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Tobacco Mosaic Virus Replicase-Mediated Cross-Protection:
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Specific sequences of the tobacco mosaic virus (TMV) RNA-dependent RNA-polymerase (RdRp) gene were investigated for
their ability to confer cross-protection. Nine overlapping segments ranging from 713 to 1070 nucleotides in length and
covering the methyltransferase, helicase, and polymerase (POL) domains of the TMV RdRp open reading frame were
systemically expressed in Nicotiana benthamiana using a potato X virus (PVX) vector [Chapman, S, Kavanagh, T, and
Baulcombe, D. C. {(1992). Plant J., 1, 549-557]. PVX-infected plants were subsequently challenge inoculated with 10 ug of
wild-type TMV and monitored for TMV accumulation. Mock inoculated plants and plants preinfected with the unmodified PVX
vector rapidly accumulated high levels of challenge virus. In contrast, plants preinfected with PVX vectors expressing
segments of the TMV RdRp open reading frame displayed either high or low levels of protection. High protection levels were
observed for PVX constructs expressing segments of the TMV POL domain, whereas low protection levels were observed
for PVX constructs expressing segments covering the methyltransferase and helicase domains. Frameshift mutations that
blocked protein expression from RdRp segments disrupted only the high levels of protection derived from POL segments and
not the low levels derived from the other segments. However, all RdRp segments conferred similarly high levels of protection
against a TMV construct with restricted local movement. Thus both RNA and protein sequences in conjunction with the speed

of the infecting challenge virus can affect the protection derived from the TMV RdRp gene.

INTRODUCTION

Cross-protection, which is defined as the ability of one
virus to inhibit or prevent infection by a second virus, was
first observed by McKinney {1929). Since this description,
numerous studies have sought 1o provide understanding
of the mechanisms responsible for this phenomenon as
well as to develop its use for field applications (Sher-
wood, 1987). During the past two decades, transgenic
and viral vector technologies have permitted the explo-
ration of this phenomenon at the molecular level. From
these studies, several different viral and host processes
have been implicated in conferring protection. In general,
cross-protection derived from specific viral sequences
have been attributed to RNA- or protein-based mecha-
nisms. However, the collective contributions of these
different mechanisms to the observed protection have
not been fully explored.

Several lines of evidence indicate that RNA-based
protection is derived from a nucleotide sequence-spe-
cific host defense mechanism, termed posttranscrip-
tional gene silencing (PTGS), that targets viral RNAs for
destruction (Dougherty and Parks, 1995; Baulcombe,
1999). For example, Hamilton and Baulcombe (1999)
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identified PTGS-associated RNA molecules that were
complementary to viral RNAs and accumulate only in the
presence of viral replication. In addition, Ratcliff et af.
(1999) used viral vectors to demonstrate that PTGS can
be activated to induce cross-protection by a diverse
group of RNA viruses. Furthermore, viral proteins, such
as the potyvirus HC-pro, act as suppressors of PTGS in
transgenic plants (Anandalakshmi et a/, 1998; Beclin et
al, 1998; Brigneti et a/, 1998; Kasschau and Carrington,
1998). Thus viruses have evolved specific countermea-
sures to suppress plant-derived PTGS. Taken together,
these findings demonstrate that PTGS is a common plant
defense response active against diverse viruses and
likely to play an important role in cross-protection.
Cross-protection derived from specific viral proteins
has also been demonstrated. One well-studied system
involves the ability of the tobacco mosaic virus (TMV)
coat protein to mediate cross-protection. Evidence for
the role of coat protein in conferring protection comes
from several sources (Bendahmane and Beachy, 1998).
In particular, the ability of unencapsidated viral RNA to
overcome the protection led Sherwood and Fulton (1982)
10 speculate that cross-protection between TMV strains
was the result of the protecting virus blocking the disas-
sembly of the challenge virus. Subsequent TMV studies
have confirmed that coat protein-derived protection is
dependent on the ability of coat protein to properly as-
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sociate with and block the disassembly of the challenge
virus (Bendahmane et a/, 1997 and Lu et a/., 1998). Other
forms of protein-derived protection that utilize defective
viral gene products have also been described. For in-
stance, the transgenic expression of a defective TMV
30-kDa cell-to-cell movement protein has been shown to
interfere in the movement of a broad spectrum of viruses
(Cooper et al, 1995). Thus it is clear from these examples
that the preexpression of viral proteins also plays an
important role in cross-protection.

