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ABSTRACT

In the field of statistical learning, a significant portion of methods model data as

graphs. Proximity graphs, in particular, offer solutions to many challenges in super-

vised and unsupervised statistical learning. Among these graphs, class cover catch

digraphs (CCCDs) have been introduced first to investigate the class cover problem

(CCP), and then employed in classification and clustering. However, this family of

digraphs can be improved further to construct better classifiers and clustering algo-

rithms. The purpose of this thesis is to tackle popular problems in statistical learning

like robustness, prototype selection and determining the number of clusters with prox-

imity catch digraphs (PCD). PCDs are generalized versions of CCCDs and have been

proven useful in spatial data analysis. We will investigate the performance of CCCDs

and PCDs in both supervised and unsupervised statistical learning, and discuss how

these digraph families address real life challenges. We show that CCCD classifiers

perform relatively well when one class is more frequent than the others, an example

of the class imbalance problem. Later, by using barycentric coordinate system and by

extending the Delaunay tessellations to partition Rd, we establish PCD based clas-

sifiers and clustering methods that are both robust to the class imbalance problem

and have computationally tractable prototype sets, making them both appealing and

fast. In addition, our clustering algorithms are parameter-free clustering adaptations

of an unsupervised version of CCCDs, namely cluster catch digraphs (CCDs). We

partition data sets by incorporating spatial data analysis tools based on Ripley’s K

function, and we also define cluster ensembles based on PCDs for boosting the per-

formance. Such methods are crucial for real life practices where domain knowledge is

often infeasible.
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ÖZETÇE

İstatistiksel öğrenme alanındaki yöntemlerin anlamlı bir çoğunluğu veriyi çizgeler

olarak modellemektedir. Yakınlık çizgeleri gözetimli ve gözetimsiz istatistiksel öğrenme

alanlarındaki pek çok probleme çözümler sunmaktadırlar. Bu çizgeler arasında sınıf

örtüsü yakalama yönlü çizgeleri (SÖYYÇ) sınıf örtüsü problemini (SÖP) çözmek

için tanıtılmıştır. SÖYYÇler sınıflama ve kümeleme için de kullanılabilir. Ancak,

bu yönlü çizgeler daha iyi sınıflama ve kümeleme yöntemleri geliştirmek için de

genelleştirilebilirler. Bu tezin amacı, istatistiksel öğrenme alanındaki popüler sorun-

lara yakınlık yakalama yönlü çizgeleri (YYYÇ) ile çözümler sunmaktır. Bu sorunlar

arasında; gürbüzlük, prototip seçimi ve küme sayısının tespiti gibi sorunlar yer almak-

tadır. YYYÇler esasında SÖYYÇlerin genelleştirilmiştir halleridir ve YYYÇler daha

önce uzaysal veri analizi problemlerinde de kullanılmışlardır. Biz SÖYYÇlerin ve

YYYÇlerin gözetimli ve gözetimsiz istatistiksel öğrenme alanındaki performanısı in-

celeyecek, bu çizgelerin gerçek yaşam problemlerin nasıl değinebileceğini tartışacağız.

İlk olarak SÖYYÇ tabanlı sınıflayıcıların, veri setlerindeki sınıflardan herhangi birininin

diğer sınıflardakinden daha çok gözleme sahip olduğunda, diğer sınıflayıcılara göre

göreceli olarak iyi performans gösterdiğini vurgulayacağız. Bu probleme sınıf denge-

sizliği problemi ismi verilmektedir. Daha sonrasında, barisentrik kordinat sistemlerini

kullanarak ve Delaunay mozaiklemelerini Rd yi mozaikleyecek şekilde genişleterek,

YYYÇ tabanlı sınıflayıcılar ve kümeleme yöntemleri geliştireceğiz. Bu yöntemler, sınıf

dengesizliklerine karşı gürbüz olacak ve hesapsal olarak takip edilebilen prototip setler-

ine sahip, cazip ve hızlı yöntemler olacaklardır. Özellikle kümeleme algoritmalarımız,

parametrelerden bağımsız olarak tanımlanmış ve SÖYYÇlerin gözetimsiz halleri olan,

küme yakalama yönlü çizgelerine (KYYÇ) dayalıdır. Biz veri setlerini, uzaysal veri

analizinde kullanılan Ripley’nin K fonksiyonuna dayalı araçlar ile böleceğiz ve ayrıca
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YYYÇlere dayalı küme toplulukları tanımlayıp kümeleme yöntemlerini destekleyen

algoritmalar geliştireceğiz. Bu tür yöntemler ise veri setlerine mahsus olan alan bil-

gisini elde etmenin zor olduğu gerçek yaşam problemlerinde önemini göstereceklerdir.
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Chapter 1

INTRODUCTION

1.1 Motivation

Machine learning methods based on set covering algorithms attracted particular at-

tention recently. In this work, we approach learning data sets with methods that solve

the class cover problem (CCP), where the goal is to find a region that encapsulates

all the members of the data set or a class of interest. This particular region can

be viewed as a cover ; hence the name class cover (Cannon and Cowen, 2004). This

problem is closely related to another problem in statistics, namely support estimation:

estimating the support of a particular random variable defined in a measurable space

(Schölkopf et al., 2001). Here, class cover are viewed as estimations of associated class

conditional support.

Classification is the most relevant application of class covers. Since a cover is

realized as an approximation of the class support, a new given point is labelled as the

member of a particular class if the point is in its cover (Cannon and Cowen, 2004).

In addition, by investigating the shape and structure of a cover, latent subclasses

of a class may be revealed which makes these covers effective tools of exploratory

data analysis (Priebe et al., 2003b). In statistical learning, numerous algorithms are

based on graphs, and in particular, on proximity graphs. The family of class covering

methods we discuss in this thesis utilize subsets of the data sets, i.e. prototype sets,

which are equivalent to the minimum dominating sets (MDSs) of a particular type of

proximity graph, called proximity catch digraphs (PCDs). Methods based on PCDs

are examples of prototype selection methods and serve many purposes, such as pruning

data sets, increasing classification speed, clustering of noisy data sets, etc.
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1.2 Previous Work on the Class Cover Problem

The first examples of class covers estimated the support of a class with a collection

of covering balls that a subset of balls are chosen with approximation algorithms

(Cannon and Cowen, 2004). However, class covers have been extended to allow the use

of different type of regions to cover a class of interest. Serafini (2014) uses sets of boxes

to find covers, of classes, and also defines the maximum redundancy problem. This is

an optimization problem of covering as many points as possible by each box where the

total number of boxes are kept to a (approximately) minimum. Hammer et al. (2004)

investigates CCP using boxes with applications to the logical data analysis. Moreover,

Bereg et al. (2012) extend covering boxes to rectilinear polygons to cover classes, and

they report on the complexity of the CCP algorithms using such polygonal covering

regions. Takigawa et al. (2009) incorporate balls and establish classifiers similar to

the ones based on CCCDs, and they also use sets of convex hulls. Ceyhan (2005)

uses sets of triangles relative to the tessellation of the opposite class to analytically

compute the minimum number of triangles required to establish a class cover. In this

thesis, we study class covers with particular triangular regions (simplical regions in

higher dimensions). We give some examples in Figure 1.1.

