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Abstract. We study the density and approximation properties of weak Markov systems
defined on a closed interval [a, b].
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1. INTRODUCTION

In [10], based on earlier work of Borwein, Bojanov, et al. [1, 2, 3], we studied the density
and approximation properties of Markov systems of continuous functions defined on a
closed interval [a, b]. Here we will extend some of the results of [10] to the weak Markov
system setting.

This article is organized as follows: in this section we introduce some of the basic
definitions and results from the theory of weak Markov systems. For definitions and
results not mentioned here, or for clarification of details, the reader is referred to [10],
the books [4, 7, 13, 14, 19], and the survey papers [5, 17]. In Section 2 we generalize to
weak Markov systems the differentiation operator introduced in Section 2 of [10]. This
generalization is very straightforward, except for the proof of Proposition 3 (a). The results
of Section 3 of [10] are extended in Sections 3 and 4: In Section 3 we develop a theory of
Chebychev polynomials for weak Markov systems. Although now these polynomials are
not, necessarily unique, they still have useful and interesting properties. In particular we
remark on Theorem 4(d), which shows the existence of disjoint intervals of equioscillation.
The density results of [10, Section 4], which are given in terms of the distribution of zeros
of the Chebychev polynomials, have their counterpart in Section 4 of the present paper.
Although the proofs were motivated by arguments used in [10], the task was complicated
by the lack of uniqueness of the Chebychev polynomials and by the possibility that the
functions in the system may be linearly dependent on a subset of the interval of definition.
Finally, in Section 5 we obtain Jackson type theorems. Here the essential idea is to convolve
with the Gauss kernel, apply the results of [10] to the Markov systems thus obtained, and
then pass to the limit to recover the original system.

Let A be a set of real numbers, let F'(A) denote the set of all real-valued functions
defined on A, let G,, := {go, - - ., gn} be a sequence of functions, or system, and let S(G,,)
denote the linear span of {gg,...,gn}. A system of functions G, C F(A) is called a
Chebycheuv system or T'—system if A contains at least n+ 1 points, and all the determinants
of the square collocation matrices

U( go, - ,_tgn ) . det(gj(ti); OS’%]S”)

th"':

with tg < ... < t, in A, are positive. If all these determinants are merely nonnegative, and,
in addition, the functions in G,, are linearly independent on A, then G, is called a weak
Chebychev system or WT -system. A system G,, is called a Markov system (weak Markov
system ) if G, = {go, ..., gk} is a Chebychev system (weak Chebychev system) for each
k=0,1,...,n. If go = 1, we say that G,, is normalized. If G := {go, 91,92, ...} C F(A)
and G,, is a (normalized) Markov system (weak Markov system) for all n > 0, we say that
G is a (normalized) infinite Markov system (infinite weak Markov system).

Let f(t) be a real valued function defined on a set A of n > 2 elements. A sequence
rg < --- < x,_1 of elements of A is called a strong alternation of f of length n, if either
(—1)%f(x;) is positive for all i, or (—1)f(x;) is negative for all 4. It is well known that if
G, is a weak Chebychev system on A, then no function in S(G),) has a strong alternation
of length n + 2 on A [14, 18, 19]. This property will be used in the proof of Theorem 5
below.

Let I(A) denote the convex hull of A. We call G,, C F(A) representable if for all
¢ € A there is a basis U, of S(G,), obtained from G,, by a triangular transformation
(i. e., ug(z) = go(x) and u; — g; € S(gi—1),1 < i < n); a strictly increasing function h
(an “embedding function”) defined on A, with h(c) = ¢; and a set P, := {p1,...,pn}
of continuous, increasing functions defined on I(h(A)), such that for every ¢ € A and
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In this case we say that (h, ¢, P, U,) is a representation of G,,. An n—dimensional linear
space S, is called representable, if it has a representable basis, and (h, ¢, P, U,,) will be
called a representation for S, if it is a representation for some basis of S, .

The main result of [20] implies that a Markov system on an open interval is repre-
sentable. However not every Markov system on a closed interval is representable. The
representability of weak Markov systems can be characterized in terms of the so—called
Condition E and property (M):

Let S(G,,) denote the linear span of G,,. We say that G,, satisfies condition E if for all
¢ € I(A) the following two requirements are satisfied:

(a) If Gy, is linearly independent on [¢, 00) U A then there exists a basis {ug, ..., u,} for
S(Gy), obtained by a triangular linear transformation, such that for any sequence
of integers 0 < k(0) < --- < k(m) < n, {ug)}ity is a weak Markov system on
AnN|e, 00).

