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Abstract

In this paper, we consider a scheduling problem, in which several streams of status update packets

with different priority levels are sent through a shared channel to their destinations. We introduce a

notion of lexicographic age optimality, or simply lex-age-optimality, to evaluate the performance of

multi-class status update policies. In particular, a lex-age-optimal scheduling policy first minimizes the

Age of Information (AoI) metrics for high-priority streams, and then, within the set of optimal policies

for high-priority streams, achieves the minimum AoI metrics for low-priority streams. We propose a new

scheduling policy named Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-

MAF-LGFS), and prove that the PP-MAF-LGFS scheduling policy is lex-age-optimal. This result holds

(i) for minimizing any time-dependent, symmetric, and non-decreasing age penalty function; (ii) for

minimizing any non-decreasing functional of the stochastic process formed by the age penalty function;

and (iii) for the cases where different priority classes have distinct arrival traffic patterns, age penalty

functions, and age penalty functionals. For example, the PP-MAF-LGFS scheduling policy is lex-age-

optimal for minimizing the probability of age violation of a high-priority stream and the time-average

age of a low-priority stream. Numerical results are provided to illustrate our theoretical findings.
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I. INTRODUCTION

DUE to the proliferation of cheap hardware, remote monitoring has been adopted in many

cyber-physical systems. In these applications, a monitor is interested in timely updates

about the status of a remote system. These status updates range from the position and velocity

of vehicles in autonomous driving to the temperature and humidity levels of a certain area in

environmental monitoring. In [2], the Age of Information (AoI) was proposed to measure the

timeliness of status updates. Due to its widespread application range and its ability to quantify

the freshness of information, the AoI has attracted a significant surge of interest in recent years

[2]–[16]. In particular, transmission scheduling of multiple update streams in both centralized and

distributed settings has been explored in [5], [17]–[26]. For example, the authors in [17] proposed

both age-optimal and near age-optimal scheduling policies for the single and multi-server cases,

respectively (we refer the readers to [27, Chapter 2]).

In a variety of real-life applications, information streams are assigned different priorities based

on how crucial and time-sensitive their data are. A simple example is a vehicular network where

data can be divided into two categories: crucial safety data and non-safety-related information.

As the former is more time-sensitive than the latter, it should always be given a higher priority

by the service facility [28]. Accordingly, priority-based scheduling problems have been exten-

sively studied in the queuing theory literature for different performance measures (e.g., delay,

and throughput). In [29], a notion of lexicographic optimality, or simply, lex-optimality, was

introduced for throughput maximization in multi-class scheduling scenarios. The idea of lex-

throughput-optimality is to first find a class of optimal scheduling policies Πopt that maximize

the throughput of a high priority class, and then find the optimal scheduling policies within

Πopt that maximize the throughput of the low priority class. Therefore, it provides high priority

streams the best possible service, and meanwhile, optimizes the performance of the low priority

streams without affecting that of high priority ones.

There are few recent studies on status updates with multiple priority classes. In [30], multiple

information streams with distinct priorities are processed at a common service facility. The

facility can have one waiting room for storing a status update packet and the waiting room is

shared by all the streams. The authors studied a case where low priority packets are preempted

by high priority ones and the preempted packets are discarded. Using a tool named Stochastic

Hybrid Systems (SHS), the authors found an expression for the average age of each stream. The
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arrival rate of each stream was then optimized accordingly. In another work [31], the authors

investigated the same settings of [30] but by letting each stream have its own buffer space. Most

recently, closed forms of the average Peak Age of Information (PAoI) were found in M/M/1/1

settings where streams are assigned different priorities [32]. Existing research efforts have been

focused on finding closed-form expressions of the average AoI/PAoI in a particular scenario

and for a specific arrival traffic model, providing insights on the performance of the system.

Nonetheless, how to optimize the age performance of status updates with multiple priorities

remains to be a fundamental open question. In this paper, we provide an answer to this question.

The key contributions of this paper are summarized as follows: :

• We introduce the notion of lexicographic optimality for age minimization, which we will

refer to as the lex-age-optimality. The lex-age-optimality captures both the age-optimality

and priorities in a multi-class scheduling for minimizing the AoI. It guarantees that the age

performance of low priority streams is optimized while ensuring that high priority streams

are not affected.

• In the case of a single server with i.i.d. exponential service times, we propose a scheduling

policy named Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-

MAF-LGFS). Using a sample-path argument, we show that this policy is lex-age-optimal.

Our lex-age-optimality results are not constrained to the minimization of the average AoI

previously adopted in [30]–[32]. In fact, they hold for (i) minimizing any time-dependent,

symmetric, and non-decreasing penalty function of the ages, and (ii) minimizing any non-

decreasing functional of the age penalty process. Unlike the previous works on multi-

class status updates [30], [32], our lex-age-optimality results are not limited to a given

traffic arrival process. Moreover, they hold when the priority classes have distinct traffic

patterns and age penalty functionals. For example, we could be interested in minimizing

the probability of age violation for a class and the average AoI for another.

The rest of the paper is organized as follows: Section II is dedicated to the system model where

the required definitions and the queuing model are presented. In Section III, we introduce the

notion of lex-age-optimality and propose a lex-age-optimal policy in the single exponential server

settings. Numerical results that corroborate these findings are laid out in Section IV while the

paper is concluded in Section V.
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II. SYSTEM MODEL

A. Notations and Definitions

We let x and x denote deterministic scalars and vectors, respectively. Similarly, we will use

X and X to denote random scalars and vectors, respectively. Let xi denote the i-th element of

vector x, and let x[i] denote the i-th largest element of vector x. Hence, x[1] and x[N ] denote

the largest and smallest elements of vector x, respectively. We denote by [x] the sorted version

of vector x (i.e. [x]i = x[i]). Vector x ∈ RN is said to be smaller than y ∈ RN , denoted by

x ≤ y, if xi ≤ yi for i = 1, . . . , N . The composition of two functions f and g is denoted by

f ◦ g(x) = f(g(x)). A function p : RN 7→ R is said to be symmetric if p(x) = p([x]) for all

x ∈ RN . Next, we define stochastic ordering, which we will use in subsequent age-optimality

analysis.

Definition 1. Stochastic Ordering of Random Variables [33]: A random variable X is said to be

stochastically smaller than another random variable Y, denoted by X ≤st Y , if Pr(X > t) ≤

Pr(Y > t) ∀t ∈ R.