The TMV RNA-dependent RNA polymerase (RdRp)
gene encodes a 126-kDa protein that is terminated by a
single amber stop codon. Readthrough of this termina-
tion codon results in the production of a larger 183-kDa
protein (Pelham, 1978). In addition, a subgenomic mRNA
derived from the readthrough portion of the 183-kDa
protein and encoding a putative 54-kDa protein has also
been observed (Sulzinski et al, 1985). However, this
protein has not been detected in vivo (Sulzinski ef al,
1985; Golemboski et a/, 1990). Homology comparisons
reveal the presence of methyltransferase (MT) and heli-
case (HEL) domains within the 126-kDa protein and a
polymerase (POL) domain within the readthrough, 54-
kDa portion of the 183-kDa protein (Koonin, 1991; Koonin
and Dolja, 1993; Buck, 1996).

The ability of a viral RdRp gene to mediate protection
was first described by Golemboski et al. (1990) in plants
transformed with the 54-kDa POL domain of the TMV
183-kDa protein. Subsequent studies have produced
conflicting reports regarding the mechanism(s) behind
this resistance. For example, transgenic plants that dis-
play silencing typically accumulate little transgene tran-
script. However, resistant 54-kDa plants accumulated
significant levels of the transgene transcript. In addition,
Carr et al. (1992) demonstrated that a nontranslatable
64-kDa open reading frame (ORF) failed to confer pro-
tection in a transient protoplast assay. These lines of
evidence suggest a protein-mediated mechanism is in-
volved in conferring resistance. However, Marano and
Baulcombe (1998) demonstrated that 564-kDa transgenic
plants were resistant against a potato virus X (PVX)
vector designed to express TMV 54-kDa gene se-
quences as small as 383 nucleotides. This finding is
consistent with an RNA-based PTGS mechanism. Re-
lated studies using the 54-kDa ORF of another tobhamo-
virus, pepper mild mottle virus, also indicated that resis-
tance in this system was derived from an RNA-based
PTGS mechanism (Tenllado et al, 1996). In addition,
other portions of the TMV RdRp gene have been found to
confer protection when expressed as transgenes. Most
notably, Donson et a/. (1993) produced transgenic plants
containing a 183-kDa RdRp gene disrupted by the inser-
tion of a bacterial transposon. Plants containing this
gene displayed resistance against several different to-
pamoviruses in a non-homology-dependent fashion. This
lack of specificity suggests the conferred resistance was

not derived from a PTGS mechanism. Collectively, these
findings suggest that multiple mechanisms may contrib-
ute to the resistance conferred by TMV RdRp domains.

To further dissect the role of the TMV RdRp in cross-
protection, a PVX vector (Chapman et a/., 1992) was used
to individually express nine overlapping segments com-
prising the entire TMV 183-kDa RdRp ORF. These plants
were subsequently challenged with TMV and monitored
for virus accumulation. Results demonstrated that all
nine RARp segments conferred low levels of protection
that were independent of protein expression. However,
three segments covering the POL domain conferred sig-
nificantly higher levels of protection that were dependent
on protein expression. In cantrast, no distinctions in the
levels of protection conferred by either RNA or protein
were observed when plants were challenge inoculated
with a TMV virus deficient in local movement. Thus the
effectiveness of the protection conferred by either RdRp
RNA or protein sequences is greatly influenced by the
speed of challenge virus infection.

RESULTS
Construction and expression of TMV RdRp segments

For this study, nine overlapping RARp segments rang-
ing from 713 to 1070 nucleotides in length and covering
the entire 183-kDa TMV ORF were individually cloned
into the viral vector PVX2C2S (Fig. 1). Each segment was
engineered to contain its own translational start and stop
codons to permit protein expression frorn the PVX2C2S
vector. PVX2C2S constructs containing the different TMV
RdRp sequences produced mild mosaic symptoms in
Nicotiana benthamiana that were similar in appearance
to those produced by the unmodified PVX vector. Main-
tenance of each TMV RdRp segment within the PVX
vector was confirmed by RT-PCR analysis of viral RNA
isolated from systemically infected tissue. PCR analysis
using TMV segment-specific primers indicated that each
RdRp segment was maintained within the PVX vector
(Fig. 2A). In addition, PCR analysis using PVX-specific
primers that flank the insert also confirmed the mainte-
nance of the TMV RdRp segments (data not shown).
However, on occasion several faint smaller bands were
also observed, indicating that a small proportion of the
PVX population had deleted all or part of the TMV RdRp
insert. To prevent the buildup of PVX populations that
lack TMV RdRp sequences, only transcript RNA derived
from the ¢cDNA clones was used as inoculum in this
study.