(b) If G,, is linearly independent on (—oo, ¢JN A then there exists a basis {vg, ..., v, } for
G(Z,), obtained by a triangular linear transformation, such that for any sequence
of integers 0 < k(0) < --- < k(m) < n, {(=1)""* My }m, is a weak Markov
system on (—oo, ] N A.

Let P, := {p1,...,pn} C F(I), where I is an interval, let h be a real-valued function
defined on A such that h(A) C I, and let 29 < --- < z, be points of h(A). We say
that P, satisfies property (M) with respect to h at xg < --- < z,, if there is a sequence
{ti; :1=0,...,n;5=0,...,n—1} in h(A) such that

(a) 75 = tog(j = 0,...,n);

(b) tij <tiy1; <tijyr(i=0,n—1;5=0,...,n—i)

(¢) Fori=1,...,n,and j =0,...,n —1 the function p;(x) is not constant at t; ;.
We say that a function f is not constant at a point ¢ € (a, b) if for every € > 0 there are
points x1, 2 € (a,b) with ¢ — e < 21 < ¢ < 22 < ¢+ ¢, such that f(z1) # f(z2).
Theorem A. [16] Let G,, C F(A). Then the following statements are equivalent:

(a) Gy is a normalized weak Markov system that satisfies Condition (E).

(b) G, is representable, and there is a representation (h,c, P,,U,) of G, such that P,

satisfies property (M) with respect to h at some sequence xg < - -+ < z,, in h(A).

(c) Gy, is representable, and for every representation (h,c, P,,Uy,) of Z,, P, satisfies
Property (M) with respect to h at some sequence xg < -+ < Ty, in h(A).

Note that the original statement of Theorem A contained two typographical errors (A
instead of h(A)), which we have corrected above.

Since Condition E is usually difficult to verify, we give another condition for repre-
sentability which is general enough for our purposes. It will shed some light on an addi-
tional assumption we will make in Section 4.

Theorem 1. Let A be a set of real numbers such that a :=inf A € A andb:=supA € A,
and let G,, be a normalized weak Markov system on A. Then G, is representable if and only
if there are numbers o < a and 8 > b, and a weak Markov system F,, on [a,a]U AU b, (]
such that for each 0 < k < n, g is the restriction to A of fi, and the functions in F,, are
linearly independent on each of the intervals [« a] and [b, (].

Proof. If | there are numbers « < a and § > b, and a weak Markov system F), on
[o,a] U A U [b, 8] such that for each 0 < k < n, gi is the restriction to A of fi, and



the functions in F), are linearly independent on each of the intervals [a, a] and [b, ],
the assertion follows directly from [6, Proposition 5.1 and Theorem 5.8]. To prove the
converse, let ¢ € A, and let (h, ¢, P,,U,) be a representation for G,,. It suffices to prove
the assertion for the system U,,. Let r be a strictly increasing function on [a, a] U AU [b, ]
that coincides with A on A, and for 1 < k <n let g; be a continuous increasing function
on [r(a), ()], strictly increasing on each of the intervals [a, a] and [b, 8], that coincides
with pg on [r(a), r(b)] = [h(a), h(b)]. Let vg =1,

r(x)
vy () :/ dq (t),

and

r(z) prt1 th—1
vk(x):/ // dan(ts) - -das(tz) das(t),  2< k<.

It is clear that vy = uy for each 0 < k < n, and from Theorem A or the Lemma of [15] we
readily conclude that V, is a normalized weak Markov system. Since the functions g are
strictly increasing on each of the intervals [« a] and [b, §], a simple inductive argument
involving the number of integrations readily shows that the functions in V,, are linearly
independent on each of the intervals [«, a] and [b, []. O

An infinite weak Markov system G will be called finitely representable if G,, is repre-
sentable for each n > 0. At present, it is not known under what conditions an infinite
(weak) Markov system defined on a set A is representable. In other words, the problem
of finding conditions under which for every ¢ € A there is a strictly increasing function h
defined on A with h(c) = ¢, an infinite sequence P := {p1, pa, ...} of continuous, increasing
functions defined on I(h(A)), and an infinite sequence of functions U := {ug, u1, ...}, such
that (h, ¢, Py, U,) is a representation of G,, for each n > 0, is still open.

2. RELATIVE DERIVATIVES FOR WEAK MARKOV SYSTEMS

The following are generalizations of [10, Proposition 1 and Proposition 2] and have
exactly the same proof.

Proposition 1. Let G, be a representable normalized weak Markov system on a set A,
n > 0, and let (h,c, Py, U,) be a representation for G,. Then u; depends only on g1 and
c. 1If, moreover, p1(c) = 0, then also py o h depends only on g1 and c.