(a) (b) (c)

Figure 1.1: Examples of class covers with various covering regions. (a) convex hulls,
(b) axis parallel strips and (c) triangles (Bereg et al., 2012; Ceyhan, 2005; Takigawa
et al., 2009)
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The class cover catch digraphs (CCCD) provide graph theoretic solutions to the

CCP where the class covers are characterized with the minimum dominating sets

(Priebe et al., 2001). The approximate minimum dominating sets of CCCDs (which

were obtained by a greedy algorithm) and radii of the covering balls have been used to

establish efficient classifiers. They introduced CCCDs to find graph theoretic solutions

to the CCP problem, and provided some results on the minimum dominating sets and

the distribution of the domination number of such digraphs for one dimensional data

sets. DeVinney et al. (2002) defined random walk CCCDs (RW-CCCDs) where balls

of class covers establish classifiers less prone to overfitting. CCCDs have been applied

in face detection and latent class discovery in gene expression data sets (Priebe et al.,

2003b; Socolinsky et al., 2003).

1.3 A Brief Introduction to Proximity Catch Digraphs

Proximity catch digraph (PCD) D = (V ,A) with vertex set V = X and arc set A
is defined by (u, v) ∈ A ⇐⇒ {u, v} ⊂ X and v ∈ N (u). Each vertex u ∈ V is

associated with a proximity region N (u) characterized by the proximity map N (·).
Here, v ∈ N (u) is viewed as the notion of u catching v since it is the within the

proximity of u. Hence, the name proximity catch digraph.

PCDs are closely related to Class Cover Catch Digraphs (CCCDs) introduced

by Priebe et al. (2001), and are vertex-random digraphs (directed graphs) defined

by the relationship between either unlabeled or class-labeled observations. Ceyhan

(2005) defined PCDs and introduced three families of PCDs to analytically compute

the distribution of the domination number of such digraphs in a two class setting.

Domination number and, another graph invariant, the arc density (the ratio of number

of arcs in a digraph to the total number of arcs possible) of these PCDs have been

used for testing spatial patterns of segregation and association (Ceyhan and Priebe,

2005; Ceyhan et al., 2007, 2006).

In this thesis, we investigate PCDs in both classification and clustering. We as-

sess the performance of CCCDs (which are families of PCDs with spherical proximity
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maps) in the class imbalance problem, offer tools for the construction of prototype-

based classifiers with computational tractable exact prototype sets, establish algo-

rithms that partition data sets with no priori parameters, and offer cluster ensembles

based on PCDs. In all applications, we use the estimates of the supports, i.e. covers,

to model the data set as a digraph, and then, we find the (approximate) minimum

dominating sets of these digraphs or other graph variants.

1.4 Contributions

We mainly discuss the CCP problem and the algorithms to solve them. CCCDs

and PCDs provide prototype-based algorithms to tackle some challenges in machine

learning which are topics of extensive research. PCDs are particularly appealing

because they address the computational complications associated with the earlier

CCCDs. The cover of the data set or the class cover reveals the inherent distribution

of the data set, and hence, we use the covers to build discriminant regions or to

detect regions of high density (or clusters). We give a list of various uses of PCD

covers below:

(i) Class imbalance problem occurs when size of one class is substantially dif-

ferent than the other class. The majority class (i.e., the class with larger size)

confounds the detection of objects which are originally from the minority class

(i.e., the class with fewer points). We show that CCCD classifiers are robust

to the class imbalance problem; that is, these classifiers are not affected by the

abundance of one or more classes. We have first discovered the robustness prop-

erty of CCCDs by investigating a data set with two classes that are imbalanced

in an unusual way. The data set exhibits what we call a local imbalance, usually

occuring around the area where two classes overlap. These data sets may have

equal number of observations in both classes, hence it may not be possible to

detect the imbalance at first sight. However, CCCDs does local pruning of the

data sets, mitigating the effects of local imbalances as we show in Chapter 4.

On the other hand, CCCDs substantially undersample from the majority class
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while preserving the information on the discarded points during the undersam-

pling process. Many state-of-the-art methods, however, keep this information

by means of ensemble classifiers, but CCCDs yield only a single classifier with

the same property, making it both appealing and fast.

(ii) Prototype selection deals with the problem of selecting members of a data

set so as to attain various tasks including reducing, condensing or summarizing

a data set. Many learning methods aim to carry out more than one of these

tasks, thereby building efficient learning algorithms (Bien and Tibshirani, 2011;

Pȩkalska et al., 2006). PCDs help reducing the data set to a subset called pro-

totype set that reduce the model complexity of class covers. However, PCDs are

constructed with respect to the Delaunay tessellation of a subset of the data set

which does not apply to the entire Rd. We offered a partitioning scheme based

on Delaunay tessellation using a construction of Deng and Zhu (1999) that par-

titions the entire space. Hence, we defined a unique tessellation of Rd with

respect to the Delaunay tessellation of a set, which is a topic of Chapter 2, and

we built prototype-based classifiers which reduce the number of observations of

the entire data set in polynomial time. One common property of most prototype

selection methods is that these algorithms are NP-hard, and exact solutions are

mostly provided by approximation algorithms (Vazirani, 2001). However, Cey-

han (2010) showed that CCCDs find minimum prototype sets in polynomial

time given the data set reside in R, and its probabilistic behaviour is mathemat-

ically tractable. Fortunately, PCDs have the same property in higher dimensions

which makes them appealing in selecting prototypes since the minimum set is

computationally tractable regardless of the dimensions. In Chapter 5, we define

several types of PCD based classifiers that are both computational tractable and

robust to the class imbalance problem.

(iii) Parameter-free clustering is an intriguing line of research since algorithms

that provides the (estimated) number of clusters without any input parameter
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are still appealing even though there exist methods to validate and compare the

quality of the partitioning of a data set. Human eye is proficient in detecting the

second-order properties of spatial objects in 2 dimensional (or in 3 dimensional)

domains (Julesz, 1975). Ripley (1977) showed that the second-order moments

of a point pattern could be reduced to a function K(t) such that it can be used

to devise test for possible clusterings in the domain. We offer density-based

clustering methods that combine K(t) with recently introduced unsupervised

adaptations of CCCDs. Many existing clustering algorithms require either the

assumed number of clusters, or a parameter representing some threshold for

the local density of a possibly existing cluster. The latter type of algorithms

rely on parameters viewed as the spatial intensity of the data set, i.e. expected

number of objects in a unit area. Choice of such parameters are often challenging

since different values of such parameters may drastically change the result. Our

methods locate the clusters without any parameters via using the K̂(t) (the

estimate of theK) that estimates the spatial intensity as we show it in Chapter 6.

(iv) Ensemble-based clustering are known to boost the performance of traditional

clustering methods. Especially, bagging (bootstrap aggregating) is a traditional

method for improving accuracy (Strehl and Ghosh, 2002). We offer clustering

algorithms based on ensembles of PCDs. These methods are associated with

two seperate proximity maps, called proportional-edge and central-similarity

proximity maps. However, PCDs associated with these proximity maps are

poorly defined for unlabeled data sets. Hence, in Chapter 7, we show that

ensembles of randomly labeled data sets can be used to establish PCD based

clustering methods for partitioning an unlabeled data set.



Chapter 2

PRELIMINARY TOOLS

2.1 Introduction

Let (Ω,M) be a measurable space, and let the training data set X be a set of Ω-

valued random variables with class conditional distribution F , with support s(F ), and

with sample size n := |X |. For Ω = Rd, we develop rules to define proximity catch

digraphs for the data set X (Ceyhan, 2005). We also focus on two PCD families where

we assume that X is composed of two non-empty sets, X0 and X1, which are sets of Rd-

valued random variables with class conditional distributions F0 and F1, with supports

s(F0) and s(F1), and with sample sizes n0 := |X0| and n1 := |X1|, respectively. We

define PCDs for the class of interest, i.e. target class, Xj, for j = 0, 1, with respect to

the Delaunay tessellation of the class of non-interest, i.e. non-target class X1−j.

A tessellation in Rd is a collection of non-intersecting (actually intersecting pos-

sibly only on boundaries) convex d-polytopes such that their union covers a region.