Definition 2. Stochastic Ordering of Random Vectors [33]: A set U ⊆ RN is called upper if

y ∈ U whenever x ≤ y and x ∈ U . Let X and Y be two n-dimensional random vectors, X

is said to be stochastically smaller than Y , denoted by X ≤st Y , if

Pr(X ∈ U ) ≤ Pr(Y ∈ U ) for any upper set U ⊆ RN . (1)

Definition 3. Stochastic Ordering of Stochastic Processes [33]: A stochastic process {X(t), t ≥

0} is said to be stochastically smaller than another stochastic process {Y (t), t ≥ 0}, denoted by

{X(t), t ≥ 0} ≤st {Y (t), t ≥ 0}, if for any sequence of time instants t1 < t2 < . . . < tm ∈ R+

(X(t1), X(t2), . . . , X(tm)) ≤st (Y (t1), Y (t2), . . . , Y (tm)). (2)

Let V be the set of Lebesgue measurable functions on [0,∞), i.e.,

V = {g : [0,∞) 7→ R is Lebesgue measurable}. (3)

A functional φ : V 7→ R is said to be non-decreasing if φ(g1) ≤ φ(g2) holds for all g1, g2 ∈ V

that satisfy g1(t) ≤ g2(t) for t ∈ [0,∞). We note that {X(t), t ≥ 0} ≤st {Y (t), t ≥ 0} if, and

only if, [33]

E[φ({X(t), t ≥ 0})] ≤ E[φ({Y (t), t ≥ 0})] (4)
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holds for every non-decreasing functional φ for which the expectations in (4) exist.

B. Queuing Model

Consider the status-update system illustrated in Fig. 1, where N streams of status update

packets are sent through a shared service facility. Each update stream has a queue, which could

have an infinite or finite buffer space. The server can process at most one packet at a time. The

packet service times are i.i.d. across streams and packets. The packet streams are divided into

I priority classes, with streams from the same class having the same priority. Each stream is

indexed by two numbers (i, j), where i is the class index and j is the stream index within class

i. The classes are indexed in a decreasing order of priority. In other words, classes 1 and I are

the highest and lowest priority classes, respectively. Let Ji be the number of steams in class i.

Let si,j and di,j denote the source and destination nodes of stream (i, j), respectively. Different

streams may have different source and/or destination nodes.

Fig. 1: System model.

The system starts operating at time t = 0. The n-th update packet of stream (i, j) is generated

at time Si,jn , arrives to the stream’s buffer at time Ai,jn , and is delivered to the destination di,j

at time Di,j
n . Accordingly, we always have 0 ≤ Si,j1 ≤ Si,j2 ≤ . . . and Si,jn ≤ Ai,jn ≤ Di,j

n . We

consider the following synchronized packet generation and arrival processes.

Definition 4. Intra-class Synchronized Generations and Arrivals: The packet generation and

arrival times are said to be synchronized across streams within each class, if for each class i =

1, . . . , I , there exist two sequences {Si1, Si2, . . .} and {Ai1, Ai2, . . .} such that for all n = 1, 2, . . .

and j = 1, . . . , Ji

Si,jn = Sin, Ai,jn = Ain. (5)
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Note that we let each class have its unique traffic pattern as we do not impose inter-class

synchronization. In practice, the synchronization between streams within each class occurs when

these streams are synchronized by the same clock, as in monitoring and control applications

[34], [35]. Another example is a vehicular network where safety-related data (e.g., position and

velocity) are generated every T time units, while other data of lower priority can have a different

traffic pattern (e.g., updates on the traffic are generated every T ′ time units) [28]. It is important

to note that, if Ji = 1, there is only one stream in class i and the stream could have arbitrary

packet generation and arrival processes. For example, our study holds even for out-of-order

packet arrivals, i.e., Sin < Sin+1 but Ain > Ain+1, which were not allowed in the models of [30],

[32]. In the sequel, we let

I = {(Sin, Ain), i = 1, . . . , I, n = 1, 2, . . .} (6)

denote the sequence of generation/arrival times for all the classes of streams. We suppose that

I is independent of the service times of the packets and is not altered by the choice of the

scheduling policy.

Let π represents a scheduling policy that determines which packets from which streams to

send over time. Let Π denotes the set of all causal scheduling policies, in which the decisions

are made without using any future knowledge. A policy is said to be work-conserving if the

service facility is kept busy whenever there exists one or more unserved packets in the queues.

We let Πwc denote the set of work-conserving causal policies. A policy is said to be preemptive

if it allows the service facility to switch to transmitting another packet at any time.

C. Age Penalty Functions and Functionals

The age of information of stream (i, j) at time t is:

∆i,j(t) = t−max{Si,j
n : Di,j

n ≤ t, n = 1, 2, . . .}, (7)

which is the difference between the current time t and the generation time of the freshest packet

that has been delivered to the destination di,j . Let ∆i(t) = (∆i,1(t), . . . ,∆i,Ji(t)) denote the age

vector at time t of all streams belonging to class i, and let ∆(t) = (∆1(t), . . . ,∆I(t)) denote

the age vector of all streams at time t.

We introduce an age penalty function pt ◦∆i(t) that represents the level of dissatisfaction

with the aged information of class i at time t, where pt : RJi 7→ R is a non-decreasing function

of ∆i(t). Some commonly used age penalty functions are listed below.
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• The sum age of the Ji streams:

psum ◦∆i(t) =

Ji∑
j=1

∆i,j(t). (8)

• The maximum age of the Ji streams:

pmax ◦∆i(t) = max
j=1,...,Ji

∆i,j(t). (9)

• The average age threshold violation of the Ji streams:

pexceed−α ◦∆i(t) =
1

Ji

Ji∑
j=1

1{∆i,j(t)>α}. (10)

where 1{.} is the indicator function, and α is a fixed age threshold that should not be

violated.

• The sum age penalty function of the Ji streams:

ppen ◦∆i(t) =

Ji∑
j=1

g(∆i,j(t)), (11)

where g : R+ 7→ R is a non-decreasing function. For instance, an exponential function

g(∆i,j) = exp(a∆i,j) with a > 0 can be used for control applications where the system is

vulnerable to outdated information and the need for fresh information grows quickly with

respect to the age [11], [36].

We focus on the family of symmetric and non-decreasing penalty functions:

Psym ={p : [0,∞)N 7→ R is symmetric and non-decreasing}.

This class of penalty functions Psym is fairly large, and include the age penalty functions in (8)-

(11). Furthermore, we point out that pt can change over time, which represents the time-variant

importance of the information streams. This highlights the generality of the class of penalty

functions that we consider.

In addition to age penalty functions, we use non-decreasing functionals φ({pt ◦∆i(t), t ≥ 0})

of the age penalty process {pt ◦∆i(t), t ≥ 0} to represent the level of dissatisfaction with the

aged information of class i, which is called age penalty functionals. One example of age penalty

functionals is the time-average age penalty:

φavg({pt ◦∆i(t), t ≥ 0}) =
1

T

∫ T

0

pt ◦∆i(t)dt. (12)

Different priority classes can have distinct age penalty functions and functionals. This is important

because each priority class typically represents a different application and has its own data
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timeliness requirements. For example, in vehicular networks, time-crucial safety data related to

vehicle position should be delivered promptly. Typically, the system performance is affected

by the probability of violation of an age threshold. Accordingly, we can choose the excess

age penalty function pexceed−α and the time-average age penalty functional φavg for this class of

traffic. On the other hand, for example, we can choose the penalty function psum and the time-

average age penalty functional φavg for the updates on gas tank levels. This further highlights

the generality of our considered framework.

