Age-Optimal Updates of Multiple Information Flows

Yin Sun
Dept. ECE, Auburn University

Joint work with Elif Uysal-Biyikoglu, Sastry Kompella
Prior Art: Single-flow Networks

- **Last-Generated, First-Served (LGFS) policy** is (near) age-optimal in stochastic order [Bedewy-Sun-Shroff ‘ISIT2016,2017]
- **Pro:** These results are quite general, they hold for
 - Arbitrary generation times, arbitrary arrival times
 - Minimizing the age process \(\{\Delta(t), t \geq 0\} \) in stochastic ordering
 - Minimizing any **increasing functional** \(p(\{\Delta(t), t \geq 0\}) \) of age process in stochastic ordering
 - Special case: LCFS-type policies for in-order arrivals

Single-hop multi-channel network

Multi-hop network
What is Age Penalty Functional?

- **Age penalty functional** $p(\{\Delta(t), t \geq 0\})$:
 Increasing mapping from the age process $\{\Delta(t), t \in [0, \infty)\}$ to a real number.
 - Larger age process \Rightarrow higher penalty

- Previous age metrics as examples:
 - Time-avg. age: [Kaul-Yates-Gruteser’12, etc.]
 \[
 p_1(\{\Delta(t), t \geq 0\}) = \frac{1}{T} \int_0^T \Delta(t) dt
 \]
 - Time-avg. age penalty function: [Sun-Uysal-Yates-Koksal-Shroff’16, etc.]
 \[
 p_2(\{\Delta(t), t \geq 0\}) = \frac{1}{T} \int_0^T h(\Delta(t)) dt
 \]
 - Age tail distribution
 \[
 p_3(\{\Delta(t), t \geq 0\}) = \frac{1}{T} \int_0^T 1_{\{\Delta(t) \geq b\}} dt
 \]
Prior Art: Single-flow Networks (II)

Single-flow multi-channel network

- **Last-Generated, First-Served (LGFS) policy** is (near) age-optimal in stochastic order [Bedewy-Sun-Shroff 'ISIT2016,2017]

- **Pro:** These results are quite general, they hold for
 - Arbitrary generation times, arbitrary arrival times
 - Minimizing the age process \(\{\Delta(t), t \geq 0\} \)
 - Minimizing any increasing functional \(p(\{\Delta(t), t \geq 0\}) \) of age process
 - Special case: LCFS-type policies for in-order arrivals

- Complement age analysis
- How about multi-flow networks?
This work: Multi-flow, Multi-channel Networks

- In LGFS, the last generated packet is served the first
 - Ordering the packets from a single flow

- Difficulty: How to compare the packets from multiple flows?
System Model: Notations

- Multiple sources-destination pairs, multiple servers
- Packet i of flow n is generated at time $S_{n,i}$, arrives at time $A_{n,i}$, and is delivered at time $D_{n,i}$
- **Age of Information**: The time difference between the current time t and the generation time of the *freshest* received sample

$$\Delta_n(t) = t - \max\{ S_{n,i} : D_{n,i} \leq t \}$$
The scheduler decides \textit{which sample in the queue to send, and send on which server}

- Preemptive policy:
 One sample can \textit{interrupt} the transmission of another sample

- Causal policy:
 Scheduler makes decisions based on history and current information
Stochastic Ordering

- **Stochastic ordering of random variable**
 - means "ordering of random variables in distribution"
 \[X \leq_{st} Y \Leftrightarrow \Pr(X > t) \leq \Pr(Y > t), \ \forall \ t \in \mathbb{R} \]
 \[\Leftrightarrow \mathbb{E}[p(X)] \leq \mathbb{E}[p(Y)] \]
 holds for all non-decreasing function \(p \)

- **Stochastic ordering of stochastic process (stronger)**
 - means "ordering of stochastic processes in distribution"
 \[\{X(t), t \geq 0\} \leq_{st} \{Y(t), t \geq 0\} \]
 \[\Leftrightarrow \mathbb{E}[\phi(\{X(t), t \in [0, \infty)\})] \leq \mathbb{E}[\phi(\{Y(t), t \in [0, \infty)\})] \]
 holds for all non-decreasing functional \(\phi \)
Age Penalty Function of Multiple Sources