We partition Rd into non-intersecting d-simplices and d-polytopes to construct PCDs

that tend to have multiple disconnected components. We show that such a parti-

tioning of the domain provides digraphs with computationally tractable minimum

dominating sets for PCDs. In addition, we use the barycentric coordinate system to

characterize the points of the target class with respect to the Delaunay tessellation of

the non-target class. Such a coordinate system simplifies the definitions of many tools

associated with PCDs in Rd; such as, vertex and edge regions, minimum dominating

sets and convex distance functions.

Finally, we discuss a spatial data analysis tool using Ripley’s K function, testing

possible clusterings in the domain. We use Ripley’s K function with unsupervised

adaptations of CCCDs, namely cluster catch digraphs, to establish density-based
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clustering methods that find the optimal partitioning of unlabelled data sets, without

the definition of any priori parameter. We also combine the barycentric coordinate

system and K function to characterize the minimum dominating sets of PCDs to

construct ensemble-based clustering algorithms.

2.2 Delaunay Tessellation of Rd

The convex hull of the non-target class CH(X1−j) can be partitioned into Delaunay

cells through the Delaunay tessellation of X1−j ⊂ R2. The Delaunay tessellation

becomes a triangulation which partitions CH(X1−j) into non intersecting triangles.

For the points in the general position, the triangles in the Delaunay triangulation

satisfy the property that the circumcircle of a triangle contain no points from X1−j

except for the vertices of the triangle. In higher dimensions, Delaunay cells are d-

simplices (for example, a tetrahedron in R3). Hence, the CH(X1−j) is the union of a

set of disjoint d-simplices {Sk}Kk=1 where K is the number of d-simplices, or Delaunay

cells. Each d-simplex has d + 1 non-coplanar vertices where none of the remaining

points of X1−j are in the interior of the circumsphere of the simplex (except for the

vertices of the simplex which are points from X1−j). Hence, simplices of the Delaunay

tessellations are more likely to be acute (simplices with no substantially small inner

angles). Note that Delaunay tessellation is the dual of the Voronoi diagram of the set

X1−j. A Voronoi diagram is a partitioning of Rd into convex polytopes such that the

points inside each polytope is closer to the point associated with the polytope than

any other point in X1−j. Hence, a polytope V(y) associated with a point y ∈ X1−j is

defined as

V(y) = {v ∈ Rd : ‖v − y‖ ≤ ‖v − z‖ for all z ∈ X1−j \ {y}}.

Here, ‖·‖ stands for the usual Euclidean norm. Observe that the Voronoi diagram

is unique for a fixed set of points X1−j. A Delaunay graph is constructed by joining

the pairs of points in X1−j whose boundaries of voronoi polytopes are intersecting.

The edges of the Delaunay graph constitute a partitioning of CH(X1−j), hence the
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Delaunay tessellation. By the uniqueness of the Voronoi diagram, the Delaunay tes-

sellation is also unique (except for cases where d + 1 or more points lie on the same

circle of hypersphere). An illustration of the Voronoi diagram and the corresponding

Delaunay triangulation in R2 are given in Figure 2.1(a) and (b).

A Delaunay tessellation partitions only CH(X1−j) and do not offer a partitioning

of the complement Rd \ CH(X1−j) unlike the Voronoi diagrams. As we will see in

the following sections, this drawback makes the definition of our semi-parametric

classifiers more difficult. Let facets of CH(X1−j) be the simplices on the boundary

of CH(X1−j). To partition Rd \ CH(X1−j), we define unbounded regions associated

with each facet of CH(X1−j), namely outer simplices in Rd or outer triangles in R2.

Each outer simplex is constructed by a single facet of CH(X1−j), denoted by Fl for

l = 1, · · · , L. Here, L is the number of boundary facets and, note that, each facet is a

(d− 1)-simplex. Let {p1, p2, · · · , pN} ⊆ X1−j be the set of points on the boundary of

CH(X1−j), and let CM :=
∑N

i=1 pi/N be the center of mass of CH(X1−j). We use the

bisector rays of Deng and Zhu (1999) as frameworks for constructing outer simplices,

however such rays are not well defined for convex hulls in Rd for d > 2. Let the

ray emanating from CM through pi be denoted as
−−−→
CMpi. Hence, we define the outer

simplices by rays emanating from each boundary points pi to outside of CH(X1−j) in

the direction of
−−−→
CMpi. Each facet Fl has d boundary points adjacent to it, and the

rays associated with these boundary points establish an unbounded region together

with the facet Fl. Such a region can be viewed as an infinite “drinking glass” with Fl
being the bottom while top of the glass reaching infinity, similar to intervals in R with

infinite endpoints. Let Fl denote the outer simplex associated with the facet Fl. An

illustration of outer triangles in R2 has been given in Figure 2.1(c) where the CH(X1−j)

has six facets, hence R2 \CH(X1−j) is partitioned into six disjoint unbounded regions.

2.3 Barycentric Coordinate System

The barycentric coordinate system was introduced by A.F. Möbius in his book “The

Barycentric Calculus” in 1837. The idea is to define weights w1, w2 and w3 associated
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(a) (b) (c)

Figure 2.1: (a) A Voronoi diagram of points X1−j ⊂ R2 and (b) the associated the
Delaunay triangulation, partitioning CH(X1−j). (c) The Delaunay tessellation of X1−j

with rays
−−−→
CMpi for i = 1, . . . , 6 that yield a partitioning of R2\CH(X1−j). The dashed

lines illustrate the direction of these rays where they meet at the point CM , center of
mass of CH(X1−j).

with points y1, y2 and y3 which constitute a triangle T in R2, respectively (Ungar,

2010). Hence the center of mass, or the barycenter, for w1 + w2 + w3 6= 0 is given by

P =
w1y1 + w2y2 + w3y3

w1 + w2 + w3

. (2.1)

Similarly, let S = S(Y) be a d-simplex defined by the non-coplanar points Y =

{y1, y2, · · · , yd+1} ⊂ Rd with weights (w1, w2, · · · , wd+1). Thus, the barycenter W ∈
Rd is given by

W =

∑d+1
i=1 wiyi∑d+1
i=1 wi

with
d+1∑
i=1

wi 6= 0. (2.2)

The (d+1)-tuple w = (w1, w2, · · · , wd+1) can also be viewed as a set of coordinates of

W with respect to the set Y = {y1, y2, · · · , yd+1} for d > 0. Hence, the name barycen-

tric coordinates. Observe that W in Equation (2.1) is scale invariant (i.e. invariant

under scaling of the weights of W ). Therefore, the set of barycentric coordinates, also

denoted as (w1 : w2 : . . . : wd+1), are homogeneous, i.e., for any λ ∈ R+,

(w1 : w2 : . . . : wd+1) = (λw1 : λw2 : . . . : λwd+1). (2.3)
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This gives rise to special barycentric coordinates w′ = (w′1, w
′
2, · · · , w′d+1) of a point

x ∈ Rd with respect to the set Y as follows:

d+1∑
i=1

w′i =
d+1∑
i=1

wi
wtot

= 1, (2.4)

where wtot :=
∑d+1

j=1 wj. For the sake of simplicity, we refer to the special (or normal-

ized) barycentric coordinates just as “barycentric coordinates”, and use w to denote

the set of this coordinates of x. Hence, the vector w is the solution to the linear

systems of equations

Aw =
[
y2 − y1 y3 − y1 · · · yd+1 − y1

]

w1

w2

...

wd

 = x− y1 (2.5)

where A ∈ Rd×d is a matrix whose columns are vectors defined by yk − y1 in Rd for

k = 2, · · · , d + 1. Note that wd+1 = 1 −∑d
i=1wi. The set w is unique since vectors

yk − y1 are linearly independent but wi are not necessarily in (0, 1). Barycentric

coordinates define whether the point x is in S(Y) or not, as follows:

• x ∈ S(Y)o if wi ∈ (0, 1) for all i = 0, 1, · · · , d + 1: the point x is inside of the

d-simplex S(Y) where S(Y)o denotes the interior of S(Y),

• x ∈ ∂(S(Y)), the point x is on the boundary of S(Y), if wi = 0 and wj = (0, 1]

for some I such that i ∈ I ⊂ {0, 1, · · · , d+ 1} and j ∈ {0, 1, · · · , d+ 1} \ I,

• x = yi if wi = 1 and wj = 0 for any i = 0, 1, · · · , d+ 1 and j 6= i: the point x is

at the a corner of S(Y),

• x 6∈ S(Y) if wi 6∈ [0, 1] for some i ∈ {0, 1, · · · , d + 1}: the point x is outside of

S(Y).