Hexa-histidine tags were engineered at the amino-
terminus of each TMV RdRp segment to allow protein
expression from PVX vector constructs to be monitored.
Western immunoblot analysis demonstrated that seg-
ments 1-5, 7, and 8 accumulated detectable levels of
protein in systemically infected leaf tissue (Fig. 2B). In
contrast, this method failed to detect protein from seg-
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FIG. 1. Schematic representation of the TMV genome including RdRp domains (A) and the locations of the nine expressed TMV RdRp segments

(B). TMV nucleotide number is from Goelet ot a/. (1982).

ments 6 and 9. Western immunoblot results were also
variable with respect to the band intensity and substrate
incubation time needed to observe the tagged segments.
Variations in protein accumulation likely represent differ-
ences in the translation and/or stability of each RdRp
segment.

Protection conferred by individual TMV RdRp
segments

TMV challenge inoculations of N. benthamiana plants
either mock inoculated or inoculated with the unmodified
PVX vector or a vector construct containing 850 nucleo-
tides of the Escherichia coli CpdB gene resulted in the
rapid accumulation of TMV in inoculated leaves (Fig. 3).
These plants also displayed severe necrosis at the local
and systemic level that prevented sampling beyond 4
days postinoculation (d.p.i.). In contrast, all nine PVX
constructs expressing segments of the TMV RdRp ORF
resulted in significantly lower accumulations of chal-
lenge TMV at 2 and 4 d.p.i. However, at 6 d.p.i.,, PVX
Vector constructs containing TMV RdRp segments 1-6,
covering the 126-kDa MT and HEL domains, showed
significant increases in the accumulation of TMV. At
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FIG. 2. PVX2C2S maintenance and expression of TMV RdRp seg-
ments. (A) RT-PCR amplification of TMV RdRp segments from total RNA
purified from N. benthamiana leaves systemically infected with
PVX2C2S constructs containing RARp segments 1-9. (B) Western im-
munoblot detection of hexa-histidine tagged TMV RdRp proteins de-
rived from segments 1-5, 7, and 8. Approximately 30 g of total protein
was loaded in each lane.
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FIG. 8. The accumulation of challenge TMV over time in the inocu-
lated leaves of plants preinfected with PVX2C2S-TMV RdRp constructs.
Samples were collected at 2, 4, 6, 8, and 10 d.p.i. with 10 ug of purified
TMV. TMV accumulations were determined by local lesion assay on .
tabacum cv Xanthi nc. Bars represent the average = SE of TMV lesion
numbers obtained from 6-12 individual plants preinfected with
PVX2C2S constructs and challenge inoculated with TMV. X indicates
TMV accumulations too numerous to count and/or TMV-induced death
of challenge-inoculated leaves with no further samples taken.

8 d.p.i., plants protected by segments 1-6 showed accu-
mulations of TMV that were too high to measure via local
lesion assay. Although not as severe as in control plants,
increased TMV accumulations in these plants was ac-
companied by the appearance of TMV-induced chlorosis
and necrosis in both inoculated and noninoculated tis-
SUES.

Three PVX-expressed TMV RdRp segments, 7-9, con-
ferred significantly greater delays in the accumulation of

challenge TMV (Fig. 3). These three segments cover the
54-kDa readthrough portion of the TMV RdRp ORF and
contain elements of the POL domain. Of these three
segments, 7 and 9 conferred delays in the accumulation
of challenge TMV that lasted the entire 10-day sampling
period, whereas the delay conferred by segment 8 lasted
only 8 d.p.i. In addition, by 10 d.p.i., sporadic areas of
TMV- induced chlorosis and necrosis were observed in
the noninoculated tissue of plants preinfected with
PVX2C2S constructs expressing segments 7-9, indicat-
ing that systemic TMV movement had occurred.