- **Age penalty function:** $p \circ \Delta = p(\Delta) = p(\Delta_1, \ldots, \Delta_N)$
 - Level of “dissatisfaction” for having stale data at multiple receivers
 - Examples:

$$p_{\text{avg}}(\Delta) = \frac{1}{N} \sum_{n=1}^{N} \Delta_n \quad p_{\text{max}}(\Delta) = \max_{n=1,\ldots,N} \Delta_n \quad p_{l\text{-norm}}(\Delta) = \left[\sum_{n=1}^{N} (\Delta_n)^l \right]^{\frac{1}{l}}, \ l \geq 1$$

- **Symmetric, non-decreasing, and time-dependent** age functions:
 - Define $\mathcal{P}_{\text{sym}} = \{p : [0, \infty)^N \rightarrow \mathbb{R} \text{ is symmetric and non-decreasing}\}$
 - We allow the age penalty function $p_t \in \mathcal{P}_{\text{sym}}$ to vary over time

$$p_t \circ \Delta(t) = p_t(\Delta(t)) = p_t(\Delta_1(t), \ldots, \Delta_N(t))$$

- Associated stochastic process under policy $\pi : \{p_t \circ \Delta_\pi(t), t \geq 0\}$

- **Goal:** find scheduling policy to minimize $\{p_t \circ \Delta_\pi(t), t \geq 0\}$ in distribution (stochastic ordering of stochastic process)
Scheduling Policy Design

- How to compare the packets from multiple flows?
 Maximum Age First (MAF) discipline
 - The flow with the maximum age is served the first
 [Li-Eryilmaz-Srikant’15, Kadota-Uysal-Singh-Modiano’16, Hsu-Modiano-Dua’17]

- MAF + LGFS = Maximum Age First, Last Generated First Served (MAF-LGFS) policy:
 - The last generated packet from the flow with the maximum age is served the first.
Single Server, Exponential Service Times

• **Assumption: (Synchronized Generations and Arrivals)** There exist two sequences \(\{S_1, S_2, \ldots \} \) and \(\{A_1, A_2, \ldots \} \) such that

 \[S_{n,i} = S_i, \quad A_{n,i} = A_i \]

 for all packet \(i \) and flow \(n \).

Theorem: If (i) packet generation and arrival times are synchronized across the flows, (ii) there is a single server, (iii) i.i.d. exponential service times, then for all \(p_t \in P_{sym} \) and all \(\{S_1, S_2, \ldots, A_1, A_2, \ldots\} \), the preemptive MAF-LGFS policy minimizes \(\{p_t \circ \Delta_\pi(t), t \geq 0\} \) in distribution among all causal policies, i.e.,

\[
\{p_t \circ \Delta_{prmp, \ MAF-LGFS}(t), t \geq 0\} \leq_{st} \{p_t \circ \Delta_\pi(t), t \geq 0\}, \quad \pi \in \Pi
\]

where \(\Pi \) is the set of causal policies.

The first to handle **symmetric, non-decreasing**, and **time-dependent** age penalty functions.
Single-server v.s Multi-server Scheduling

- **Single-server systems:** Optimal scheduling is achievable
 - Deterministic scheduling:
 - Average delay: SRPT [Schrage’68, Smith’78]
 - Stochastic scheduling:
 - Weighted average delay: c-μ rule [Smith’56], Gittins index [Gittins’79], Klimov’s model [Klimov’74]

- **Multi-server systems:** Optimal scheduling is difficult!!
 - Deterministic scheduling:
 - Average delay: NP hard for ≥ 2 servers [Leonardi, Raz’97]
 - Stochastic scheduling:
 - Average delay: “Notoriously hard” [Weiss’90’92’95], [Glazebrook et al’99]
 - Limiting regimes: Large system limits, heavy traffic limits, ...