Barycentric coordinates of a point x ∈ S(Y) can also be viewed as the convex com-

bination of the points of Y , the vertices on the boundary of S(Y).
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We use a general property of barycentric coordinates being invariant under affine

transformations; that is, the coordinates of a point x ∈ Rd with respect to an arbitrary

simplex S is invariant under affine transformations of the simplex S. Let G be a group

of affine transformations on Rd such that, for all g ∈ G, x′ = g(x) iff x′ = Ax + b for

some A ∈ Rd×d and b ∈ Rd. Hence, we have the following theorem.

Theorem 2.3.0.1. Let Y = {y1, y2, · · · , yd+1} be vertices of an arbitrary simplex

S = S(Y), and let wS(x) denote the set of barycentric coordinates of x ∈ Rd with

respect to the vertices of S. Also, let S′ = g(S) be the simplex whose i’th vertex is

given as y′i = g(yi) for i = 1, · · · , d+ 1. Therefore, we have that the set of barycentric

coordinates wG(x) is invariant under the group G, i.e. wS′(x
′) = wS(x) for x′ = g(x).

Proof: For i = 1, · · · , d + 1, let αi = w
(i)
S (x) denote the i’th barycentric coordinate

of x with respect to S(Y). Given the affine transformation g ∈ G for some A ∈ Rd×d

and b ∈ Rd and y′i = g(yi), observe that

x′ = g(x) = Ax+ b = A(
d+1∑
i=1

αiyi) + b = A(
d+1∑
i=1

αiyi) +
d+1∑
i=1

αib

=
d+1∑
i=1

αi(Ayi + b) =
d+1∑
i=1

αiy
′
i

By the uniqueness property of barycentric coordinates, w
(i)
S (x′) = αi. �

2.4 Vertex and Face Regions

We first define vertex and edge regions in R2, and later, we generalize them to as-

sociated regions in Rd for d > 2. In R2, d-simplices are triangles and a Delaunay

tessellation is simply called a Delaunay triangulation. We consider the vertex and

face regions of both inner and outer triangles of a Delaunay tessellation of CH(X1−j).

Vertex and face regions are associated with, as the name implies, the vertices and

faces of simplices, respectively.
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Ceyhan and Priebe (2005) introduced the vertex and face (edges in R2) regions

as auxiliary tools to define proximity regions. They also gave the explicit functional

forms of these regions as a function of the coordinates of vertices {y1, y2, y3}. However,

we characterize these regions based on barycentric coordinates as this coordinate

system will be more convenient for computation in higher dimensions.

2.4.1 Vertex Regions in R2

Let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points, and let T = T (Y) be the

triangle formed by these points. Also, let ei be the edge of T opposite to the vertex yi

for i = 1, 2, 3. We partition the triangle T into regions, called vertex regions. These

regions are constructed based on a point, preferably a triangle center M ∈ T o. Vertex

regions partition T into disjoint regions (only intersecting on the boundary) such that

each vertex region has only one of vertices {y1, y2, y3} associated with it. In particular,

M -vertex regions are classes of vertex regions, which are constructed by the lines from

each vertex yi to M . These lines cross the edge ei at point Mi. By connecting M with

each Mi, we attain regions associated with vertices {y1, y2, y3}. M -vertex region of yi

is denoted by RM(yi) for i = 1, 2, 3. For the sake of simplicity, we will refer M -vertex

regions as vertex regions. Figure 2.2 illustrates the vertex regions of an acute triangle

in R2. Hence, we have the following Propositions 2.4.1.1 for edge regions of inner

triangles in R2.

Proposition 2.4.1.1. Let Y = {y1, y2, y3} ⊂ R2 be a set of three non-collinear points,

and let the set of vertex regions {RM(yi)}i=1,2,3 partitions T (Y). Hence for x,M ∈
T (Y)o, we have x ∈ RM(yi) if and only if

w
(i)
T (x) > max

j=1,2,3
j 6=i

miw
(j)
T (x)

mj

for i = 1, 2, 3 where wT (x) =
(
w

(1)
T (x), w

(2)
T (x), w

(3)
T (x)

)
and m = (m1,m2,m3) are

barycentric coordinates of x and M with respect to T (Y), respectively.

Proof: It is sufficient to show the result for i = 1 (as others follow by symmetry).
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M

M1

M2

M3
y1 y2

y3

M

M1

M2

M3
y1 y2

y3

RM(y1) RM(y2)

RM(y3)

Figure 2.2: M -vertex regions of an acute triangle T (Y) = T (y1, y2, y3) with a center
M ∈ T (Y)o. (a) The dashed lines constitute the vertex regions. (b) Each M -vertex
region is associated with a vertex yi for i = 1, 2, 3.

Hence we show that, for x ∈ RM(y1), we have

w
(1)
T (x) > max

{
m1w

(2)
T (x)

m2

,
m1w

(3)
T (x)

m3

}
.

Let T2(Y) and T3(Y) be the interiors of two triangles given by sets of points {y1, y2,M2}
and {y1, y3,M3}, respectively. Let z ∈ T2(Y) and let wT2(z) = (α1, α2, α3) be the

barycentric coordinates of z with respect to T2(Y). Then

z = α1y1 + α2y2 + α3M2

= α1y1 + α2y2 + α3(by1 + (1− b)y3)

= (α1 + α3b)y1 + α2y2 + α3(1− b)y3,

since M2 lies on edge e2, we can write it as M2 = by1 + (1− b)y3 for some b ∈ (0, 1).

By the uniqueness of wT (z), we have w
(1)
T (z) = α1 + α3b and w

(3)
T (z) = α3(1 − b).

Hence,

w
(1)
T (z)

w
(3)
T (z)

=
α1 + α3b

α3(1− b) >
b

(1− b) =
m1

m3

since αi > 0 for i = 1, 2, 3. Also, since M2 and M are on the same line which crosses
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the edge e2, for some c ∈ (0, 1):

M = cy2 + (1− c)M2

= cy2 + (1− c)(by1 + (1− b)y3)

= b(1− c)y1 + cy2 + (1− b)(1− c)y3,

Hence, b(1− c) = m1 and (1− b)(1− c) = m3, and observe that m1/m3 = b/(1− b).
Then, T2(Y) = {x ∈ T (Y)o : w

(1)
T (x) > (m1/m3)w

(3)
T (x)}, and similarly, T3(Y) = {x ∈

T (Y)o : w
(1)
T (x) > (m1/m2)w

(2)
T (x)}. Thus,

RM(y1) = T2(Y) ∩ T3(Y) =

{
x ∈ T (Y)o : w

(1)
T (x) > max

{
m1w

(2)
T (x)

m2

,
m1w

(3)
T (x)

m3

}}
. �

Note that, when M := MC the median (or the center of mass) of the triangle T (Y),

we can simplify the result of Proposition 2.4.1.1; that is, for any point x ∈ T (Y)o, we

have x ∈ RMC
(yi) if and only if w

(i)
T (x) = maxj=1,2,3w

(j)
T (x) since the set of barycentric

coordinates of MC is mC = (1/3, 1/3, 1/3).