In the sequel, we use {∆i
π(t), t ≥ 0} and {pt ◦∆i

π(t), t ≥ 0} to represent the stochastic age

process and age penalty process of class i, respectively, when policy π is adopted. We assume

that the initial age ∆π(0−) at time t = 0− is the same for all π ∈ Π.

III. MULTI-CLASS MULTI-STREAM SCHEDULING

A. Lexicographic Age Optimality

In the sequel, we introduce the notion of lexicographic optimality for age minimization,

which is referred to as the lex-age-optimality. Recent efforts on age analysis in multi-class

systems focused mainly on finding closed-form expressions of the average AoI/PAoI a particular

scheduling policy [30]–[32]. Note that, in the multi-class system case, the minimization of the

total average AoI/PAoI falls short in capturing the differences in time-cruciality between the

classes. In fact, this approach lets each stream contribute equally to the penalty of the system

regardless of its class. As it will be shown below, the lex-age-optimality not only solves this issue

but also provides a new research direction for age analysis in multi-class timely status-update

systems.

Definition 5. Lex-age-optimality: A scheduling policy P ∈ Π is said to be level 1 lex-age-optimal

within Π if for all I , pt ∈Psym and π ∈ Π

[{pt ◦∆1
P (t), t ≥ 0}|I ] ≤st [{pt ◦∆1

π(t), t ≥ 0}|I ]. (13)

We let Π1
lex-opt ⊆ Π denote the set of scheduling policies that are level 1 lex-age-optimal. In

addition, policy P is said to be level k lex-age-optimal for k = 2, . . . , I if it is level k − 1

lex-age-optimal, and for all I , pt ∈Psym and π ∈ Πk−1
lex-opt

[{pt ◦∆k
P (t), t ≥ 0}|I ] ≤st [{pt ◦∆k

π(t), t ≥ 0}|I ], (14)
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where Πk−1
lex-opt is the set of scheduling policies that are level k − 1 lex-age-optimal. If policy P

is level k lex-age-optimal for all k = 1, . . . , I , it is said to be lex-age-optimal.

According to (4), (13) can be equivalently expressed as

E[φ({pt ◦∆1
P (t), t ≥ 0})|I ]

= min
π∈Π

E[φ({pt ◦∆1
π(t), t ≥ 0})|I ], (15)

for all I , pt ∈Psym, and non-decreasing functional φ : V 7→ R, provided that the expectations

in (15) exist. Similarly, an equivalent formulation of the level k lex-age-optimality (14) of a

policy P ∈ Πk−1
lex-opt is

E[φ({pt ◦∆k
P (t), t ≥ 0})|I ]

= min
π∈Πk−1

lex-opt

E[φ({pt ◦∆k
π(t), t ≥ 0})|I ], (16)

for all I , pt ∈Psym, and non-decreasing functional φ : V 7→ R, provided that the expectations

in (16) exist.

The goal of the lex-age-optimality is to first guarantee the age-optimality of high priority

classes, and then optimize the age performance of the low priority classes accordingly. To see

how this is achieved, we recall from (15) that a level 1 lex-age-optimal policy P achieves the

smallest possible expected value of any non-decreasing functional φ of the stochastic age penalty

process [{pt ◦∆1(t), t ≥ 0})|I ] among all causal policies. Next, to maintain the age-optimality

of the highest priority class, our attention is restricted to the set of scheduling policies that

are level 1 lex-age-optimal. We have denoted this set by Π1
lex-opt. To that end, and as seen in

(16), a policy P is level 2 lex-age-optimal if it achieves the smallest possible expected value of

any non-decreasing functional φ of the stochastic age penalty process [{pt ◦∆2(t), t ≥ 0})|I ]

among all level 1 lex-age-optimal policies. This showcases how the lex-age-optimality captures

the time-cruciality of streams since, by definition, lex-age-optimal policies grant high priority

streams the best possible age performance without being influenced by low priority streams.

Then, while ensuring the age-optimality of the high priority streams, the age performance of the

low priority streams is optimized.

B. Lex-Age-Optimal Scheduling

We consider the case where the service time of each packet is exponentially distributed with

service rate µ. To address this multi-stream scheduling problem, we first lay out the notion of
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informative packets.

Definition 6. Informative and Non-informative Packets: Consider a packet of stream (i, j) that

is generated at time Si,jn ≤ t. The packet is said to be informative (non-informative) at time t if

t− Si,jn < ∆i,j(t) (t− Si,jn ≥ ∆i,j(t)), i.e., the age of the packet is (not) smaller than ∆i,j(t).

Equipped with the above definition, we consider in the following several scheduling disciplines

that are based on informative packets.

Definition 7. Preemptive Priority (PP) policy based on Informative Packets: Among the streams

with informative packets, the streams with the highest priority are served first. When an informa-

tive packet arrives, if it has a higher priority than the packet that is being served, it will preempt

the packet under service. If the preempted packet is informative, it is stored back to the queue;

if the preempted packet is non-informative, it can be either stored back to the queue or dropped.

Definition 8. Maximum Age First (MAF) policy: Among the streams from the same priority

class, the stream with the maximum age is served first, with ties broken arbitrarily.

Definition 9. Last-Generated, First-Served (LGFS) policy: Among the informative packets from

a stream, the last generated informative packet is served first, with ties broken arbitrarily.

By combining the above three service disciplines, we propose a new scheduling policy called

Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-MAF-LGFS), which

is defined as follows.

Definition 10. Preemptive Priority, Maximum Age First, Last-Generated, First-Served: This

policy is preemptive, work-conserving and obeys the following set of scheduling rules:

• If there exist informative packets, the system will serve an informative packet that is selected

as follows

– among all streams with informative packets, pick the class of streams with the highest

priority;

– among the streams from the selected priority class, pick the stream with the maximum

age, with ties broken arbitrarily;

– among the informative packets from the selected stream, pick the last generated infor-

mative packet, with ties broken arbitrarily;
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• if there exists no informative packet, the system can serve any non-informative packet.

As can be seen above, a crucial aspect of the policy is that informative packets are not

dropped, which will be shown later to be essential for lex-age-optimality. Because of this, the

packet management strategies in [10] are not suitable for multi-class age-based scheduling. As

for non-informative packets, our proposed policy does not drop them as well. Although these

packets are not necessary for reducing the age, but in many applications, they may still be

needed at the monitor (e.g., social updates). Note that in the case of a single priority class (i.e.,

I = 1), the proposed policy coincides with the preemptive Maximum Age First, Last-Generated,

First-Served (MAF-LGFS) scheduling policy proposed in [17].

By definition, our policy ensures that the service of high priority informative packets is not

interrupted or influenced by any lower priority packets. This grants crucial timely packets the

best possible service. Note that informative packets play a key role in our policy. In particular,

the preemptive priority discipline that we consider is a dynamic priority rule in which the priority

level depends on the existence of informative packets: If a stream from class 1 has informative

packets, the stream has the highest priority; otherwise, if the stream does not have any informative

packets, the stream has the lowest priority, even lower than the streams in the lowest class I that

have informative packets. This non-trivial aspect of our policy ensures that low priority classes

are provided with the best possible opportunity for transmission while not affecting the age of

the high priority streams. On another note, our policy ensures that the freshest packets from the

selected priority class are delivered first. These key observations are crucial and will be used to

establish the lex-age-optimality of the PP-MAF-LGFS policy.