Effect of frameshift mutations on TMV RdRp
conferred protection

Frameshift mutations were created in segments 1, 3, 4,
and 6—9 to determine whether the observed protection
was associated with the expression of the correspond-
ing protein. These mutations were designed to shift the
normal reading frame of each RdRp segment at a spe-
cific amino acid downstream of the engineered transla-
tional start codon. Each frameshift leads 10 a new stop
codon, resulting in a severely truncated protein. The
locations of these frameshifts relative to the start codon
of each segment are amino acid position 11 for seg-
ments 1, 6, 8 and 9; position 13 for segment 3; position 58
for segment 7; and position 82 for segment 4.

Cross-protection results obtained from frameshift seg-
ments revealed no significant alteration in the level of
protection conferred by segments 1, 3, 4, and 6 (Fig. 4).
Thus the expression of protein from these RdRp seg-
ments is not required to provide low levels of protection
against challenge TMV. In contrast, frameshift mutations
significantly affected the high levels of protection con-
ferred by segments 7-9 (Fig. 4). This finding indicates
that protein expression from these segments is a key
factor in their ability to confer high levels of protection.
However, frameshift segments 7-9 did confer low levels
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FIG. 4. Accumulation of challenge TMV in the inoculated leaves of
plants preinfected with PVX2C2S-TMV RdRp and RdRp—frameshift (FS)
constructs. Samples were collected at 6 d.p.i., and TMV accumulations
were determined as described previously. Bars represent the aver-
age = SE of TMV lesion numbers obtained from four to six individual
plants preinfected with PVX2C2S constructs.
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FIG. 5. TMV30BGFP challenge inoculations. (A) Number of fluorescent TMV30BGFP infection sites observed at 8 d.p.i. on N. benthamiana leaves
preinfected with PVX2C28 constructs containing TMV RdRp segments 1, 3-3, and 9frameshift (FS). Bars represent the average + SE of infection sites
observed on 5—12 challenge-inoculated leaves. (B) Representative TMV30BGFP infection sites on leaves systemically infected with either 1, the
unmodified PVX2C28S vector, or 2, 3, and 4, PVX2C28S constructs containing TMV RdRp segments 6, 9, and 9-FS, respectively. Photographs were taken

at 8 d.p.i. with TMV30BGFP at 5X magnification.

of protection similar to the protection levels conferred by
segments 1-6.

Specificity of the conferred protection

The specificity of the protection conferred by TMV
RdRp segments 1, 3, and 5-9 was investigated using the
tobamovirus tobacco mild green maosaic virus (TMGMV-
U2) as challenge inoculum. TMGMV-U2 shares approxi-
mately 76% overall homology with TMV. Results demon-
strated that all PVX-expressed TMV RdRp segments al-
lowed the rapid accumulation of TMGMV-U2 within 4
days postchallenge inoculation {(d.p.i.) {(data not shown).
The rapid accumulation of TMGMV-U2 was also accom-
panied by severe necrosis in both inoculated and non-
inoculated tissues. Thus none of the tested TMV RdRp
segments were capable of conferring protection against
the related tobamovirus TMGMV-U2.

Challenge inoculations with TMV-GFP

To determine whether the protection conferred by PVX
expressed TMV RdRp segments was the result of re-
duced numbers of infection sites and/or reductions in
virus spread, N. benthamiana leaves systemically in-
fected with PVX constructs expressing TMV RdRp seg-
ments 1, 2, 4-9, and 9-frameshift were challenge inocu-
lated with 10 g of TMV30BGFP. This TMV construct
expresses the green fluorescent protein (GFP) from Ae-

quorea victoria downstream of the CP subgenomic pro-
moter (Shivprasad et a/, 1999). Challenge-inoculated
leaves were examined by fluorescence microscopy 10
determine the number and size of TMV30BGFP infection
sites. Leaves preinfected with PVX constructs express-
ing any of the TMV RdRp segments showed significantly
fewer TMV30BGFP infection sites compared with control
leaves infected with the unmodified PVX vector (Fig. BA).
In addition, the few infection sites observed were smaller
in appearance and more restricted in their expansion
than infection sites found on control leaves (Fig. 5B).
Furthermore, GFP fluorescence was not observed in
systemic nonchallenged tissue of plants preinfected with
PVX2C2S TMV RdRp constructs, indicating that
TMV30BGFP did not move systemically. These findings
indicate that all TMV RdRp segments confer equally high
levels of protection against TMV30BGFP.