Vertex regions of outer triangles are defined in a different fashion to those in inner

triangles. Let e = F be the edge (or facet) of CH(X1−j) adjacent to vertices {y1, y2}.
We denote the facet of CH(X1−j) given by points y1 and y2 as e∞; that is, it is opposite

to a fictitious vertex y∞ of the outer triangle F . There is only a single vertex region

of outer triangle F , and it is the region associated with the vertex y∞, i.e. RM(e∞).

Therefore, we have F = RM(e∞).

2.4.2 Vertex Regions in Rd with d > 2

The definitions of vertex regions in R2 can be extended to the ones in Rd for d > 2. A

d-simplex is the smallest convex polytope in Rd constructed by a set of non-coplanar

vertices Y = {y1, y2, · · · , yd+1}. The boundary of a d-simplex consists of k-simplices

called k-faces for 0 ≤ k < d. Each k-face is a simplex defined by a subset of Y with

k elements, hence there are
(
d+1
k+1

)
k-faces in a d-simplex. Let S(Y) be the simplex

defined by the set of points Y . Given a simplex center M ∈ S(Y)o (e.g. a triangle
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Figure 2.3: (a) M -vertex region RM(y1) of vertex y1 and (b) RM(y3) of vertex y3 of a
3-simplex, or a tetrahedron. M -vertex regions are shaded.

center in R2), there are d+1 M -vertex regions constructed by the set Y . The M -vertex

region of the vertex yi is denoted by RM(yi) for i = 1, 2, · · · , d+ 1.

For i = 1, . . . , d+1, let fi denote the (d−1)-face opposite to the vertex yi. Observe

that the lines through the points yi and M cross the face fi, a (d − 1)-face, at the

points Mi. Similarly, since the face fi is a (d − 1)-simplex with a center Mi for any

i = 1, . . . , d+ 1, we can find the centers of (d− 2)-faces of this (d− 1)-simplex. Note

that both Mi and M are of same type of centers of their respective simplices fi and

S(Y). The vertex region RM(yi) is the convex hull of the points yi, {Mj}d+1
j=1;j 6=i, and

centers of all k-faces (which are also k-simplices) adjacent to yi for k = 1, . . . , d − 2.

Illustration of the vertex regions RM(y1) and RM(y3) of a 3-simplex (tetrahedron)

are given in Figure 2.3. Each 2-face of this 3-simplex is a 2-simplex (a triangle).

For example, in Figure 2.3(a), the points M2, M3 and M4 are centers of f2, f3 and

f4, respectively. Moreover, these 2-simplices also have faces (1-faces or edges of the

3-simplex), and the centers of these faces are {Mij}4
i,j=1;i 6=j. Hence, the vertex region

RM(y1) is a convex polytope of points {y1,M,M2,M3,M4,M32,M42,M43} and RM(y3)

is a convex polytope of points {y3,M,M2,M4,M1,M42,M41,M21}. The following

theorem is an extension of the Proposition 2.4.1.1 to higher dimensions.

Theorem 2.4.2.1. Let Y = {y1, y2, · · · , yd+1} ⊂ Rd be a set of non-coplanar points
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for d > 0, and let the set of vertex regions {RM(yi)}d+1
i=1 partitions S(Y). Hence, for

x,M ∈ S(Y)o, we have x ∈ RM(yi) if and only if

w
(i)
S (x) > max

j=1,··· ,d+1
j 6=i

miw
(j)
S (x)

mj

(2.6)

where wS(x) =
(
w

(1)
S (x), · · · , w(d+1)

S (x)
)

and m = (m1, . . . ,md+1) are the barycentric

coordinates of x and M with respect to S(Y), respectively.

Proof: We prove this theorem by induction on dimension d. The proof of the case

d = 1 is trivial. For S(Y) = (y1, y2) ⊂ R and y1 < y2, the vertex regions RM(y1) and

RM(y2) are the intervals (y1,M) and (M, y2), respectively ({x = M} and {x = yi}
have zero R-Lebesgue measure). For α1 ∈ (0, 1) and α2 = 1− α1, let α1y1 + α2y2 be

the convex (or barycentric) combination of x ∈ S(Y). Hence, x ∈ (y1,M) = RM(y1)

if and only if α1/α2 > m1/m2. The case d = 2 is proved in Proposition 2.4.1.1. Thus,

there only remains the case d > 2. We suppose the statement is true for all faces

of the d-simplices which are d − 1 dimensional, and by that, we will show that the

statement is also true for the d-simplex which is d dimensional.

It is sufficient to show the result for y1 (as the others follow by symmetry). Let

x ∈ RM(y1) and note that the elements of the set of (d−1)-faces, {fj}d+1
j=2, are adjacent

to y1. Each of these faces are of d− 1 dimensions. Hence, they are (d− 1)-simplices

and they also have their own vertex regions. Thus, let RMi
(yj, fi) be the vertex region

of yj with respect to (d − 1)-simplex fi for j 6= i. Note that Mi is the center of fi.

Now, let wfi(z, yj) = wij be the barycentric coordinate of point z corresponding to yj

with respect to the fi. Observe that wii is not defined since yi is not a vertex of the

face fi.

Moreover, let m′ = (m′1, . . . ,m
′
i−1,m

′
i+1, . . . ,m

′
d+1) be the barycentric coordinates

of Mi with respect to fi, and note that Mi is a linear combination of M and yi. Also,

observe that m′i is not defined since the vertex yi is not a vertex of fi. Hence, for

β ≥ 1,

Mi = βM + (1− β)yi = β

(
d+1∑

t=1;t6=i

mtyt

)
+ (1− β)yi. (2.7)
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Therefore, by the uniqueness of barycentric coordinates, m′t = βmt for t = 1, . . . , d+1

and t 6= i. Note that (1− β) = 0 since Mi ∈ fi and also fi ⊂ ∂(S(Y)). Hence, β = 1

which implies m′t = mt for all t 6= i. Then, m′1/m
′
j = m1/mj for j = 2, 3, . . . , d + 1

and j 6= i. We use this result on our induction hypothesis.

Now, for i = 2, . . . , d+ 1, let the face fi and line defined by x and yi cross at the

point zi. Observe that zi ∈ fi, and since fi is a (d − 1)-simplex and x ∈ RM(y1),

see that zi ∈ RMi
(y1, fi). By induction hypothesis and (2.7), we observe that zi ∈

RMi
(y1, fi) if and only if wi1 > (m′1/m

′
j)wij if and only if wi1 > (m1/mj)wij for

j = 2, 3, . . . , d+1 and j 6= i. Since the point x is the convex (and linear) combination

of zi and yi, for α ∈ (0, 1), we have

x = (1− α)yi + αzi = (1− α)yi + α

(
d+1∑

k=1;k 6=i

wik

)
.

By the uniqueness property of barycentric coordinates, it follows that w
(1)
S (x) = αwi1

and w
(j)
S (x) = αwij. Hence,

w
(1)
S (x)

w
(j)
S (x)

=
wi1
wij

>
m1

mj

. (2.8)

Since (2.8) is true for all i = 2, . . . , d + 1, we see that x ∈ RM(y1) if and only if

w
(1)
S (x) > (m1/mi)w

(i)
S (x). Hence, the result follows. �

For M = MC and for any point x ∈ S(Y)o, we have x ∈ RMC
(yi) if and only

if w
(i)
T (x) = maxj w

(j)
T (x) since the set of barycentric coordinates of MC is mC =

(1/(d+1), 1/(d+1), . . . , 1/(d+1)). The MC-vertex regions are particularly appealing

for our proportional-edge proximity maps.