Our idea: Seek for near age optimality
Age Lower Bound

- **Age of Information:**
 \[\Delta_n(t) = t - \max\{S_{n,i} : D_{n,i} \leq t\} \]

 - Deliver time

- **Age of Served Information:** Age lower bound
 \[\Xi_n(t) = t - \max\{S_{n,i} : V_{n,i} \leq t\} \]

 - Service starting time

-source \(s_n \)

- queue

- server

- destination \(d_n \)
Scheduling Policy Design

- How to compare the packets from multiple flows? **Maximum Age of Served Information First (MASIF) discipline**
 - The flow with the maximum Age of Served Information is served the first

- **MASIF + LGFS = Maximum Age of Served Information First, Last Generated First Served (MAISF-LGFS) policy:**
 - The last generated packet from the flow with the maximum Age of Served Information is served the first
Multiple Servers, NBU Service Times

- **New-Better-than-Used (NBU) distribution:**
 \[
 \Pr[X > t] \geq \Pr[X > t + \tau | X > \tau], \quad \forall \ t, \tau \geq 0.
 \]

- E.g., exponential, geometric, gamma, negative binomial distributions

Theorem: If (i) packet generation and arrival times are synchronized across the flows, (ii) i.i.d. NBU service times, then for all \(p_t \in \mathcal{P}_{\text{sym}} \) and all \(\{S_1, S_2, \ldots, A_1, A_2, \ldots\} \), the non-preemptive MAISF-LGFS policy is near optimal for minimizing \(\{p_t \circ \Delta_\pi(t), t \geq 0\} \) in distribution among all non-preemptive causal policies, i.e.,

\[
\{p_t \circ \Xi_{\text{non-prmp}}, \text{MAISF-LGFS}(t), t \geq 0\} \leq_{\text{st}} \{p_t \circ \Delta_\pi(t), t \geq 0\}, \quad \pi \in \Pi_{np}
\]

where \(\Pi_{np} \) is the set of non-preemptive causal policies.

MASIF-LGFS is near age-optimal in distribution
Small Sub-optimality Gap

- Example: average age $p_{\text{avg}}(\Delta) = \frac{1}{N} \sum_{n=1}^{N} \Delta_n$, define

$$\bar{\Delta}_\pi = \lim_{T \to \infty} \sup_{T} \frac{1}{T} \mathbb{E}[\int_{0}^{T} p_{\text{avg}} \circ \Delta_\pi(t) dt]$$

Corollary: Under the above conditions, it holds that

$$\min_{\pi \in \Pi_{np}} \bar{\Delta}_\pi \leq \bar{\Delta}_{\text{non-prmp}}, \text{MASIF-LGFS} \leq \min_{\pi \in \Pi_{np}} \bar{\Delta}_\pi + \mathbb{E}[X]$$

MASIF-LGFS is within a small constant gap from the optimum. The gap is invariant of arrival process and number of servers.
Numerical Results

Max age, 3 flows, 1 server, exp distr.

Prmp, MAF-LGFS is age-optimal.

Its age is finite even for $\rho > 1$

Avg. age, 50 flows, 3 servers, NBU distr.

Non-prmp, MASIF-LGFS is near age-optimal.

Remove stale packets cannot greatly reduce age.

Much better than MAF-LGFS
Relation with Maximum Age Matching

- **Maximum Age First:**
 - Once a packet starts service, it will stay in the server for a while.
 - The flow still has the maximum age, and will be assigned to other servers
 - Waste server resources

- **Maximum Age of Served Information First:**
 - Once a packet starts service, the flow’s age of served information drops to a small value
 - Another flow with a large age of served information will be assigned to the next idle server
 - discrete-time version: Maximum age matching
Summary

- Multi-flow, single-server, exp service times:
 - MAF-LGFS is age-optimal
- Multi-flow, multi-server, NBU service times:
 - MASIF-LGFS is near age-optimal
 - *Symmetric, non-decreasing*, and *time-dependent* age penalty functions
- Future work:
 - Independent, non-i.d. service times
 - Replication over multi servers
 - Transmission error
- Limitation of sample-path methods:
 - Synchronized arrivals, symmetric age metrics