DISCUSSION

Cross-protection can be mediated by both viral RNA,
as is the case for PTGS, or viral proteins, as is the case
for coat protein-mediated protection (Ratcliff et a/, 1999;
Bendahmane et &/, 1997, and Lu et al, 1998). Thus
depending on the system, different and sometimes mul-
tiple mechanisms may contribute to the protection phe-
nomenon. In this study, the viral vector PVX2C2S was
used to determine the ability of different TMV RdRp
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domains to confer cross-protection. By using this strat-
egy, specific features of the TMV RdRp, such as individ-
ual domains or the ability to express protein, can be
assessed and compared for their role in providing pro-
tection. The identification of RdRp features that confer
protection should provide insight into the mechanisms
responsible for this phenomenon.

Cross-protection assays using the PVX2C28 system
revealed two distinct levels of protection. TMV segments
covering the 126-kDa ORF including MT and HEL do-
mains all conferred a similar 2-day delay in the accumu-
lation of challenge TMV, whereas segments 7-9, cover-
ing elements of the b4-kDa POL domain, conferred sig-
nificantly higher levels of protection. However, in all
cases the protection was incomplete and challenge TMV
could eventually be recovered from both inoculated and
noninoculated tissues. The ability of the challenge virus
to establish initial infection sites may reflect the inability
of the PVX2C2S vector to uniformly infect all leaf cells
(Chapman et a/., 1992; Baulcombe et a/., 1995). Cells not
infected by the PVX2C2S RdRp constructs presumably
remain susceptible to TMV, providing replication sites
that ultimately lead to the breakdown of protection. In
addition, both low and high levels of protection were not
effective against the related tobamovirus TMGMV-U2.
The specificity of this protection is consistent with results
previously obtained from the transgenic expression of
the TMV 54-kDa ORF (Golemboski et a/,, 1990) and sug-
gests an underlying homology-dependent mechanism.

Frameshift mutations engineered into specific RdRp
segments demonstrated that protein translation was re-
quired to maintain the high levels of protection derived
from the POL domain but not the lower protection levels
derived from the other RdRp segments. Similarly,(Carr et
al. (1992) demonstrated that a nontranslatable TMV 54-
kDa ORF did not confer protection in a transient expres-
sion system. This suggests that translation of the 54-kDa
POL domain plays an important role in conferring pro-
tection. In contrast, frameshift mutations did not affect
the low level of protection conferred by RdRp segments
covering the 126-kDa ORF, indicating that this level of
resistance was RNA mediated. Furthermore, frameshift
constructs 7-9, covering the 54-kDa ORF, conferred a
2-day delay in TMV accumulation that was similar to the
delay conferred by RdRp segments covering the 126-kDa
ORF (Fig. 4). Thus the RNA sequences of the POL domain
are also capable of conferring low protection levels.

The TMV POL domain was divided into three overlap-
ping segments, all of which conferred significant levels
of protection, with the highest levels being obtained from
segments 7 and 9 (Fig. 3). However, no correlation was
observed between the level of protein accumulation and
the level of protection. In particular, protein derived from
segments 7 and 8 were readily detected by Western
immunoblotting, whereas repeated attempts to detect
the accumulation of segment 9 failed. However, frame-

shift studies indicate that translation of the segment 9
protein is required to obtain the high level of protection.
Thus the hexa-histidine tag on segment 9 may be unsta-
ble or the protein itself may be sequestered within the
host in some fashion that prevents its detection. Our
failure to detect segment 9 is reflected in the inability of
previous studies to detect the TMV 54-kDa RdRp protein
in either virus-infected or transgenic plants (Sulzinski et
al., 1985; Golemboski et al., 1990).

The simplest explanation for these data are that the
polypeptides derived from TMV 54-kDa POL segments
function in a dominant-negative fashion to disrupt chal-
lenge virus infection. Segment 7 covers the N-terminal
unigue region of the POL as well as elements of the
fingers domain. Segment 9 covers the carboxyl half of
the POL, including the palm, thumb, and the carboxyl end
of the fingers domains. Segment 8 overlaps significantly
with segments 7 and 9 and contains the fingers and palm
domains. Structure and function comparisons with simi-
lar elements in other polymerases indicate that several
of these features are directly involved in RNA template
binding (Buck, 1996; O'Reilly and Kao, 1998). Interestingly,
Nguyen et al. (1996) demonstrated that viral RNA traffick-
ing within transgenic 54-kDa plants was inhibited. Thus
nonproductive interactions between truncated POL pro-
teins and the challenge virus RNA could explain the
mechanism of protection as well as account for its spec-
ificity.

