/********************************************************************** * multivariate normal model * Peng Zeng @ Auburn University * 2025-09-15 * * model: * y ~ multi_normal(mu, Sigma) * prior: * mu ~ multi_normal(mu0, Lambda0) * Sigma ~ inverse Wishart(v0, S0) **********************************************************************/ data { int n; // sample size int p; // dimension of y array[n] vector[p] y; // observations vector[p] mu_mean; // prior - mu0 cov_matrix[p] mu_cov; // prior - Lambda0 real Sigma_df; // prior - v0 cov_matrix[p] Sigma_scale; // prior - S0 } parameters { vector[p] mu; // mean cov_matrix[p] Sigma; // covariance matrix } model { mu ~ multi_normal(mu_mean, mu_cov); Sigma ~ inv_wishart(Sigma_df, Sigma_scale); y ~ multi_normal(mu, Sigma); } /********************************************************************** * THE END **********************************************************************/