‖aPY |X=x

− h(WTf(x) + b)‖2
=O(ε). (80)

Hence, for all x ∈ X and i = 1, 2, . . . , n

h(wT
i f(x) + bi)− h(b̃i) = O(ε). (81)

Define αi(x) = wT
i f(x) + bi− b̃i. According to (81), there

exists a constant C > 0 irrelevant of ε, such that

|h(b̃i + αi(x))− h(b̃i)| ≤ Cε. (82)

We choose a sufficiently small ε > 0 such that 0 < ε < Kδ
C ,

where K and δ are given by (76). Then, (82) leads to

|h(b̃i + αi(x))− h(b̃i)| < Kδ. (83)

By comparing (77) and (83), it follows that |αi(x)| < δ. Then,
by invoking (76) again, we can get

|h(b̃i + αi(x))− h(b̃i)|
|αi(x)|

≥ K. (84)

Hence,

|αi(x)| ≤|h(b̃i + αi(x))− h(b̃i)|
K

≤Cε
K
. (85)

This implies αi(x) = O(ε) for all x ∈ X and i = 1, . . . , n.
This completes the proof of Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

Let us define big-O and little-o notations for vectors and
matrices, which will be used in the proof.

Definition 2 (Big-O and Little-o Notations for Vectors).
Consider two vector functions f : R 7→ Rn and g : R 7→ Rn.
We say f(x) = O(g(x)), if there exist constants M > 0 and
d > 0 such that

‖f(x)‖2 ≤M‖g(x)‖2, for all x with |x| < d, (86)

where ‖f‖2 = (
∑n
i=1 f

2
i )1/2 is the l2 norm of vector f . We

say f(x) = o(g(x)), if for each M > 0 there exists a real
number d > 0 such that

‖f(x)‖2 ≤M‖g(x)‖2, for all x with |x| < d. (87)

If ‖g(x)‖2 6= 0, then (87) is equivalent to

lim
x→0
‖f(x)‖2/‖g(x)‖2 = 0. (88)

Definition 3 (Big-O and Little-o Notations for Matrices).
Consider two matrix functions F : R 7→ Rn × Rn and



G : R 7→ Rn × Rn. We say F(x) = O(G(x)), if there exist
constants M > 0 and d > 0 such that

‖F(x)‖2 ≤M‖G(x)‖2, for all x with |x| < d, (89)

where ‖A‖2 = σ1(A) is the spectral norm of matrix A. In
addition, we say F(x) = o(G(x)), if for every M > 0 there
exists a real number d > 0 such that

‖F(x)‖2 ≤M‖G(x)‖2, for all x with |x| < d. (90)

If ‖G(x)‖2 6= 0, then (90) is equivalent to

lim
x→0
‖F(x)‖2/‖G(x)‖2 = 0. (91)

Let ML(x) denote the Hessian matrix

ML(x) =
∂2EY∼PY |X=x

[L(Y,a)]

∂a∂aT

∣∣∣∣
a=aPY |X=x

, (92)

The (i, j)-th element of ML(x) is

(ML(x))i,j =
∂2EY∼PY |X=x

[L(Y,a)]

∂ai∂aj

∣∣∣∣
a=aPY |X=x

. (93)

Lemma 5. If Assumptions 2, 5, and 4 hold, then

(ML(x))i,j = (ML)i,j + o(1). (94)

Proof. Consider the function

g(PY ) =
∂2EY∼PY

[L(Y,a)]

∂ai∂aj

∣∣∣∣
a=aPY

, (95)

where the Bayes action aPY
satisfies Assumption 2.

Because of Assumption 2, we can say that the aPY
is a

continuous function of PY . In addition, due to Assumption 5
and by using the continuity property of a composite function,
we obtain that g(PY ) is a continuous function of PY .

Due to Assumption 4, we can get that for all x ∈ X and
y ∈ Y

PY |X(y|x) = PY (y) +O(ε). (96)

In addition, because g is continuous, (96) implies

g(PY |X=x) = g(PY ) + o(1). (97)

This concludes the proof.

It is known that

DL(aPY |X=x
||a) ≥ 0, (98)

where equality is achieved at a = aPY |X=x
, i.e.,

DL(aPY |X=x
||aPY |X=x

) = 0. (99)

In addition, the function a 7→ L(y,a) is twice differentiable
for all y ∈ Y . Because of these properties, by taking the
second order Taylor series expansion of the function a 7→

DL(aPY |X=x
||a) at the point a = aPY |X=x

, we can get

DL(aPY |X=x
||a) =

1

2
(a− aPY |X=x

)TML(x)(a− aPY |X=x
)

+ o(‖a− aPY |X=x
‖22). (100)

Let a = h(WTf(x) + b) in (100), we obtain

DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(h(WTf(x) + b)− aPY |X=x

)TML(x)

× (h(WTf(x) + b)− aPY |X=x
)

+ o
(
‖h(WTf(x) + b)− aPY |X=x

‖22
)
. (101)

Due to Assumption (21), (101) can be reduced to

DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(h(WTf(x) + b)− aPY |X=x

)TML(x)

× (h(WTf(x) + b)− aPY |X=x
) + o(ε2). (102)

Because h is continuously twice differentiable, we take the
first order Taylor series expansion of h(b) at the point b = b̃,
which yields

h(b) = h(b̃) + J(b− b̃) + o(b− b̃). (103)

In (103), by using Lemma 2 and letting b = WTf(x) + b,
we can get

h(WTf(x) + b)

=h(b̃) + JWTf(x) + Jd + o(ε1), (104)

where d = b− b̃ and 1 = [1, . . . , 1]T ∈ Rn.