An alternative explanation for these data are that
translation of the POL segments enhances the ability of
the RNA sequences to confer protection. Marano and
Baulcombe (1998) determined that the resistance ob-
served in 54-kDa transgenic plants was active against a
specific antisense region of the TMV POL domain and
occurred in a fashion that suggested a gene silencing-
like mechanism. In addition, Lewandowski and Dawson
(1998) observed that TMV POL sequences inhibit the
replication of truncated TMV RNAs by the wild-type virus.
Thus POL domain sequences appear to play a critical
role in controlling TMV replication. Precisely how these
sequences modulate virus replication and whether this
process contributes to the observed protection via a
protein- and/or RNA-based mechanism remain to be
determined.

TMV30BGFP inoculations demonstrated that the
RdRp-derived protection significantly blocked challenge
virus infection and spread (Fig. 5). The inability of
TMV30BGFP to establish an infection or to travel system-
ically in N. benthamiana plants displaying virus-induced
PTGS has been previously observed (Ratcliff et a/., 1999).
Interestingly, no significant difference was observed in
the appearance or number of TMV30BGFP infection sites
on plants protected by RdRp segments that conferred
either high or low levels of protection against wild-type
TMV (Fig. 5). The ability of all TMV RdRp segments to
confer high protection levels against TMV30BGFP but
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FIG. 6. Half-leaf assays showing the local movement of wild-type
TMV in comparison with TMV30BGFP on the local lesion host N,
tabacum cv. Xanthi nc. Photograph was taken 4 d.p.i. Arrows denote
individual lesions.

not against wild-type TMV suggests that the RNA mech-
anism is considerably more effective against
TMVB0BGFP than against the wild-type virus. We spec-
ulate that the variation in protection levels conferred
against TMV30BGFP and wild-type TMV reflects differ-
ences in the speed at which these viruses spread in the
inoculated leaf. Local lesion comparisons between
TMV30BGFP and wild-type TMV demonstrate that
TMV30BGFP is restricted in its ability to spread in a
cell-to-cell manner (Fig. 6). This is consistent with previ-
ous studies that show insertion of gene seguences
within the 3’ end of TMV dramatically reduce the accu-
mutation of the 30-kDa cell-to-cell movement protein
(Culver et a/, 1993). The reduced spread of TMV30BGFP
likely renders it more susceptible to the protection me-
diated by the RdRp RNA. In contrast, the wild-type virus
apparently moves/replicates with sufficient speed to al-
low it to rapidly overcome the RNA-mediated mecha-
nism. Whether the ability of wild-type TMV 1o overcome
this protection is due solely 1o its speed of movement or
is linked to the production of a suppressor of the RNA-
mediated protection remains to be investigated.

In summary, the protection conferred by segments of
the TMV RdRp gene expressed from within a heterolo-
gous viral vector can be attributed to at least two differ-
ent mechanisms. The first involves an RNA-mediated
mechanism that is apparently activated by the presence
of any RdRp gene seguence. In fact, the ability of a

nontranslatable TMV coat protein ORF to confer a similar
2-day delay in the accumulation of challenge TMV when
expressed from the PVX2C2S vector suggests that any
TMV sequence can function to activate this form of pro-
tection (Culver, 1996). Furthermore, the nucleoctide-spe-
cific nature of this protection suggests the presence of a
PTGS-like mechanism. In addition, the levels of protec-
tion conferred by the RNA-based mechanism varied de-
pending on the movement speed of the challenge virus.
Rapid infection speeds have been proposed as a possi-
ble counterdefense strategy used by viruses to over-
come PTGS (Ratcliff et al, 1999). The second mechanism
of protection required protein expression from segments
of the POL domain and conferred substantially greater
delays in the accumulation of challenge TMV in compar-
ison with the RNA-based mechanism. However, the pro-
tein-mediated protection occurs in conjunction with the
RNA-mediated protection. It is feasible that the protein-
mediated mechanism functions only to slow wild-type
virus replication to a level that allows the RNA-derived
mechanism to be more effective. This type of combined
effect could also explain the hamology-dependent nature
of the observed protection. However, additional studies
will be needed to determine whether these two mecha-
nisms actually cocontribute to produce an increased
level of protection.