Proposition 2. Let G, be a representable normalized weak Markov system of continuous
functions on a closed interval [a,b] with n > 1, and let (h, ¢, P,,Uy,) be a representation
for the restriction to (a,b) of the functions in Gy,. Then, for x € [a,b],

(@) - [ " dai ()

and, if n > 2,

xT h(tl) tr—1
uk<x>:// / dp(ty) ---dps(ts) dgi(t), 2 <k <n.

Let G,, be a representable normalized weak Markov system of continuous functions on
a closed interval [a, b]. A representation (h, ¢, P,,U,) of G,, such that h is continuous at
a, left—continuous on (a, b], and p1(¢) = 0, will be called standard. Repeating verbatim the
discussion in the second paragraph that follows the proof of [10, Proposition 2|, we see
that every representable weak Markov system of continuous functions on a closed interval
[a, b] has a standard representation for every c € [a, b].



Let I denote an interval and g a continuous real-valued strictly increasing function on
1. If f is a real-valued function on I and = € I then, provided the limit exists, we define:

[zt h) — fz)
D = lim ———F———=
J@) = ) —o(a)
The operator D is called the relative derivative with respect to g.
Given a representation (h, ¢, P,,Uy,) of a weak Markov system G,, on [a,b] with n >

1, we define the operator H, on S(G)) (the weak relative derivative with respect to
(h, ¢, Py, Upy)), exactly as in [10]:

Hnuo = 0, Hnul =1.
Ifn>2,

h(x)
H,—LUQ(I‘) Z:/ dpQ(tQ)
If n >3,

h(z) pto th—1
H,up(z) ::/ / / dpi(ty) - - - dpa2(t2), 3 <k < n.

And for every f € S(G,) by linearity.
We then have:

Proposition 3. Let G := {1,91,92,...} be a finitely representable normalized infinite
weak Markov system on a closed interval [a,b], let Gy, := {go,...,9n} C G withn > 1,
let ¢ € [a,b], and let H,, be the weak relative derivative with respect to some standard
representation (h,c, P,,U,) of G,,. Then
(a) {Huu1, Hya,---} is a finitely representable normalized infinite weak Markov sys-
tem on [a,b].
(b) If the functions gy are all continuous on [a,b], then

ug(z) = uo(z) /m Huup(t)dgi(t), z€a,b], 1<k<mn,

(c) If, moreover, gy is strictly increasing, then the operator H, depends neither on n
nor on ¢, nor on the representation, but only on g.

Proof. Let (h,c¢, Py, Uy,) be a representation of G,. From Theorem A we know that P,
satisfies property (M) with respect to h at some sequence zg < --+ < @y, in hfa,b]. Let
Pn1:={p2,-...pn} and U1 := {Huy, ..., Hy,}; then (h,c, P,_1,U,_1) is a repre-
sentation of {H,g1,..., Hygn}, and we readily see that P, satisfies property (M) with
respect to h at some sequence sg < --+ < 8, in hla,b]. Applying again Theorem A, (a)
follows.

Part (b) follows directly from Proposition 2. The proof of part (c) is almost identical
to that of the corresponding portion of [10, Proposition 3], and will be omitted. O

Just as in [10], applying [10, Lemma 1], Proposition 3 (instead of [10, Proposition 3]),
and bearing in mind the argument used to prove the latter part of Proposition 3, we obtain
the following generalizations of [10, Theorem 1 and Theorem 2]:

Theorem 2. Let G := {1,91,92...} C C([a,b]) be a finitely representable normalized
infinite weak Markov system on [a,b], let G, :=={ga,...,9n} C G withn > 1, and assume
that g1 is strictly increasing. Then there is a unique linear operator D defined on S(G)
and depending only on g1, such that if (h,c, P,,U,) is a standard representation of G,
with associated operator H,, then D= H, on S(G,).

As in [10], D will be called the generalized derivative associated with the system G.
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Theorem 3. Let G := {1,¢1,92,...} C C([a,b]) be a finitely representable normalized
infinite weak Markov system on [a,b] , let Gy := {goy. .-, gn} C G with n > 1, assume
that gy is strictly increasing, and let (h,c¢, P,,U,) be any standard representation of Gy,.
Then the generalized derivative D associated with G has the following properties:

(a) The functions Dgy. are continuous at a, left—continuous on (a,b], and if D denotes
the relative derivative with respect to g1, and f € S(G), then Df(z) = Df(x) a.
e. in [a,b].

(b)
up(x) :uo(x)/ Duy(t)dgy(t), =€ a,b], k> 1.