Theorem 1 (Lex-age-optimality of PP-MAF-LGFS). If (i) the packet generation and arrival

times are synchronized across streams within each class, and (ii) the packet service times are

exponentially distributed and i.i.d. across streams and time, then the policy PP-MAF-LGFS is

lex-age-optimal.

Proof: This theorem is proven by using an inductive sample-path comparison. Specifically,

we show by induction that the set of scheduling rules that the PP-MAF-LGFS policy satisfies

are sufficient and necessary for level k lex-age-optimality for k = 1, . . . , I . Contrary to previous

sample-path proofs in the literature (e.g., in [17]), showing these scheduling rules are sufficient

for optimality is not enough for proving Theorem 1. In fact, in order to prove level k + 1 lex-
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age-optimality, one need to exactly characterize all the level k lex-age-optimal scheduling policy

in Πk
lex-opt. This requirement poses several technical difficulties, which are solved in our proof

by showing the necessity of the scheduling rules in Definition 10 for level k lex-age-optimality.

The details can be found in Appendix A.

Given the above theorem, we can also deduce the following corollary.

Corollary 1. If (i) the packet service times are exponentially distributed and i.i.d. across streams

and time, and (ii) each priority class has only one stream, then the PP-MAF-LGFS is lex-age-

optimal for arbitrary packet generation and arrival processes.

To the best of our knowledge, this is the first lex-age-optimality result for multi-class status

updates. Our result is strong as the optimality is established in terms of stochastic ordering

of stochastic processes for all symmetric non-decreasing penalty functions, and for all non-

decreasing age penalty functionals. What makes these results further interesting is that the priority

classes can have different traffic patterns, age penalty functions, and age penalty functionals. As

it was previously explained in Section II-C, this is of paramount importance as priority classes

typically represent different applications, each with their own traffic arrivals and data timeliness

requirements. For example, in a certain scenario, we can be interested in minimizing the the

time-average sum-age for class 1 and the probability of age threshold violation for class 2.

Theorem 1 guarantees that our proposed policy achieves the required data timeliness goal for

any of these cases, despite the differences in age penalty functions and functionals between the

classes.

IV. NUMERICAL RESULTS

We consider a vehicle in a V2X (Vehicle-To-Everything) network that sends packets to nearby

vehicles and roadside units (see [28], [37] for two surveys). In the aforementioned surveys, a

list of possible packets use cases are presented, each of which having multiple priorities in the

status-updating network. We pick 3 data categories in our simulations:

1) Road Safety Data: These are the data primarily employed to reduce the number of traffic

accidents. These packets are generated periodically with a minimum frequency of 10 Hz.

We assume in our settings that the packets’ generation frequency is set to 10 Hz. This class

of streams has the highest priority among all data types. We consider in our simulations

that two streams belong to this class (e.g., the vehicle’s position and speed).
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2) Traffic Management Data: The goal of these data is to optimize the traffic stream and

reduce the travel time in the network. We consider in our simulations that one stream

belongs to this class (e.g., updates concerning the destination of the vehicle). The generation

frequency of these packets is set to 1 Hz. The priority of this class is secondary to road

safety data.

3) Convenience and Entertainment Data: The data in this class are considered to be the

least crucial as their aim is to provide entertainment and convenience solely for improving

the quality of travel. We consider in our simulations that two streams belong to this class

and we suppose that the generation frequency of their packets is 5 Hz.

Based on the above, we can conclude that the arrival rate to our considered system is λtot = 31

packets per second. The service facility of the vehicle is supposed to be constituted of 1 server

with the transmission times being i.i.d. across streams and time. Moreover, the transmission

times are considered to be exponentially distributed with service rate µ.

We compare our proposed policy to the preemptive MAF-LGFS1 policy proposed in [17]. The

preemptive MAF-LGFS policy schedules the packet of the stream with the highest age, regardless

of the class it belongs to. As for the age penalty function and functional for each class, we choose

pexceed−α and φavg as the age penalty function and functional for class 1 respectively, where α is

set to 250 ms. By doing so, we get

E[φavg({pexceed−α ◦∆1(t), t ≥ 0})]

=
1

2

2∑
j=1

1

T

∫ T

0

Pr(∆1,j(t) > α)dt, (17)

where Pr(∆1,j(t) > α) is the probability of violation of the maximum tolerated age 250 ms by

stream (1, j) at time t. The interest in this time-average age penalty function is that in vehicular

networks, small age for the velocity and position data can be tolerated but, after a certain value,

the performance of the system starts deteriorating due to this aging. For class 2, we choose φavg

as the age penalty functional. Lastly, we choose psum and φavg for class 3. We iterate over a range

of the service rate µ and we run the simulations for 105 s. We report in Fig. 2 the simulations

results that showcase the performance of each policy. We can conclude from these results the

following:

1First-Come-First-Served (FCFS) policies are omitted from our simulations as they will always be outperformed by LGFS

policies since queuing will lead to unnecessary staleness of the packets.
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Fig. 2: Comparison between the two policies in function of the service rate µ.

• As seen in Fig. 2a, our proposed policy always outperforms the preemptive MAF-LGFS

policy for class 1 at any service rate. Specifically, the probability of the age threshold

violation by the preemptive MAF-LGFS policy is 3 times higher than the one achieved

by our policy. This is a consequence of our proposed policy’s goal as it gives priority to

minimizing the time-average age penalty of class 1 regardless of the other remaining classes.

• On the other hand, we can see in Fig. 2b-2c that the preemptive MAF-LGFS policy

outperforms our proposed policy for classes 2 and 3. In fact, in our policy, giving the

priority to class 1 leads to a penalty for the remainder of the classes. However, we recall

that the probability of violation of the age threshold in class 1 for our policy is 3 times

less than the preemptive MAF-LGFS. Accordingly, the penalty incurred by the remaining

classes is justified. Moreover, we can see that as µ increases, the gap between the two curves

in both figures shrinks. The reason behind this is that class 1’s packets finish transmission

much faster the higher µ is. Consequently, in our proposed policy, the server will be able

to finish serving class 1 fast enough that it can start serving the other classes before new

packets for class 1 arrive to the system. This reduces the incurred penalty by the low priority

classes due to the presence of the high priority streams.