MATERIALS AND METHODS
Virus constructs and expression analysis

pPVX2C2S contains the cloning sites FcoRV and Sall
engineered downstream of the PVX coat protein sub-
genomic promoter, allowing the transcription and trans-
lation of any inserted ORF (Chapman et al, 1992), Linker
modification at the £coRV site was done 1o incorporate a
novel start codon followed by 6 histidine codons. This
modification results in the addition of a hexa-histidine
tag at the amino-terminus of any ORF cloned into the
pPVX2(C2S vector.

Nine overlapping segments of the TMV 183-kDa RdRp
ORF were individually amplified using the polymerase
chain reaction (PCR) (Fig. 1; Culver, 1996). The 5’ PCR
primers encoded EcoRV restrictions sites and were de-
signed to maintain the reading frames of each TMV RdRp
segment. The 3" PCR primers included a translational
stop codon and an Sal/l restriction site. The presence of
each TMV RdRp sequence within the PVX vector was
confirmed by DNA sequencing. To disrupt protein ex-
pression, frameshift mutations were also introduced into
TMV RdRp segments 1, 3, 4, and 6-9. These mutations
were created either by PCR mutagenesis (Higuchi et a/.,
1988) or through the direct incorporation of frameshift
mutations into the 5" PCR primers used to amplify the
segments. Each frameshift mutation would result in the
severe truncation of the protein segment.

Infectious RNA transcripts were generated from each
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PVX vector construct and used to inoculate leaves of M.
benthamiana. At 10—-14 d.p.i,, systemically infected N.
benthamiana tissue displaying mild mosaic symptoms
was harvested, and total protein or RNA was extracted
(Laemmli, 1970; Qiagen Inc., Valencia, CA). The extracted
proteins were resolved by SDS-PAGE and electroblotted
onto nitrocellulose paper. Monoclonal antibody specific
to hexa-histidine tracts (Sigma Chemical Co., St. Louis,
MO) was used to visualize RdRp segments. Predicted
protein products derived from TMV RdRp segments
should range between 26 and 45 kDa in size. Extracted
RNA was subjected to RT-PCR analysis using primers
specific to each TMV RdRp segment.

Cross-protection assays

Infectious transcripts from PVX TMV—-RdRp constructs
were used 1o inoculate N. benthamiana plants at the
three- to five-leaf stage. Additional plants either mock
inoculated or inoculated with the unmodified PVX vector
or a vector construct containing 850 nucleotides of the
CpdB phosphodiesterase gene from E. coli were used as
controls. All plants were maintained in environmental
growth chambers at 25°C under a 12-h photoperiod. The
first two leaves of each plant to fully show systemic PVX
symptoms were dusted with Carborundum. Each leaf
(two per plant) was challenge inoculated with 5 ug of
purified TMV {Gooding and Hiebert, 1967) in 50 wl of 10
mM sodium phosphate buffer, pH 7.4. A 1-cm-diameter
leaf punch was taken from each of the two challenge
inoculated leaves at 2, 4, 6, 8, and 10 d.p.i. To determine
the accumulation of challenge TMV, leaf punches were
macerated in 200 pl of 10 mM phosphate buffer, pH 7.4,
and 50 ul was used 1o inoculate a Carborundum-dusted
leaf of Nicotiana tabacum cv. Xanthi nc, a local lesion
host for TMV but not for PVX. Each macerated sample
was similarly assayed two or three times, and the aver-
age lesion number was used 1o represent the accumu-
lation of TMV in that sample. Similar cross-protection
assays were performed using purified TMGMV-U2 as
challenge inoculum. In addition, PVX2C2S constructs ex-
pressing regions of the TMV RdRp involved in the elici-
tation of the IV gene hypersensitive response (Erickson
et al, 1999) did not induce lesion formation when inoc-
ulated by themselves onto leaves of N. tabacum cv.
Xanthi nc. Thus PVX2C2S RdRp constructs did not affect
the local lesion assays.

pTMV30BGFP contains the GFP ORF inserted down-
stream of the TMV coat protein subgenomic promoter
(Shivprasad et a/, 1999). Purified TMV30BGFP virus (10
wg) was used to challenge inoculate N. benthamiana
leaves systemically infected with PVX2C2S constructs
expressing TMV RdRp segments. At 8 d.p.i., TMV30BGFP
infections sites were visualized and counted by fluores-
cence microscopy.
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