Vertex regions of outer triangles are defined in a different fashion to those in inner

triangles. Let e = F be the edge (or facet) of CH(X1−j) adjacent to vertices {y1, y2}.
We denote the facet of CH(X1−j) given by points y1 and y2 as e∞; that is, it is opposite

to a fictitious vertex y∞ of the outer triangle F . There is only a single vertex region

of outer triangle F , and it is the region associated with the vertex y∞, i.e. RM(e∞).

Therefore, we have F = RM(e∞).

Let F be a facet of CH(X1−j), and let Y = {y1, y2 . . . , yd} ⊂ Rd be a set of

adjacent points on the boundary of CH(X1−j) associated with F . Let the outer
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simplex F ⊂ Rd be defined by the set Y and the rays {−−−→CMy1, . . . ,
−−−→
CMyd}. We denote

the facet of CH(X1−j) given by the set Y as f∞; that is, it is opposite to a fictitious

vertex y∞ of the outer simplex F . There is only a single vertex region of outer simplex

F , and it is the region associated with the vertex y∞, i.e. RM(f∞). Therefore, we

have F = RM(f∞).

2.4.3 Edge Regions (Face Regions in R2)

Let Y = {y1, y2, y3} ⊂ R2 be the set of non-collinear points that constitutes some

inner triangle T = T (Y) of CH(X1−j). Let ei be the edge opposite to the vertex

yi for i = 1, 2, 3. We partition the triangle T into regions, namely edge regions.

These regions are constructed based on a point, preferably a triangle center M ∈ T o.
Here, T oI is the interior of the triangle T . Edge regions are associated with the edges

opposite to each vertex of Y . We attain the edge regions by joining each yi with

M , also referred as M -edge regions. M -edge region of ei is denoted by RM(ei) for

i = 1, 2, 3. Observe that in M -edge regions, the interiors of these regions are disjoint.

For the sake of simplicity, we will refer M -edge regions as edge regions. Hence, we

have the following Propositions 2.4.3.1 for edge regions of inner triangles in R2.

Proposition 2.4.3.1. Let Y = {y1, y2, y3} ⊂ R2 be three non-collinear points, and let

the set of edge regions {RM(ei)}i=1,2,3 partition T (Y). Hence for x,M ∈ T (Y)o, we

have x ∈ RM(ei) if and only if

w
(i)
T (x) < min

j=1,2,3
j 6=i

miw
(j)
T (x)

mj

for i = 1, 2, 3 where wT (x) =
(
w

(1)
T (x), w

(2)
T (x), w

(3)
T (x)

)
and m = (m1,m2,m3) are

barycentric coordinates of x and M with respect to T (Y), respectively.

Proof: It is sufficient to show the result for i = 1 (as the others follow by symmetry).

Hence we show that, for x ∈ RM(e1), we have

w
(1)
T (x) < min

{
m1w

(2)
T (x)

m2

,
m1w

(3)
T (x)

m3

}
.
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Let T2(Y) and T3(Y) be the interiors of two triangles constructed by sets of points

{y2, y3,M2} and {y3, y2,M3}, respectively. Let z ∈ T2(Y) and let wT2(z) = (α1, α2, α3)

be the barycentric coordinates of z with respect to T2(Y). Then

z = α1y2 + α2y3 + α3M2

= α1y2 + α2y3 + α3(by1 + (1− b)y3)

= α3by1 + α1y2 + (α2 + (1− b)α3)y3

since M2 lies on edge e2, we can write it as M2 = by1 + (1− b)y3 for some b ∈ (0, 1).

By the uniqueness of wT (z), we have w
(1)
T (z) = α3b and w

(3)
T (z) = α2 + α3(1 − b).

Hence,

w
(1)
T (z)

w
(3)
T (z)

=
α3b

α2 + α3(1− b) <
b

(1− b) =
m1

m3

since αi > 0 for i = 1, 2, 3. Also, since M2 and M are on the same line which intersects

the edge e2, for some c ∈ (0, 1):

M = cy2 + (1− c)M2

= cy2 + (1− c)(by1 + (1− b)y3)

= b(1− c)y1 + cy2 + (1− b)(1− c)y3,

Hence, b(1− c) = m1 and (1− b)(1− c) = m3, and observe that m1/m3 = b/(1− b).
Then, T2(Y) = {x ∈ T (Y)o : w

(1)
T (x) < (m1/m3)w

(3)
T (x)}, and similarly, T3(Y) = {x ∈

T (Y)o : w
(1)
T (x) < (m1/m2)w

(2)
T (x)}. Thus,

RM(e1) = T2(Y) ∩ T3(Y) =

{
x ∈ T (Y)o : w

(1)
T (x) < min

{
m1w

(2)
T (x)

m2

,
m1w

(3)
T (x)

m3

}}
. �

Note that, when M := MC the median (or the center of mass) of the triangle

T (Y), we simplify the result of Proposition 2.4.3.1; that is, for any point x ∈ T (Y)o,

we have x ∈ RMC
(ei) if and only if w

(i)
T (x) = minj=1,2,3w

(j)
T (x) since the barycentric

coordinates of MC is mC = (1/3, 1/3, 1/3).
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Figure 2.4: (a) Edge regions of an acute inner triangle T (Y) = T (y1, y2, y3) with a
center M ∈ T o. (b) Edge regions of an outer triangle T (Y) = T (y1, y2) with a center
M ∈ T o.

Edge regions of outer triangles are defined in a similar fashion to those in inner

triangles. However, some of these regions are bounded and some are unbounded unlike

in inner triangles. Let F ⊂ R2 be an outer triangle defined by the adjacent boundary

points {y1, y2} ⊂ R2 of CH(X1−j) and by rays
−−−→
CMy1 and

−−−→
CMy2 for CM being the

median of the boundary points of CH(X1−j). Also, let e = F be the edge (or facet)

of CH(X1−j) adjacent to vertices {y1, y2}. We partition F into regions associated

with its edges. These regions are constructed based on a point, preferably a point

realized as a center M ∈ F . We attain the edge regions by joining each yi with M .

We define an additional line in the direction of
−−−→
CMM to attain all edge regions. We

denote the facet of CH(X1−j) given by points y1 and y2 as e∞; that is, it is opposite

to a fictitious vertex y∞ of the outer triangle F . The edge region of ei is denoted by

RM(ei) for i = 1, 2, . . . , d, and the edge region of e∞ is by RM(e∞). Observe that,

since the outer triangle is an unbounded region, so is the edge regions associated with

edges ei, however the edge region of e∞ is a regular bounded triangle. The interiors of

these regions are disjoint. Figure 2.4(b) illustrates the edge regions in an acute inner

triangle and in an outer triangle.
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2.4.4 Face Regions in Rd for d > 2

The definitions of edge regions in R2 can be extended to the face regions in Rd for

d > 2. A d-simplex is the smallest convex polytope in Rd constructed by a set of

non-coplanar vertices Y = {y1, y2, · · · , yd+1}. The boundary of a d-simplex consists of

k-simplices called k-faces for 0 ≤ k < d. Each k-face is a simplex defined by a subset

of Y with k elements, hence there are
(
d+1
k+1

)
k-faces in a d-simplex. Let S(Y) be the

d-simplex defined by the set of points Y .

