STAT 5110/6110: SAS Programming and Applications

1-A. The First SAS Program

Peng Zeng

Department of Mathematics and Statistics

Auburn University

What is SAS?

SAS (previously, Statistical Analysis System) is an integrated system for performing tasks such as

- data entry, retrieval, and management
- report writing and graphics
- statistical and mathematical analysis
- business planning, forecasting, and decision support
- operations research and project management
- quality improvement
- applications development

As a summary:

data access, data management, data analysis, data presentation.

Access to SAS

SAS Studio via SAS OnDemand for Academics

- free to access
- free online storage space (5GB)
- web-based integrated development environment

```
https://www.sas.com/en_us/software/on-demand-for-academics.html
```

About SAS Studio:

- CODE tab: type your SAS programs here
- LOG tab: display notes or error messages
- RESULTS tab: display output such as figures, tables, etc.
- Left panel: files and folders, libraries
- Menus, toolbar

SAS Data Sets

A SAS data set contains the information we want to analyze.

Name	Gender	Exam 1	Exam 2	Exam 3
aa	М	43	70	81
bb	F	67	93	95
СС	F	83	90	50
dd	M	57	76	92
ee	F	74	48	67
ff	М	52	82	92

- Rows correspond to observations (cases, subjects, etc).
- Columns correspond to variables (attributes, covariates, etc).

A typical SAS program first creates a SAS data set and then works on it to compute statistics, create reports, draw graphs, or build models.

The First SAS Program

```
data grades; /* create a SAS dataset with name "grades" */
  input name $ sex $ exam1 exam2 exam3;
datalines;
                  /* "input" lists names of variables */
   M 43 70 81
aa
bb F 67 93 95 /* contents of the dataset */
cc F 83 90 50 /* one observation per line */
dd M 57 76 92 /* each column indicates one variable */
ee F 74 48 67
ff M 52 82 92
proc print data = grades; /* show contents of the dataset */
run;
proc means data = grades; /* compute descriptive statistics */
  var exam1 exam2 exam3;
run:
```

SAS Programs, Statements, Steps

A SAS program is a sequence of statements executed in order. A statement gives information or instructions to SAS and must be appropriately placed in the program.

SAS programs	articles	
statements	sentences	
data steps or proc steps	paragraphs	

Statements are usually organized in steps.

- DATA steps: read/write data from/to external files, create a data set, defining variables, create subsets, merge data sets, etc.
- PROC steps: analyze SAS data sets to produce statistics, tables, plots, etc.

SAS Steps

SAS steps begin with either of the following:

- DATA statement
- PROC statement

SAS detects the end of a step when it encounters one of the following:

- a RUN statement (for most steps)
- a QUIT statement (for some procedures)
- the beginning of another step (either DATA or PROC)

Syntax Rules for SAS Statements

Each SAS step consists of some SAS statements.

- Each SAS statement usually begins with a SAS keyword
- One SAS statement may contain one or more options
- Each SAS statement ends in a semicolon (;)

SAS statements are free-format.

- SAS statements can be in upper- or lower-cases.
- One or more blanks can be used to separate words.
- They can begin and end in any column.
- A single statement can span multiple lines.
- Several statements can be on the same line.

SAS does not distinguish upper-/lower-cases in general. However, texts that are enclosed in quotation marks are usually case sensitive.

Comments

To make your programs more readable and easier to understand, you can insert comments into your programs.

- Start with * and ends with a semicolon (;).
- Type your comments between /* and */.

SAS will ignore comments when executing programs.

Writing comments is a good habit, particularly when you are working on a large project.

Names of SAS Data Sets and Variables

SAS names (for data set or variable) have these characteristics:

- start with a letter or the underscore character (_)
- subsequent characters can be letters, underscores, or numbers.
- no blanks or special characters (such as commas, semicolons)
- no more than 32 characters in length
- can be uppercase, lowercase, or mixed-case.

Example of valid names:

- data5mon
- FiveMonthsData
- _5_month_data_

Example of invalid names:

- 5monthsdata
- data#5
- five months data

Submitting SAS Programs

SAVE YOUR PROGRAM FREQUENTLY !!!

- Submit your program to run by clicking the icon in the toolbar.
- Submit the whole program or the selected steps.
- Save your program every time before you submit it to run.
- A run statement tells SAS to process the codes before it.
- If there is no run statement, SAS will not process anything when you submit your program.

In-Class Exercise

- Login to SAS OnDemand for Academics, launch SAS Studio, and get familiar with the environment.
- Work on the first SAS program (01-grades.sas).
 - Type the code (or copy and paste) in SAS Studio. Pay attention to the different colors of the codes in the CODE tab.
 - Run the code and read the log messages in the LOG tab.
 - After successfully executing the data step, the log window contains something like "The data set WORK.GRADES has 6 observations and 5 variables."
 - After successfully executing a procedure step, the log window contains something like "There were 6 observations read from the data set WORK.GRADES."
 - Read the output in the RESULTS tab.
 - Explore the information in the OUTPUT DATA tab.

In-Class Exercise: Continued

- Modify the SAS codes as follows. Compare the output with the original output.
 - Remove the dollar sign (\$) in the input statement.
 - Write the semi-colon in the end of the last data line instead of a new line in datalines as follows.

```
ff M 52 82 92;
```

• The statement run; occupies a single line. Write this statement in the end of the previous line.

```
var exam1 exam2 exam3; run;
```