(¢) {Dg1,Dgs, Dgs---} is an normalized infinite weak Markov system on [a, b].
(d) For any n > 1, if (h,c, Py, Uy,) is any standard representation of G, then

5110 == 0, 5’&1 =1.
If n>2,

- h(x)
DUQ(I‘) :/ dpQ(t2)
c
If n > 3,

- h(I) t2 tr—1
Duk@):/ // dpe(te) -+~ dpa(ts), 3 <k <.

We end this section with the following generalization of [10, Proposition 4]. It has the
same proof, except that we need to use Theorem 3(b) instead of [10, Theorem 2(b)].

Proposition 4. Let G, be a a representable normalized weak Markov system of continuous
functions on [a, b] such that gy is strictly increasing, and let f € S(Gy). Then, for every
Zg, 1 € [a, b],

far) = flan) + [ " DA don (0)

3. GENERALIZED CHEBYCHEV POLYNOMIALS

For the case of a compact interval, Haar’s famous unicity theorem says that an n—
dimensional subspace S of C[a, b] has a unique element of best approximation in the norm
of the supremum for each f € C([a,b]), if and only if S has a basis that is a Chebychev
system on [a,b] [7, 8]. Moreover, if f & S and g is the best approximation to f in S,
then the function e := f — ¢ has an equioscillation of length n + 1, i. e., there are points
a<zg<---<xn, <bsuch that

e(zi) =e(=1)"|le|, i=0,....,n; e=1 o e=—1.

Jones and Karlovitz [11] characterized those finite-dimensional subspaces S of Cla, b]
having the property that every function f € Cf[a,b] has at least one element of best
approximation g in S such that the error function f — g has an equioscillation of length
n + 1. This result was generalized to functions defined in more general sets by Deutsch,
Niiremberg and Singer [9], and was further extended by Kamal. His result, which we will
use in the sequel, is the following:
Theorem B. [12, Theorem 2.9] Let @ be a locally compact totally ordered space that
contains at least (n + 1) points, and let N be an n-dimensional subspace of Co(Q). Then
N is a weak Chebychev subspace if and only if for each f € Co(Q) there is g € N such
that || f — g|| = d(f, N) and f — g equioscillates at (n+1) points of Q.

We can now prove
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Proposition 5. Let G, be a normalized representable weak Markov system in Cla,b].
Then there is a function T,, € Cla,b] such that

(a) T, € S(G).

(b) T, has an equioscillation of length n + 1.

(¢) | Tnl =1 and T,(b) > 0.

Proof. Let Ty = 1. If n > 0, then by Theorem B there is an element of best approximation
Gn to gp from S(G,—1), such that the error function g, — ¢, has an equioscillation of length
n+ 1. Setting T}, := an(gn — tn), where ay, is chosen so that | T, || = 1 and T, (b) > 0, the
assertion follows. (|

A function that satisfies the conclusions of Proposition 5 will be called a generalized
Chebychev polynomial associated with G, and denoted by T,. Note that if G,, is not a
Chebychev system the functions 7,, may not be unique. If G is an normalized infinite
weak Markov system, we may generate a sequence {Tp,T1,T5,...} by selecting one such
T,, for each integer n. Such a sequence will be called a family of generalized Chebychev
polynomials associated with G.

The following theorem should be compared with [10, Corollary 1], which is the corre-
sponding statement for Markov systems.

Theorem 4. Let G be a normalized infinite weak Markov system in Cla,b], and let
{To, Ty, Ts, ...} be a family of generalized Chebychev polynomials associated with G. Then,
for each n > 0 we have:

(a) S{To,....Tn}) = S(Gn)

(b) Ifyo < ... < yn is an equioscillation for T, then T, is monotonic in each interval

li—v )i i =1,....n.
(¢) T, is constant on [a,yo] and on [y, b].
(d) There are points do, dg , - .., dn, d such thata =do < dj < ...<d, <d} =0band

20 < ... < 2, is an equioscillation for T, if and only if z; € [di, df]; i =0,...,n.
(e) There are points c1,¢y,...,cn, ¢} such that df | < c¢; < ¢ < d; for1 <i<nmn,
and

n

T, ({0}) = lejr ;]

j=1
(f) If, moreover, G is finitely representable, then 5Tn has weakly constant sign in each
interval [y;—1,y;]; j=1,....,n.
Proof.
(a) Trivial: The functions Ty, ..., T, are linearly independent.
(b) Let us assume for example that T, (y;—1) = —1 = —T,(y;) and that T;, is not

increasing. Then there are points &, n, with y;_1 < £ <n < y;, such that T,,(¢) >
T, (n). Setting 6 := (T, (n)+T5(£))/2 we see that yo, ..., yj—1,&, 1, Yjs . - ., Yn would
be a strong alternation of length n + 3 for T}, — 9, which is a contradiction.