In Rd for d > 2, M -edge regions become M -face regions. Given a simplex center

M ∈ S(Y)o, there are d + 1 M -face regions constructed by the set Y . For i =

1, . . . , d + 1, let fi denote the (d − 1)-face opposite to the vertex yi. The M -face

region of the face fi is denoted by RM(fi) for i = 1, 2, · · · , d + 1. Let S = S(Y)

denote an inner simplex with vertex set Y . Given a simplex center M ∈ So (e.g. a

triangle center in R2), there are d + 1 M -face regions associated with each point of

Y . The M -face region of fi is denoted by RM(fi) for i = 1, 2, . . . , d + 1. The face

region RM(fi) is constructed by the points M and {yj}d+1
j=1;j 6=i. Thus, a face region of

a d-simplex is also a d-simplex. An illustration of the face region of f3 for R3 is given

in Figure 2.5(a). The face region RM(f3) is the 3-simplex with points {y1, y3, y4,M}.
Note that each 2-face of the 3-simplex (tetrahedron) is a 2-simplex (a triangle).

Theorem 2.4.4.1. Let Y = {y1, y2, . . . , yd+1} ⊂ Rd be a set of non-coplanar points

for d > 0, and let the set of face regions {RM(fi)}d+1
i=1 partitions S(Y). Hence, for

x,M ∈ S(Y)o, we have x ∈ RM(fi) if and only if

w
(i)
S (x) < min

j=1,...,d+1
j 6=i

miw
(j)
S (x)

mj

. (2.9)

where wS(x) =
(
w

(1)
S (x), · · · , w(d+1)

S (x)
)

and m = (m1, . . . ,md+1) are the barycentric

coordinates of x and M with respect to S(Y), respectively.

Proof: We prove this theorem by induction on dimension d. The proof of the case

d = 1 is trivial. For S(Y) = (y1, y2) ⊂ R and y1 < y2, the edge regions RM(e1) and

RM(e2) are the intervals (M, y2) and (y1,M), respectively ({x = M} and {x = yi}
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have zero R-Lebesgue measure). Note that, edge regions in R are also vertex regions.

For α1 ∈ (0, 1) and α2 = 1 − α1, let α1y1 + α2y2 be the convex (or barycentric)

combination of x ∈ S(Y). Hence, x ∈ (M, y2) = RM(e1) if and only if α1/α2 <

m1/m2. The case d = 2 is proved in Proposition 2.4.3.1. Thus, there only remains

the case d > 2. We suppose the statement is true for all faces of the d-simplices which

are d − 1 dimensional, and by that, we will show that the statement is also true for

the d-simplex which is d dimensional.

It is sufficient to show the result for f1 (as the others follow by symmetry). Let

x ∈ RM(f1) and note that the elements of the set of (d−1)-faces, {fj}d+1
j=2, are adjacent

to y1. Each of these faces are of d− 1 dimensions. Hence, they are (d− 1)-simplices

and they also have their own face regions. Thus, let Rij be the face region of fj with

respect to (d− 1)-simplex fi for j 6= i. Note that Mi is the center of fi. Now, let wij

be the barycentric coordinate of point z corresponding to yj with respect to the fi.

Observe that wii is not defined since yi is not a vertex of the face fi.

We follow the proof of Theorem 2.4.2.1. Let m′ = (m′1, . . . ,m
′
i−1,m

′
i+1, . . . ,m

′
d+1)

be the set of barycentric coordinates of the center Mi with respect to fi, and note

that Mi is a linear combination of M and yi. Hence, as in Theorem 2.4.2.1, m′1/m
′
j =

m1/mj for j = 2, 3, . . . , d + 1 and j 6= i. By induction hypothesis, we observe

that zi ∈ Ri1 if and only if wi1 < (m′1/m
′
j)wij if and only if wi1 < (m1/mj)wij for

j = 2, 3, . . . , d+1 and j 6= i. Since the point x is the convex (and linear) combination

of zi and yi, for α ∈ (0, 1), we have

x = (1− α)yi + αzi = (1− α)yi + α

(
d+1∑

k=1;k 6=i

wik

)
.

By the uniqueness property of barycentric coordinates, it follows that w
(1)
S (x) = αwi1

and w
(j)
S (x) = αwij. Hence,

w
(1)
S (x)

w
(j)
S (x)

=
wi1
wij

<
m1

mj

. (2.10)

Since (2.10) is true for all i = 2, . . . , d + 1, we see that x ∈ RM(f1) if and only if

w
(1)
S (x) < (m1/mi)w

(i)
S (x). Hence, the result follows. �



Chapter 2: Preliminary Tools 25

For M = MC , we simplify the result of Theorem 2.4.4.1; that is, for any point

x ∈ S(Y)o, we have x ∈ RMC
(ei) if and only if w

(i)
T (x) = minj w

(j)
T (x) since the

barycentric coordinates of MC is mC = (1/(d+ 1), 1/(d+ 1), . . . , 1/(d+ 1)). The MC-

vertex regions are particularly appealing for our central-similarity proximity maps.

Let F be a facet of CH(X1−j), and let Y = {y1, y2 . . . , yd} ⊂ Rd be a set of

adjacent points on the boundary of CH(X1−j) associated with F . Let the outer

simplex F ⊂ Rd be defined by the set Y and the rays {−−−→CMy1, . . . ,
−−−→
CMyd} for CM

being the median of CH(X1−j). The face regions are constructed based on a point,

or center, M ∈ F o. We define an additional line in the direction of M − CM to

attain all face regions. We denote the facet of CH(X1−j) given by the set Y as f∞;

that is, it is opposite to a fictitious vertex y∞ of the outer simplex F . The face

region of fi is denoted by RM(fi) for i = 1, 2, . . . , d, and the face region of f∞ is

by RM(f∞). The interiors of these regions are disjoint. Similar to the case when

d = 2, the face region RM(f∞) is bounded whereas others are not, i.e. RM(fi) for

i = 1, 2, . . . , d. Figure 2.4(b) illustrates the face regions of f2 in an outer simplex.

See that vertices {y1, y3} and vectors {−−−→CMy1,
−−−→
CMy3} establishes the unbounded face

f2. Hence the face region RM(f2) is the unbounded region given by points {y1, y3,M}
and rays {−−−→CMy1,

−−−→
CMy3,

−−−→
MCM}.

2.5 Spatial Data Analysis and Ripley’s K function

We use spatial data analysis tools to test if clusters exist in the domain. One such

test, based on the Ripley’s K function, exploits distances between points to deter-

mine the second-order moments of point processes in a window W ⊂ Ω. Human eye

is proficient in detecting the second-order properties of spatial objects in 2 dimen-

sional (or in 3 dimensional) domains (Julesz, 1975). Moreover, Ripley (1976) states

that the intensity λ and the function K sufficiently summarize first and second-order

moments of stationary point processes, respectively, which can be used to devise tests

for analyzing spatial data sets. We offer algorithms that employs both CCDs and

Ripley’s K function to estimate the supports of individual hidden classes in a data
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Figure 2.5: (a) Face region RM(f3) of face f3 of a 3-simplex, or a tetrahedron. (b)
Face region RM(f2) of a face f2 of a outer simplex. Face regions are shaded.

set. Here, we review the K function and methods for testing spatial clusterings for

the sake of completeness.

Mapped point patterns recieved extensive attention in the spatial data analysis

literature. Methods based on quadrats and nearest neighbor distances are some of

the most popular methods (Ripley, 2005). In addition, Ripley (1977) showed that

the second-order moments of homogeneous spatial processes could be reduced to a

function K(t) on distance t ∈ R+; that is, the distances between points are exploited

to test whether a set of random events fit a certain spatial distribution. Now, let λ

be the expected number of events in a region A ⊂ Ω of unit area (or volume). Hence,

λ2K(t) is the expected number of ordered pairs at most t distance apart.