The above results highlight the performance of our proposed lex-age-optimal policy, and show-

case how it grants high priority streams the best possible age performance while optimizing the

age performance of the low priority classes accordingly.
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V. CONCLUSION

In this paper, we have introduced the notion of lex-age-optimality that captures both the

age-optimality and priorities of the streams in a general multi-class priority-based scheduling

scenario. To that end, we have proposed a scheduling policy in a general multi-class, multi-

stream scheduling scenario named Preemptive Priority, Maximum Age First, Last-Generated,

First-Served (PP-MAF-LGFS). Using a sample-path argument, we were able to prove the lex-age-

optimality of the PP-MAF-LGFS policy in the single exponential server case for any symmetric

non-decreasing penalty function, and for all non-decreasing age penalty functionals. Numerical

results were then presented to highlight the performance of our proposed policy.
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APPENDIX A

PROOF OF THEOREM 1

To establish this theorem, we first provide a set of scheduling rules and prove by induction,

and using a sample-path comparison, that they are necessary and sufficient for level k lex-age-

optimality for k = 1, . . . , I . Afterward, we show that the PP-MAF-LGFS policy satisfies these

rules for all k = 1, . . . , I , and we can therefore conclude that it is lex-age-optimal. Before

proceeding in this direction, we lay out some preliminaries on stochastic ordering that will be

useful to our proof.

• Preliminaries: Let us consider two scheduling policies P, π ∈ Π. In general, for any class

i, a direct comparison between two processes {pt ◦ ∆i
P (t), t ≥ 0} and {pt ◦ ∆i

π(t), t ≥ 0}

to establish a stochastic ordering between the two is complex, as it involves comparing their

probability distributions. To circumvent this difficulty, the following approach can be adopted:

• Define two policies P1, π1 ∈ Π on the same probability space such that {pt ◦∆i
P1

(t), t ≥ 0}

and {pt ◦∆i
P (t), t ≥ 0} (respectively {pt ◦∆i

π1
(t), t ≥ 0} and {pt ◦∆i

π(t), t ≥ 0} ) have

the same distribution.

• Proceed with a direct comparison between {pt ◦∆i
P1

(t), t ≥ 0} and {pt ◦∆i
π1

(t), t ≥ 0}.

This approach is called coupling in the scheduling literature, and we will adopt it in our proof.

To that end, and using the memoryless property of the exponential distribution, we can obtain

the following coupling lemma.

Lemma 1 ( [17, Lemma 1] Stochastic Coupling). For any given I , consider two work-

conserving policies P, π ∈ Πwc. If the service times are exponentially distributed and i.i.d.

across streams and time, then the following holds:
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1) There exists a work-conserving policy P1 such that {∆P1(t), t ≥ 0} and {∆P (t), t ≥ 0}

have the same distribution.

2) There exists a work-conserving policy π1 such that {∆π1(t), t ≥ 0} and {∆π(t), t ≥ 0}

have the same distribution.

3) P1 and π1 are defined on the same probability space and, if a packet is delivered in policy

π1 at time t, then with probability 1, a packet is delivered in policy P1 at time t.

Next, we present in the following proposition a set of scheduling rules for the first k classes

with k ∈ {1, . . . , I}. We show that a policy P is level k lex-age-optimal if, and only if, these

rules hold for the first k classes. Note that, throughout this proof, we refer to classes 1 till k as

the first k classes. Before laying out the proposition, we define the notion of work-conserving

policies for the informative packets of a class k.

Definition 11. Work-conserving policies for the informative packets of a class k: A scheduling

policy P is said to be work-conserving for the informative packets of a class k if the service

facility is kept busy whenever there exist one or more informative packet in the queues of class

k.

Proposition 1 (Lex-age-optimal Scheduling Rules). If (i) the packet generation and arrival

times are synchronized across streams within each class, and (ii) the packet service times are

exponentially distributed and i.i.d. across streams and time, a scheduling policy P is level k

lex-age-optimal for k ∈ {1, . . . , I} if, and only if, the following four rules are satisfied

1) Policy P is work-conserving for the informative packets of the first k classes;

2) Among the streams with informative packets, P serves the streams belonging to the first k

classes first. Among these classes with informative packets, the class of streams with the

highest priority are preemptively served first;

3) Among the streams of each of the first k classes with informative packets, the stream with

the maximum age is served first, with ties broken arbitrarily;.

4) Among the informative packets from a stream of the first k classes, the last generated

informative packet is preemptively served first, with ties broken arbitrarily.

Proof: We prove this proposition by induction. Specifically, we show in step 1 that a policy

is level 1 lex-age-optimal if, and only if, Rules 1)-4) hold for class 1. Then, by assuming that
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they are necessary and sufficient for level k lex-age-optimality, we use this assumption to prove

in step 2 that these rules are sufficient and necessary for level k + 1 lex-age-optimality.

• Step 1: We prove in this step that these rules for k = 1 are sufficient and necessary for level

1 lex-age-optimality.

1) Sufficiency: Let us consider a work-conserving policy P ∈ Πwc that satisfies these rules

for class 1. We compare its performance to any work-conserving policy π ∈ Πwc. As both

policies are work-conserving, we consider the two policies P1 and π1 that are defined on the

same probability space and originate from Lemma 1. Next, we provide the following lemma that

describes the evolution of the age vector of class 1 upon a packet delivery by both P1 and π1.

Lemma 2 (Packet Delivery). Suppose that a packet is delivered at time t by both policies π1

and P1. The age vector changes at time t from ∆P1 and ∆π1 to ∆′P1
and ∆′π1 , respectively. If

∆
1,[j]
P1
≤ ∆1,[j]

π1
, j = 1, . . . , J1, (18)

then

(∆
1,[j]
P1

)′ ≤ (∆1,[j]
π1

)′, j = 1, . . . , J1, (19)

where ∆
1,[j]
P1

and ∆
1,[j]
π1 refers to the j-th largest element of the age vector of class 1 in policy

P1 and π1, respectively.

Proof: The proof can be found in Appendix B.

We can now proceed to prove that P is level 1 lex-age-optimal. To do so, we compare the

age vector ∆1 on a sample-path of the policies P1 and π1. We note that for any sample-path,

∆P1(0
−) = ∆π1(0

−). To that end, We consider two cases:

Case 1: When there are no packets deliveries by any of the policies, the age of each stream

belonging to class 1 increases at a unit rate.

Case 2: When a packet is delivered by π1, the evolution of the age vector of class 1 is dictated

by Lemma 2. By induction over time, we obtain

∆
1,[j]
P1

(t) ≤ ∆1,[j]
π1

(t), j = 1, . . . , J1, t ≥ 0. (20)
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For any symmetric non-decreasing function pt, and for t ≥ 0, it holds from (20) that

pt ◦∆1
P1

(t)

=pt(∆
1,1
P1

(t), . . . ,∆1,J1
P1

(t))

=pt(∆
1,[1]
P1

(t), . . . ,∆
1,[J1]
P1

(t))

≤pt(∆1,[1]
π1

(t), . . . ,∆1,[J1]
π1

(t))

=pt(∆
1,1
π1

(t), . . . ,∆1,J1
π1

(t))

=pt ◦∆1
π1

(t). (21)

By Lemma 1, the processes {∆P1(t), t ≥ 0} and {∆P (t), t ≥ 0} (respectively the processes

{∆π1(t), t ≥ 0} and {∆π(t), t ≥ 0}) have the same distribution. Accordingly, using (21) and

Theorem 6.B.30 in [33], we can deduce that

[{pt ◦∆1
P (t), t ≥ 0}|I ] ≤st [{pt ◦∆1

π(t), t ≥ 0}|I ], (22)

for all I , pt ∈ Psym and π ∈ Πwc. The extension of (22) to the case where π is non-work-

conserving is straightforward due to the exponential distribution of the service time and its

independence across streams and time. In fact, due to the memoryless property offered by the

exponential distribution, letting the server idle before a transmission will lead to unnecessary

staleness of the available packets. This can be shown by a stochastic ordering argument but

the details are omitted for the sake of space. Consequently, (22) holds for any π ∈ Π and,

accordingly, P is level 1 lex-age-optimal.