(¢) It d < yg and T},(d) = —T5, (o), then d, yo, ...y, is a strong alternation of length
n+2 for T,,. Otherwise, if |T,,(d)| < 1, setting § = (T, (d) + T (y0))/2, we see that
T,, — 6 would have a strong alternation of length n + 2. Thus T,,(d) = T,,(y0). In
similar fashion we see that T, (z) = T, (yn) in [yn, b].

(d) Let yo < ... < yn be an equioscillation for T}, in [a,b]. For each j = 0,...,n let
I == {z € (yj—1,yj+1) : Tn(z) = T,(y;)}, where y_1 := a and y,41 := b. Let

d; = infI;, and d; := sup I;; in view of (b) and the continuity of T;, we see
that I; = [d;,d]], whereas (c) implies that dy = a and d;; = b; it is also clear

that d;j_; < djtl <d; < d;r by construction. Moreover, if z € [a, b] is such that



|7 (z)| = 1, bearing in mind that = € [y;_1,y;] for some j, 0 < j < n + 1, we
conclude that either T,,(z) = Ty, (y;j—1) or T (z) = T,,(y;), whence either z € I;_4
or x € I;. Therefore
n
Uz
§=0

Thus, if 29 < --- < z, is an equioscillation we deduce that {zg,...,2,} C U?:O 1.
Let us assume that for some j, 0 < j < n, z; € I;, and let jo the first index for which
zjo & Ljo; then {zj,,...,2;,} C U7> jo Ly this implies that at least two consecutive
zj’s must belong to the same interval I;; but this contradicts the assumption that
2o < - -+ < z, is an equioscillation.
(e) Since Tn(djtl)Tn(dj) < 0 for each 1 < j < n, there is a point = € (djtl, d;) such
that T,(z) = 0. Thus K; := {z € (d] ,,d;) : T(x) = 0} # 0. Let ¢; := inf K
and cj := sup K;. By continuity T,(c;) = 0 = Tn(cj'), and (b) implies that

K; = [cj,cj]. Moreover, since (e) implies that 7;, is constant and nonzero on

[d;, dﬁ, it is clear that if T, (z) = 0 for some x € [a,b], then = & Uyzo[dj,dfr];
therefore x € (d;il, d;) for some j, i. e. z € Kj.
(f) Let us assume, for instance, that T,,(y;—1) = —1 = —T),(y;); therefore (b) implies

T, ({1, 1}).

that T, is increasing on [y;—1,y;]. If DT,, is nonnegative in (y;—1,y;) there must
be a point z1 € (y;_1,y;) such that DT, (z1) < 0. Since DT, is left—continuous,

there must be a point =y € (yj—1,z1) such that DT, < 0 in [zo, z1]. Applying
Proposition 4 we thus have

n@g_n@@:/mﬁn@@<o

Since T, is increasing on [y;_1, y;], we have obtained a contradiction.
O

The intervals [d;, dj] will be called equioscillation intervals of T),, the intervals [c;, cj]
will be called zero intervals of T;,, and the left endpoints ¢; of the zero intervals will be
called ¢—zeros of T,.

4. DENSITY OF INFINITE WEAK MARKOV SYSTEMS AND ZEROS OF CHEBYCHEV
POLYNOMIALS

In this section we will assume that G is a finitely representable normalized infinite
weak Markov system defined on an interval [a,b]. Clearly g; is increasing on [a,b]. If
(h,c, P,,Uy,) is a representation of G,,, then dp; = dgi; this implies that all the functions
in S(G,) must be constant on the same subintervals of [a,b] where g; is constant. To
obtain density theorems for C[a, b] we will therefore assume that g; is strictly increasing
on [a,b]. Once such a density theorem is obtained, it is easy to obtain a corresponding
density theorem valid in the case where g; is not strictly increasing. That theorem would
obtain for the subset of functions in C[a, b] that are constant on those subintervals of [a, b]
where g; is constant.

Let {T)}n>1 be a sequence of generalized Chebychev polynomials associated with G.
We define

M, :=max{|¢; —¢;—1|: 1 <i<n+1},
where ¢y, ..., ¢, are the {-zeros of T},, ¢9 = a, and ¢, +1 = b.

We will also assume that G has the following property: There are points a1, by, a <

a; < by < b such that for every n > 1, G, is linearly independent in [a,aq] U [by, b].