Define

q1 = aPY |X=x
− µa, (105)

q2 = JWT(f(x)− µf ), (106)

q3 = aPY
− µa + Jd + JWTµf . (107)

By using (21) and Lemma 4, we get

‖q1 − q2 − q3‖2
=‖aPY |X=x

− aPY
− J(WTf(x) + d)‖2

≤‖aPY |X=x
− aPY

‖2 + ‖J(WTf(x) + d)‖2
≤‖aPY |X=x

− aPY
‖2 + ‖J‖2‖(WTf(x) + d)‖2

≤‖aPY |X=x
− aPY

‖2 + σmax(J)‖(WTf(x) + d)‖2
=O(ε), (108)

where σmax(J) = maxi h
′(b̃i).



Substituting (94) and (104) to (102), we obtain

DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(q1 − q2 − q3 + o(ε1))T

× (ML + o(I))(q1 − q2 − q3 + o(ε1))

=
1

2

[
(q1 − q2 − q3)TML(q1 − q2 − q3)

+ 2(q1 − q2 − q3)TML o(ε1)

+ 2(q1 − q2 − q3)To(I) o(ε1)

+ o(ε1T) (ML + o(I)) o(ε1)

+ (q1 − q2 − q3)To(I)(q1 − q2 − q3)

]
+ o(ε2). (109)

Using (108), we can write

DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(q1 − q2 − q3)TML(q1 − q2 − q3) + o(ε2). (110)

Because ML = RT
LRL, we get

DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(RL(q1−q2−q3))T(RL(q1−q2−q3))+o(ε2). (111)

Multiply the above equation by PX(x), yields

PX(x)DL(aPY |X=x
||h(WTf(x) + b))

=
1

2
(RL

√
PX(x)(q1 − q2 − q3))T

× (RL

√
PX(x)(q1 − q2 − q3)) + o(ε2)

=
1

2
(RL

√
PX(x)(q1 − q2))T(RL

√
PX(x)(q1 − q2))

− PX(x)(q1 − q2)TMLq3 +
1

2
PX(x)qT

3 MLq3 + o(ε2).

(112)

By substituting (22)-(29) into (112) and taking the summation
over x ∈ X , we derive∑

x∈X
PX(x)DL(aPY |X=x

||h(WTf(x) + b))

=
1

2
‖RLB−RLJWTΞf‖2F

+
1

2

∑
x∈X

PX(x)(q3 − 2q1 + 2q2)TMLq3 + o(ε2)

=
1

2
‖RLB−RLJWTΞf‖2F

+
1

2

(
q3 − 2

∑
x∈X

PX(x)q1 + 2
∑
x∈X

PX(x)q2

)T

MLq3

+ o(ε2)

=
1

2
‖RLB−RLJWTΞf‖2F +

1

2
qT

3 MLq3 + o(ε2)

=
1

2
‖RLB−RLJWTΞf‖2F +

1

2
η(d, f) + o(ε2), (113)

where the second equality holds because q3 and ML do

not change with respect to x, and the third equality holds
because

∑
x∈X PX(x)q1 = 0 and

∑
x∈X PX(x)q2 = 0. This

completes the proof.

APPENDIX D
PROOF OF THEOREM 1

Notice that d only affects the second term of (34). To
optimize d, we take the derivative

∂η(d, f)

∂d
= 2ML(Jd + JWTµf + aPY

− µa). (114)

Equating the derivative to zero, we get (36). Substituting the
optimal bias into (33), we get

η(d, f) = 0, (115)

which is the minimum value of the function η(d, f).
Next, for fixed Ξf , we need to optimize ΞW by solving

min
ΞW

‖B̃−ΞWΞf‖2F , (116)

which is a convex optimization problem. By setting the deriva-
tive

∂

∂ΞW
‖B̃−ΞWΞf‖2F = 2(ΞWΞfΞ

T
f − B̃ΞT

f ) (117)

to zero, we find the optimal solution

Ξ∗W = RLBΞT
f (ΞfΞ

T
f )-1. (118)

APPENDIX E
PROOF OF THEOREM 2

To optimize Ξf , we set

∂

∂Ξf
‖B̃−ΞWΞf‖2F = 2(ΞT

f ΞT
WΞW − B̃TΞW) (119)

to zero and get

Ξ∗f = (ΞT
WΞW)-1ΞT

WB̃, (120)

where

Ξ∗f
√

pX = 0, (121)

where the vector
√

pX is defined in (40).
Because µf only affects the second term of (34), we set the

derivative
∂

∂µf
η(d, f)

=2ΞWRL(aPY
− µa + Jd) + 2ΞT

WΞWµf (122)

to zero and obtain (38).

APPENDIX F
PROOF OF THEOREM 3

One lower bound of the first term in (34) is given by

‖B̃−ΞWΞf‖2F ≥
K∑

i=k+1

σ2
i . (123)



By using Eckart–Young–Mirsky Theorem [22], if we sub-
stitute the value of Ξ∗f and Ξ∗W from (41) into (123), equality
with the lower bound is achieved in (123).

If the optimal bias d∗ and the optimal mean µ∗f satisfy (42),
we get the minimum of η(d, f).
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