2) Necessity: In this part, we prove that every level 1 lex-age-optimal policy satisfies these

4 scheduling rules for class 1. We do so by contradiction. Specifically, we consider a level 1

lex-age-optimal policy π ∈ Π1
lex-opt. We show that if π violates any of these 4 rules for class 1,

then it cannot be level 1 lex-age-optimal.

- Violation of Rule 1: Let us consider that π is not work-conserving for the informative packets

of class 1. Due to the memoryless property of the exponential distribution of the service time and

its independence across streams and time, letting the server idle before a transmission will lead

to unnecessary staleness of the available informative packets. This can be shown by a stochastic

ordering argument but the details are omitted for the sake of space. Accordingly, π cannot be

level 1 lex-age-optimal.

- Violation of Rule 2 − 4: As shown in the proof of necessity of Rule 1, we can affirm that π
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has to be work-conserving for the informative packets of class 1. Note that when there are no

informative packets for class 1 in the system, the performance of class 1’s streams is not affected

by the scheduling rules adopted. Accordingly, and without loss of generality, let us consider that

π is work-conserving. In other words, we have π ∈ Πwc ∩Π1
lex-opt. By Definition 5 and (15), we

have

E[φ({pt ◦∆1
π(t), t ≥ 0})|I ]

= min
π′∈Π

E[φ({pt ◦∆1
π′(t), t ≥ 0})|I ], (23)

for all I , pt ∈Psym and non-decreasing functional φ : V 7→ R, provided that the expectations

in (23) exist. We show by contradiction that if π violates any of the rules 2− 4 for class 1, then

there exists a policy P , a symmetrical non-decreasing penalty function p′, and a non-decreasing

functional φ1 such that

E[φ1({p′ ◦∆1
P (t), t ≥ 0})|I ]

<E[φ1({p′ ◦∆1
π(t), t ≥ 0})|I ]. (24)

To that end, let us consider a work-conserving policy P that satisfies these 4 rules for class 1.

Note that P and π are both work-conserving. Accordingly, we consider the two coupled policies

P1 and π1 that are defined on the same probability space and originate from Lemma 1. From

the sufficiency proof, (20) holds for our case. In other words,

∆
1,[j]
P1

(t) ≤ ∆1,[j]
π1

(t), j = 1, . . . , J1, t ≥ 0. (25)

Accordingly, for any symmetrical non-decreasing function pt ∈Psym, and for t ≥ 0

pt ◦∆1
P1

(t) ≤ pt ◦∆1
π1

(t). (26)

Next, let us consider a delivery time ts such that (i) the age of streams of class 1 are not all

equal to one another2, and (ii) there exist informative packets for l1 > 0 and l2 > 0 streams of

class 1 in the system just before ts for policy π1 and P1, respectively. As P1 follows the 4 rules

of the proposition for class 1, we have l2 ≤ l1. We recall that, according to Lemma 1, if a packet

is delivered in policy π1 at time t, then with probability 1, a packet is delivered in policy P1 at

2We avoid this scenario since, in the case where all streams have the same age, all streams of class 1 are considered to have

the highest age.
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time t. Hence, we describe the evolution of the age vector of class 1 upon a packet delivery by

both policies π1 and P1 at time ts.

Lemma 3 (Packet Delivery). Suppose that a packet is delivered at time ts by both policies π1

and P1. The age vector changes at time ts from ∆P1 and ∆π1 to ∆′P1
and ∆′π1 , respectively. If

π1 breaks any of the scheduling rules 2− 4 for class 1 at time ts, then there exists a stream j

of class 1 such that

(∆
1,[j]
P1

)′ < (∆1,[j]
π1

)′. (27)

Proof: The proof can be found in Appendix C.

Next, to prove (24), let us consider the symmetrical non-decreasing penalty function p′ = psum ∈

Psym and the non-decreasing age penalty functional φ1 = φavg. By taking Lemma 3 into account,

along with (25), and the fact that the service rate µ is finite, we can affirm that there exists a

time interval T ⊆ [0,∞) such that

p′ ◦∆1
P1

(t) < p′ ◦∆1
π1

(t) ∀t ∈ T. (28)

By Lemma 1, we have that the processes {∆P1(t), t ≥ 0} and {∆P (t), t ≥ 0} (respectively the

processes {∆π1(t), t ≥ 0} and {∆π(t), t ≥ 0}) have the same distribution. By taking this into

account, and by using (26) and (28), we obtain:

E[φ1({p′ ◦∆1
P (t), t ≥ 0}|I )] < E[φ1({p′ ◦∆1

π(t), t ≥ 0}|I )] (29)

Therefore, π is not level 1 lex-age-optimal if it breaks any of the 4 scheduling rules of the

proposition for class 1.

This concludes our proof that this set of rules for class 1 are sufficient and necessary to have

level 1 lex-age-optimality.

•Step 2: Next, we will prove the induction step: Assume that this set of rules for the first k

classes are necessary and sufficient for level k lex-age-optimality. In other words, every policy

π ∈ Πk
lex-opt follows these scheduling rules for the first k classes. Our goal is to use this assumption

to prove that a policy P is level k + 1 lex-age-optimal if, and only if, it follows these rules for

the first k + 1 classes.

1) Sufficiency: Let us consider a work-conserving policy P that satisfies the depicted set of

rules for the first k + 1 classes. We compare its performance to any work-conserving policy
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π ∈ Πwc∩Πk
lex-opt. As both policies are work-conserving, we consider the two policies P1 and π1

that are defined on the same probability space and originate from Lemma 1. Next, we provide

the following Lemma that describes the evolution of the age vector of classes i = 1, . . . , k + 1

upon a packet delivery by both π1 and P1.

Lemma 4 (Packet Delivery). Suppose that a packet is delivered at time t by both policies π1

and P1. The age vector changes at time t from ∆P1 and ∆π1 to ∆′P1
and ∆′π1 , respectively. If

∆
i,[j]
P1

= ∆i,[j]
π1
, i = 1, . . . , k, j = 1, . . . , Ji, (30)

∆
k+1,[j]
P1

≤ ∆k+1,[j]
π1

, j = 1, . . . , Jk+1, (31)

then

(∆
i,[j]
P1

)′ = (∆i,[j]
π1

)′, i = 1, . . . , k, j = 1, . . . , Ji, (32)

(∆
k+1,[j]
P1

)′ ≤ (∆k+1,[j]
π1

)′, j = 1, . . . , Jk+1. (33)

Proof: The proof can be found in Appendix D.