Although Theorem 1 implies that such points exist for each n, they depend on n, and they
may coalesce with the endpoints; for example, we could have lim, .., a1 = a. With this
additional hypothesis, the restriction of the functions in G to [a, a1]U[by, b] is a normalized
infinite weak Markov system, and we obtain the following generalization of [10, Lemma 2]:

Lemma 1. Let G satisfy the hypotheses of the previous paragraphs, let a < a; < by < b,
let f be the function defined in A := [a,a1] U [b1,b] by

0 ifzela a]
@) { 1 ifz e by, ],
and let S,, € S(G,,) denote a function whose restriction to A is an element of best approz-
imation to f in A such that f — Sy has an equioscillation of length n+2 (such a S, exists
by Theorem B). Then
(a) Sy is increasing on [ay, b1].
(b) Assume that lim, oo M,, = 0. Then there is a constant K such that

[f = Sulla < KMy /(b1 — a1),
where || - ||a denotes the norm of the supremum in A.

Proof. The proof of (a) is identical to that of [10, Lemma 2], using Theorem B instead of
the alternation theorem for Chebychev systems, Proposition 4 instead of [10, Proposition
4], and Theorem 3(c) instead of [10, Theorem 2(c)] to show that {Dgi, ..., Dgy} is a weak
Markov system.

To establish (b) we repeat the steps used in the proof of [10, Lemma 2(b)]. The only
difference is that in step (iii) we use ¢—zeros instead of zeros, and Theorem 4 instead of
[10, Corollary 1]. O

Theorem 5. Let G C Cla, b] be a finitely representable normalized infinite weak Markov
system such that g1 is strictly increasing on [a,b]. Assume there are points ai, b1, a <
ay < by < b, such that for every n > 1, G,, is linearly independent in [a,a1] U [b1,b]. Then
the following propositions are equivalent:

(a) S(G) is dense in Cla,b], in the norm of the supremum.

(b) lim, e M,, = 0.

Proof. If M, does not converge to zero as n. — oo, then there is a number » > 0 such
that for each k¥ > 0 we may choose an integer ny > 0 such that M,, > r. For each
k, let ¢j,,cj+1 be two consecutive f-—zeros of T),, such that c;, 11 —c¢j, = M,, > r,
where 1 < ji < n; depends of n,. The sequence {c;, : k > 0} will have a subsequence
{ay : k > 1} that converges to a point «q.

In summation: If M,, does not converge to zero as n — oo, then there is a number r» > 0
and sequences {r(k) : k > 1} and {c;, ,, : k > 1}, such that ¢; , +1 —¢j, ;) = My 2 1,
and lim oy = Qo-

Let
2r 8r
a:=ag+ —, f:=a0+ =,

10 10

and let kg be such that if & > kg, then Chrny — ag| < 1T_0 Assume k > kg; then Ciory €
[ag — /10,0 + 7/10]. Thus g — 7/10 < ¢;,,, < g +7/10 < o < 3, and therefore
0<B—¢jp < 9r/10. Since Cjry+1 — Cipy = T We conclude that 3 < ¢, 413 thus
[, B] C (€, y+15 Cjy)- Since c¢j, , and ¢; ., are consecutive (—zeros of T.(), this
implies that [, 3] cannot contain an ¢-zero of T).(x). From Theorem 3(e) we therefore
conclude that either [a, 3] contains one left endpoint of an equioscillation interval of 7.,
or [, 4] contains no left endpoint of an equioscillation interval of T,.(x). We will consider
the first alternative: the proof of the second alternative is similar and will be omitted.
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Assume that dTm(k) € |a, f], and let D denote the set of the remaining left endpoints
of equioscillation intervals of T,.). Thus D C [a,a] U [3,b] and D has r(k) elements.
Choosing now a < z1 < z2 < 3 < 24 < 3, let f(z) € C([a, b]) be defined by

0 xz€la,a]UIB,0]
fz):= 2 r=x1, c=13 |,
—2 T =129, x =124

and by linear interpolation elsewhere in [a, b].

Assume that for some n there is a function ¢ € S(G,) such that ||f —q|]| < 1/2. Let
k > ko, (k) > n, and let g be an element of best approximation from S(G,.)) to f. Since
S(Gh) € S(Grk)), we see that || f — g|| < [|f — q|| < 1/2. The definition of f implies that

lg(d)| <1/2, deD.
We therefore conclude that
sign[T}.xy — g](d) = signTy,(d), de€ D.