We can now show that P is level k+ 1 lex-age-optimal. To do so, we compare the age vector

∆i for i = 1, . . . , k + 1 on a sample-path of the policies P1 and π1. We note that for any

sample-path, ∆P1(0
−) = ∆π1(0

−). To that end, we consider two cases:

Case 1: When there are no packets deliveries by any of the policies, the age of each stream of

the first k + 1 classes increases at a unit rate.

Case 2: When a packet is delivered by π1, the evolution of the age vector of the first k + 1

classes is dictated by Lemma 4. By induction over time, we obtain for all t ≥ 0:

∆
i,[j]
P1

(t) = ∆i,[j]
π1

(t), i = 1, . . . , k, j = 1, . . . , Ji, (34)

∆
k+1,[j]
P1

(t) ≤ ∆k+1,[j]
π1

(t), j = 1, . . . , Jk+1. (35)

For any symmetric non-decreasing function pt, and for t ≥ 0, it holds from (34) and (35)

pt ◦∆i
P1

(t) = pt ◦∆i
π1

(t), i = 1, . . . , k, t ≥ 0, (36)

pt ◦∆k+1
P1

(t) ≤ pt ◦∆k+1
π1

(t), t ≥ 0. (37)
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By Lemma 1, the processes {∆P1(t), t ≥ 0} and {∆P (t), t ≥ 0} (respectively the processes

{∆π1(t), t ≥ 0} and {∆π(t), t ≥ 0}) have the same distribution. Accordingly, using (36)-(37)

and Theorem 6.B.30 in [33], we can deduce that

[{pt ◦∆i
P (t), t ≥ 0}|I ]

=st[{pt ◦∆i
π(t), t ≥ 0}|I ], i = 1, . . . , k, (38)

and

[{pt ◦∆k+1
P (t), t ≥ 0}|I ]

≤st[{pt ◦∆k+1
π (t), t ≥ 0}|I ], (39)

for all I , pt ∈ Psym and π ∈ Πwc ∩ Πk
lex-opt. The extension of (38)-(39) to the case where

π ∈ Πk
lex-opt but is not necessarily work-conserving is straightforward due to the exponential

distribution of the service time and its independence across streams and time. As it was previously

explained, due to the memoryless property offered by the exponential distribution, letting the

server to idle before a transmission will lead to unnecessary staleness of the packets. This can

be shown by a stochastic ordering argument but the details are omitted for the sake of space.

Consequently, (38)-(39) hold for any π ∈ Πk
lex-opt and, therefore, P is level k+1 lex-age-optimal.

2) Necessity: In this part, we leverage our inductive assumption for level k lex-age-optimality

and prove that every level k + 1 lex-age-optimal policy follow these 4 scheduling rules for the

first k + 1 classes. We prove this by contradiction. Specifically, let us consider a level k lex-

age-optimal policy π ∈ Πk
lex-opt. We know by our inductive assumption that π has to follow this

set of rules for the first k classes. We show that if π violates any of the 4 rules for class k + 1,

then it cannot be level k + 1 lex-age-optimal.

- Violation of Rule 1: Let us consider that π is not work-conserving for the informative packets

of class k + 1. Due to the memoryless property of the exponential distribution of the service

time and its independence across streams and time, letting the server idle before a transmission

will lead to unnecessary staleness of the available packets. This can be shown by a stochastic

ordering argument but the details are omitted for the sake of space. Accordingly, π cannot be

level k + 1 lex-age-optimal.

- Violation of Rule 2 − 4: The proof follows the same line of work done in the necessity proof

of Step 1. Specifically, and as it was previously explained, we can consider that π ∈ Πwc∩Πk
lex-opt.

Next, we consider a work-conserving policy P that satisfies the 4 scheduling rules for the first



25

k + 1 classes. Note that P and π are both work-conserving. Accordingly, we consider the two

coupled policies P1 and π1 that are defined on the same probability space and originate from

Lemma 1. From the sufficiency proof for level k + 1 lex-age-optimality, we have that for all

t ≥ 0:

∆
i,[j]
P1

(t) = ∆i,[j]
π1

(t), i = 1, . . . , k, j = 1, . . . , Ji, (40)

∆
k+1,[j]
P1

(t) ≤ ∆k+1,[j]
π1

(t), j = 1, . . . , Jk+1. (41)

Accordingly, for any symmetric non-decreasing function pt:

pt ◦∆i
P1

(t) = pt ◦∆i
π1

(t), i = 1, . . . , k t ≥ 0, (42)

pt ◦∆k+1
P1

(t) ≤ pt ◦∆k+1
π1

(t), t ≥ 0. (43)

Next, as per our inductive assumption, we have that π1 and P1 follow the same scheduling

discipline for the first k classes. Accordingly, the streams of the first k classes will have no

informative updates at the same time in both policies π1 and P1. This allows us to consider a

delivery time ts such that (i) there are no informative packets for the first k classes, (ii) the age

of streams of class k+1 are not all equal to one another, and (iii) there exist informative packets

for l1 > 0 and l2 > 0 streams of class k + 1 in the system just before ts for policy π1 and P1,

respectively. As P1 follows the 4 scheduling rules of the proposition for the first k + 1 classes,

we have l2 ≤ l1. By proceeding similarly to Lemma 3, we can show that if π1 breaks any of

the scheduling rules 2− 4 for class k + 1 at time ts, then there exists a stream j of class k + 1

such that

∆
k+1,[j]
P1

(t+s ) < ∆k+1,[j]
π1

(t+s ). (44)

Afterward, we consider the symmetric non-decreasing penalty function p′ = psum ∈ Psym and

the non-decreasing age penalty functional φ1 = φavg. By taking (44) into account, along with

(40)-(41), and the fact that the service rate µ is finite, we can affirm that there exists a time

interval T ⊆ [0,∞) such that

p′ ◦∆k+1
P1

(t) < p′ ◦∆k+1
π1

(t), ∀t ∈ T. (45)
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By Lemma 1, we have that the processes {∆P1(t), t ≥ 0} and {∆P (t), t ≥ 0} (respectively the

processes {∆π1(t), t ≥ 0} and {∆π(t), t ≥ 0}) have the same distribution. By taking this into

consideration, and by using (42), (43), and (45), we obtain:

[{pt ◦∆i
P (t), t ≥ 0}|I ]

=st[{pt ◦∆i
π(t), t ≥ 0}|I ], i = 1, . . . , k, (46)

and

E[φ1({p′ ◦∆k+1
P (t), t ≥ 0}|I )]

<E[φ1({p′ ◦∆k+1
π (t), t ≥ 0}|I )]. (47)

Therefore, π is not level k + 1 lex-age-optimal if it breaks any of the 4 scheduling rules of the

proposition for class k + 1.

By Definition 10, the PP-MAF-LGFS policy is the only policy that satisfies the scheduling

rules depicted in this proposition for the first k classes simultaneously for any k = 1, . . . , I .

Accordingly, the PP-MAF-LGFS policy is lex-age-optimal, which concludes the proof of the

theorem.

APPENDIX B

PROOF OF LEMMA 2

Let us denote by W 1
j (t) = max{S1,j

n : A1,j
n ≤ t} the time-stamp of the freshest packet that has

arrived to the queue of stream j of class 1 at time t. Since the generation/arrival sequences are

synchronized across streams within each class, there exists a W 1(t) such that W 1
j (t) = W 1(t)

for j = 1, . . . , J1. We distinguish between three cases that can happen at time t. The proof of

Case 3 is adopted from the proof of Lemma 2 of [17]. For the sake of completeness, we provide

a proof of all 3 cases.

1) Case 1: There was no transmission of packets for class 1 by policy P1, or a non-informative

packet of class 1 has just finished transmission. In other words, prior to time t, policy P1 has

already finished the transmission of all class 1’s informative packets. To that end:

(∆
1,[j]
P1

)′ = ∆
1,[j]
P1

= t−W 1(t), j = 1, . . . , J1. (48)

On the other hand, in policy π1, the delivered packet can be any packet from any information

stream. Consequently, we can conclude:

∆1,[j]
π1
≥ (∆1,[j]

π1
)′ ≥ t−W 1(t), j = 1, . . . , J1. (49)
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Therefore, (19) holds for this case.

2) Case 2: An informative packet belonging to a stream of class 1 finishes transmission by

policy P1 at time t. On the other hand, policy π1 delivers a non-informative packet of class 1 or

a packet belonging to one of the I− 1 remaining classes at time t. Consequently, (∆1
π1

)′ = ∆1
π1

and (19) holds trivially in this scenario.

3) Case 3: An informative packet belonging to a stream of class 1 finishes transmission by

both policies P1 and π1 at time t. By definition, the following always holds:

∆1,j
P1
≥ (∆1,j

P1
)′ ≥ t−W 1(t), j = 1, . . . , J1, (50)

∆1,j
π1
≥ (∆1,j

π1
)′ ≥ t−W 1(t), j = 1, . . . , J1. (51)

We recall that P1 schedules the stream of class 1 with the highest age. Consequently, the stream

of class 1 having the age ∆
1,[1]
P1

is the one that finishes transmission at time t by P1. Since the

transmitted packet has W 1(t) as time-stamp, the age of this stream becomes the smallest among

the streams of class 1. To that end,

(∆
1,[J1]
P1

)′ = t−W 1(t). (52)

As there is only one server, the age of the remaining J1 − 1 streams of class 1 stay the same.

By taking this into account, along with (52), we get:

(∆
1,[j]
P1

)′ = ∆
1,[j+1]
P1

, j = 1, . . . , J1 − 1. (53)

On the other hand, since the packet delivered by π1 can belong to any stream of class 1, the

following always holds:

(∆1,[j]
π1

)′ ≥ ∆1,[j+1]
π1

, j = 1, . . . , J1 − 1. (54)

Combining (18), (53) and (54), we obtain:

(∆1,[j]
π1

)′ ≥ ∆1,[j+1]
π1

≥ ∆
1,[j+1]
P1

= (∆
1,[j]
P1

)′, j = 1, . . . , J1 − 1. (55)

Also, using (51) and (52), we can deduce that (∆
1,[Ji]
π1 )′ ≥ t−W 1(t) = (∆

1,[Ji]
P1

)′ which concludes

the proof.
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APPENDIX C

PROOF OF LEMMA 3

To prove this lemma, we recall that (25) always holds from our sufficiency results on P . Next,

we distinguish between 3 cases.

Case 1: Suppose that π1 breaks Rule 2 and delivers at time ts a packet that does not belong to

class 1. We know that P1 will deliver at time ts an informative packet for one of the l2 streams

belonging to class 1. Consequently, (27) holds trivially in this case.

Case 2: Suppose that π1 delivers a packet from class 1. However, at time ts, π1 breaks Rule 3

for class 1 and delivers a packet that does not belong to the stream of class 1 with the highest

age. To tackle this case, we define the rank of a stream within a class.

Definition 12. Rank of a stream: The rank of a stream (i, j) within the class i is defined as its

position in the ordered age vector [∆i]. In other words, if stream (i, j) has a rank 1 ≤ r ≤ Ji,

then:

• There exist Ji − r streams in the same class having an age that is smaller or equal to ∆i,j .

• There exist r − 1 streams in the same class having an age that is larger or equal to ∆i,j .

We know that P1 delivers the freshest packet from the stream of class 1 with the highest age at

time ts (i.e., the stream with rank 1). Therefore, after delivery, the served stream will have the

smallest age among all streams of class 1. Moreover, the age of the remaining J1− 1 streams of

class 1 is not altered at the delivery time. Accordingly, these J1 − 1 streams gain a single rank

in the sorted age vector [∆1
P1

]. On the other hand, let us suppose that the served stream by π1

has a rank r > 1 in the sorted age vector [∆1
π1

]. After being served, this stream will have a rank

r′ ≤ r. Consequently, r′− r streams will gain a rank at time ts and the rank of all the remaining

streams stays the same. Therefore, we can assert that (27) holds. We provide in the following

an example to showcase this. Suppose that the ordered age vector of class 1 just before ts is:

[∆1
π1

](t−s ) = (10, 9, 8, 1),

[∆1
P1

](t−s ) = (10, 9, 8, 1). (56)

Suppose that the age of the available informative packets of class 1 is equal to 1 at time ts. If

we consider that π1 delivers a packet from stream (1, [3]), and knowing that P1 will deliver a

packet from stream (1, [1]), we get:

[∆1
π′1

](t+s ) = (10, 9, 1, 1)
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[∆1
π1

](t+s ) = (9, 8, 1, 1) (57)

Accordingly, we can easily see that j = 1 or j = 2.

Case 3: Suppose that π1 delivers a packet from the stream of class 1 with the highest age at

time ts. However, suppose that π1 breaks Rule 4 for class 1 and does not deliver the freshest

available informative packet. Accordingly, at time ts, the served stream by P1 will have a strictly

smaller age when compared to the stream served by π1. Consequently, (27) holds.

APPENDIX D

PROOF OF LEMMA 4

We proceed with our proof by distinguishing between two possible scenarios at time t:

• The served packet by π1 is an informative packet belonging to any of the first k classes: We

recall that, as per our inductive assumption till level k, policy π1 and P1 follow the same

set of scheduling rules for the first k classes. Accordingly, when an informative packet from

one of these classes is delivered by π1, the same packet (or an informative packet of another

stream of the same class that has the same age) is delivered by P1. Consequently, we can

affirm the validity of (32). Moreover, as the age vector of class k + 1 remains unchanged

for both policies in this case, (33) holds naturally.

• The served packet by π1 is not an informative packet belonging to the k first classes: As

π1 and P1 follow the same set of scheduling rules for the first k classes, this case can

only occur when the buffers of streams belonging to the first k classes are either empty or

contain non-informative packets for both policies. Therefore, (32) holds naturally. Next, to

obtain (33), we can proceed similarly to Lemma 2 for class k+ 1. The details are therefore

omitted for the sake of space.
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