Moreover, {z1, T2, 23,74} is a strong alternation for 7,4y — g in («, ). Selecting three of
these four points appropriately and joining them to the set D, we see that T,y — g has a
strong alternation of length r(k) + 3. Since Ty(x) — g € Grx), and Gy is a weak Markov
system, and therefore cannot have a strong alternation of length larger than (k) + 1, we
have obtained a contradiction. This shows that (a) = (b).

To prove the converse let us assume, as in [10, Theorem 3|, that S(G) is not dense.

Then there is a nonzero Borel measure, u such that for every function g € S(G)

/ a(t)dut) = 0.

Let € > 0, bz, be such that a1 < by < by and az such that a; < az < by and p([asz, be]) <
u([a, b])/6. The proof now is the same as in [10, Theorem 3, (b) = (a)], with asz, bo
instead of ay, by, and Lemma 1 replacing [10, Lemma 2] because, since [a, a1] U [b1,b] C
[a, ag] U [ba, b], Lemma 1 is applicable. O

Corollary 1. If lim, .. M, = 0 for one associated family of Tchebychev polynomials,
then lim, oo M,, = 0 for every associated family of Tchebychev polynomials.

5. JACKSON TYPE THEOREMS FOR FINITE SYSTEMS

In this section we will assume that G,, C Cf[a, b] is a normalized weak Markov system
in [a,b]. Let E,(f) denote the distance from f to S(Gy) in the norm of the supremum,
andlet a:=a—1and b:=b+ 1.

For each g € G, let us define g on [g, b] as follows:

gla) if a<z<a
glz):=<¢ g(x) if a<z<b
g(b) if b<z<bh

It is clear that G, := {70, ..., gn} is a normalized weak Markov system on [a, b].
Let L(s) := \/%6752/2 and Lg(s) := kL(ks); k > 1. For every f € Cla,b] we set
f®) = fx Ly, i e.

b oo
B () = / f(8) L (x — s)ds = [ F(s)Li(x — s)ds,

where in the second integral we understand f to equal 0 outside the interval [a, b].
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Under these conditions, limy_.o f*) = f, uniformly on every closed subinterval of
(a,b), and, if d = a, or d = b, then f®*)(d) converges to %f(d). Moreover, @gc) =
{g_o(k), e, g_n(k)} is an ECT system on [a, b] [13, pag. 15]. In particular, the functions in
@ik) are an ECT system on [a,b], and ) converges uniformly to g on [a,b], for every
g € S(Gn).

Let ¢*) denote the restriction to the interval [a, b] of g*) € S(G_n(k)), and let GY) =
{g(()k), ey gy(lk)}. Each g € S(G,,) is in one-to-one correspondence with § € S(G,,), which
(for each k) is in one-to—one correspondence with g*) € § (G_n(k)), which in turn are in
one-to—one correspondence with its restrictions ¢(*):

ge— G gk s g,

However, it is clear that ¢(¥) # g % L.
We now need a slight generalization of the main result of [11]. The proof is similar.

Lemma 2. Let f € Cla,b], and let {fi.} C Cla,b] be a sequence that converges uniformly to

f in [a,b]. For each k > 1 let my, be the element of best approzimation to fi. from S(ch)).
Then there is a subsequence {kj} such that {my,} converges uniformly in [a,b] to an
element of best approzimation m to f from S(Gy). Moreover, f —m has an equioscillation.

Proof. Since || fi — mil < ||fx — 0], and therefore ||my| < 2| fxll, we see that {my} is
uniformly bounded. Since my =Y ;" ozfgl(k), there is a subsequence {ki ;} and numbers
QQ, - - -, Qp, such that af%ai, 1=0,...,nif k = ky; — oo.

Let m = Y1 , aigi, and g € S(G,,). Since m € S(Gy), we see that fr —g*) — f —g
and fx —my — f —m uniformly in [a,b]. Since || fr —mg|| < ||fr — 9®| we conclude that

1f=mll < [If =4l

i. e., m is an element of best approximation to f.
Moreover, if a <z < ... < foH < b is an equioscillation for fj, — my, then there is a

subsequence {ka ;} of {k1;} and a < zg,...,zn41 < b such that
[fre — mg)(@¥) = e(—1)"|| fe —mgll, e=1ore=—1, (constant for k = ks ;),
andwf—nm,izO,...,nifk:kzyj%oo. Thus
[ ml(w) = (-1 f —mll, e=Tore=—1.
This implies that [f — m|(z;) = —[f — m](zi31) # 0, 1 < i < n, and therefore that the
points x; are all different. O

Foreach k> 1and a <zg<...<xp41 < b, let
D" = (g (@j11) — g (@) 11 <i <m0 < j <l
let ng) be obtained from D by deleting the j** column, and dg.k) = det Dg.k), for0 <j<n.
In [10, Lemma 5] we showed that dg.k) >0 and Z?:o dg-k) > 0. Setting

(k)
NCI A
J 25" d
and
o) = sup Z a§-k)[g§k)(mj+1) - ggk)(mj)]

a<z0<.0.<Tpp1<b J=0

then, if w(f) denotes the modulus of continuity of f, we have:
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Theorem 6. Let f € Cla,b] and § := limg_oo0*). Then § < oo and
3 _
En(f) < §W(f091 155)~

Proof. Since |a§.k)| < 1 and ||g§k)|\ < |lg1|| for every k, we see that the sequence {§(*)} is
bounded; thus § = limkﬁooé(k) < o0. Let my be the element of best approximation to
f from S(G,(zk)). Since {f*®)} converges to f, uniformly in [a, b], applying Lemma 2 we
obtain a subsequence {k;} and an element of best approximation m, to f from S(Gy),
such that {my,} converges uniformly to m in [a,b]. Now, let us choose a subsequence
{k1;} of {k;} such that §*1.9) — § when j — oco. For convenience, let us denote it again

by {k}.
yIfet}fl = fog,',e>0,and let o > 0 be such that if r < rq, then w(f1;7) < £/2.
Choosing ko so that if k > ko then [6() — §| < 70/2, we have:
w(f1;0®)) <w(f1;0) +w(fi;70/2) < w(fi;0) +¢/2
and
w(f130) < w(f1;0™) +w(fiir0/2) < w(fr;0M)) +e/2.
Thus w(f o g % 6%)) = w(fog ';0) as k — co.
Applying [10, Theorem 6] to G we have:

o 3 B
EE(f) = ||f —mi| < §W(f°.‘71 L (k).
Making k — o0, the assertion follows 0

For each t € [a,b] and k > 1, let o1 ¢ be the function defined in [a, b] as follows:

(s) 0 for a<s<t
ok t(s) =
o 9 (s) =g (1) for t<s<b
If t is arbitrary but fixed, it is clear that as k — oo the function o ¢ converges uniformly
on [a,b] to
oi(s) = 0 for a<s<t
B2 guls) —aqa(t) for t<s<b
Let 6+ the element of best approximation to oy ¢ from S(Gglk)), and let Er(zk)(ak,t) —
llok,e — Okt

Lemma 3. Let n > 0 be arbitrary but fized. The sequence {Egk)(okyt) k> 1}, of
functions of t, is uniformly bounded and uniformly continuous.

Proof. The uniform boundednes follows from
EO @] = ok, Otll < lowe =0 < 2o | < 2]
If t1,t5 € [a, b], then

lok,ts = Okts | < Nlowts — Otall < llowts — Ol + 0w ta — Okt -
Therefore
EM (0k1,) — ES(0k1) < oty — Okiall -
A similar argument yields
Er(zk) (Uk,tz) - Egzk)(ak,tl) < Hak,tz - 0k7t1|| .

Thus
|E7(zk)(ak,t2) - Egzk)(ak,h” < ”ak,tz - Uk,h” .
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But [0k, — ok, || < 10 (t2) — o8 (11)] (cf. [10, Lemma 6]). However,
1987 (t2) — g (1)) < / l91(t2 — 5) — g1(ts — )| Li(s) ds,

which implies that the sequence {ggk) : k > 1} is uniformly continuous, which in turn
implies that {Eﬁlk)(akyt) : k > 1} is uniformly continuous. O

Theorem 7. Let G, C Cla,b] be a normalized weak Markov system in [a,b]. Then

(a) En(ot) is a continuous function of t.

(b) If
A, = max E,(0¢),
a<t<b

then

5 < V[g1(b) — g1(a)] A,

Proof. Applying Lemma 3 and Arzeld’s theorem we see that there is a sequence {ki ;}

such that E,(lkl’j)(akl’ ;,.) converges uniformly on [a, b] to a continuous function E.
For each fixed t € [a, b], Lemma 2. implies that there is a subsequence {ks ;} of {kq ;}

such that E,(lkz’j)(akz’jyt) converges to E,(o;). This shows that E(t) = E,(o:), and (a)
follows.
Setting k = ks ; and A%k) 1= MAaX,<t<h E,(zk)(akyt), we see that A

ing [10, Theorem 7] to G%k), we have:
69 < /[6P(b) - o (@] AP.
Finally, if k = k3 ; is a subsequence of kg ; such that lim;_. ok) = 6, we have:

5= lim 60 < lim /[67(8) — o (@) A% = /20— ga(a)]A,.

) —p oo Ap. Apply-
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