Let Z = {Z1, Z2, · · · , Zn} be a set of Rd-valued random events in a window W ⊂
Rd. We use the estimate K̂(t) of the expected number of pairs that are at most t

distance apart from each other in W (Ripley, 1976):

K̂(t) :=
Vol(A)

n(n− 1)

∑
z∈Z

∑
z′∈Z
z′ 6=z

I(d(z, z′) < t)ϑ(z, z′). (2.11)

Here, ϑ(z, z′) is the weighting function to correct the bias resulted by the edge ef-

fects. Specifically, the neighbourhood of z with radius t is a ball B(z, t) which may
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Figure 2.6: Three examples of point patterns where (a) one is a realization of ho-
mogeneous Poisson process, (b) one is a clustered process with one cluster, and the
other is (c) a process with two clusters. The realizations are given on top, and the
corresponding %99 envelopes and the L̂(t)− t are given at the bottom.

sufficiently be close to the edge of the window W such that B(z, t) \ W 6= ∅. Since

Z ⊂ W , some subset of B(z, t) would be empty, and thus K̂(t) in Equation 2.11 will

be a biased estimator of K(t) if ϑ(z, z′) = 1 for all z, z′ ∈ W . Hence, we choose a such

a correction coefficient ϑ(z, z′) for any z ∈ Z that is proportional to the volume of

B(z, t) ∩W . We use the translation correction method for our clustering algorithms

(Baddeley et al., 2015). Although K̂(t) can be computed for any value of t > 0, an

appropriate tmax ≥ t value is in order since high values of t may increase the variance

of K̂(t). Hence, we restrict the tmax depending on the window geometry; for example,

a tmax value equal to a quarter of the smaller side length of a rectangular window is

appropriate (Baddeley et al., 2015).
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We test if the realizations of these random events are drawn from events of ho-

mogenuous Poisson processes (or from events of any spatial distribution; but we

assume complete spatial randomness). However, the distribution of K̂(t) is un-

known. Under the assumption of complete spatial randomness (CSR), it is known

that K(t) = πt2 for R2, i.e. the area/volume of a ball with radius t. To test the null

hypothesis, we use the simulated data sets to build confidence bands with minimum

and maximum K̂(t) values. Each simulated data set is composed of a random sample

of uniformly distributed points inside W . We record minimum and maximum K̂(t)

for each value of t. These values are equivalent to α’th and 1−α’th quantiles, respec-

tively, which establish %95 confidence bands with N = 19 Monte Carlo replications

and %99 confidence bands with N = 99 replications. Hence, the more the number

of replications N , the more powerful the test is. We test if the K̂(t) of the data set

is equal or greater(less) than the N(1− α/2)’th (N(α/2)’th) value of all K̂(t) values

(from both simulated data sets and the real data set). If this is the case for any value

of t, the null hypothesis is rejected. Another expression, L(t) − t, on t provides a

better visualization of the envelope which is defined as follows: for Z ⊂ R2 (Ripley,

1979),

L(t) :=

√
K(t)

π
(2.12)

The estimate L̂(t) is defined similarly. It is easy to see that, for K(t) = πt2, we have

L(t)− t = 0. Hence, the envelope of L(t)− t provides confidence bands around the 0

line which is visually more convenient. In Figure 2.6, we illustrate three example sets

of point patterns in a unit square window W that one is drawn from a homogeneous

point pattern, and others are clustered processes (where some regions in the window

either have different local density or zero Lebesgue measure). We also provide the

L̂(t)− t curves.

In Figure 2.6, upper and lower dashed curves of the envelopes represent the max-

imum and minimum possible values of L̂(t) − t corresponding to each value of t. If

the L̂(t)− t curve of the data set is not (entirely) inside the envelope, it is concluded

that there is no sufficient evidence of the data set being drawn from a homogeneous
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Poisson process (the data set does not show CSR). However, as illustrated with a

window of one or two clusters in Figure 2.6, the curve of the data set is outside the

envelopes which indicates the rejection of the null hypothesis. We use L̂(t) − t to

find the radii or the proximity regions that encapsulate subsets of the data sets which

follow CSR inside the covering ball. We establish a collection of subsets given by

these regions (viewed as a window W) such that we use the union of such collection

of regions to estimate the supports of hidden classes.



Chapter 3

PROXIMITY MAPS AND PROXIMITY CATCH

DIGRAPHS

3.1 Introduction

The proximity map N (·) : Ω → 2Ω associates with each point x ∈ X , a proximity

region N (x) ⊂ Ω. Consider the data-random (or vertex-random) proximity catch

digraph (PCD) D = (V ,A) with vertex set V = X and arc set A defined by (u, v) ∈
A ⇐⇒ {u, v} ⊂ X and v ∈ N (u). The digraph D depends on the (joint) distribution

of X , and on the map N (·). The adjective proximity — for the digraph D and for the

map N (·) — comes from thinking of the region N (x) as representing those points in

Ω “close” to x (Jaromczyk and Toussaint, 1992; Toussaint, 1980). The binary relation

u ∼ v, which is defined as v ∈ N (u), is asymmetric, thus the adjacency of u and v is

represented with directed edges or arcs which yield a digraph instead of a graph. Let

us also consider the case where the data set X is composed of two non-empty sets,

X0 and X1, with sample sizes n0 := |X0| and n1 := |X1|, respectively. For j = 0, 1, we

investigate the PCD Dj, associated with Xj against X1−j. Here, we specify Xj as the

target class and X1−j as the non-target class. Hence, in the definitions of our PCDs,

the only difference is switching the roles of X0 and X1. For j = 0, X0 becomes the

target class, and for j = 1, X1 becomes the target class.

CCCDs are, in fact, equivalent to PCDs whose proximity maps constitutes spheres

in Rd, namely spherical proximity maps. In addition to CCCDs, Ceyhan (2005)

introduced three families of PCDs to analytically compute the distribution of the

domination number of such digraphs in a two class setting. Domination number and,

another graph invariant, the arc density (the ratio of number of arcs in a digraph to
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the total number of arcs possible) of these PCDs have been used for testing spatial

patterns of segregation and association (Ceyhan and Priebe, 2005; Ceyhan et al.,

2007, 2006).

Two of the proximity maps associated with PCDs introduced by Ceyhan and

Priebe (2005) are simplicial proximity maps (establishes regions that constitute sim-

plices in Rd) defined for the points of the target class Xj in the convex hull of the non-

target class, CH(X1−j). These simplicial proximity maps are, namely, proportional-

edge and central-similarity proximity maps. However, by introducing the outer sim-

plices associated with the facets of CH(X1−j), we extend the definition of the simpli-

cial proximity maps to Rd \CH(X1−j). Simplicial proximity regions are d-simplices in

CH(X1−j) (triangles in R2 and tetrahedrons in R3) and d-polytopes in Rd \CH(X1−j).

After partitioning Rd into disjoint regions, we further partition each simplex S and

polytope F into vertex and face regions, and construct the simplicial proximity re-

gions N (x) for x ∈ S. Here, we define the regions N (x) as open sets in Rd.

3.2 Spherical Proximity Maps

Class Cover Catch Digraphs (CCCDs) are graph theoretic representations for the CCP

(Priebe et al., 2001, 2003a). The goal in CCP is to find a region that encapsulates

all the members of the class of interest where this particular region can be viewed

as a cover. Let X0 = {x1, x2, ..., xn0} ⊂ Rd and X1 = {y1, y2, ..., yn1} ⊂ Rd be sets

of observations from two classes of a data set. Without loss of generality, assume

that the target class (i.e. the class of interest) is X0. In a CCCD, for u, v ∈ X0,

let B(u, r) be the hyperball centered at u with radius r = r(u). A CCCD D0 is a

digraph D0 = (V0,A0) with vertex set V0 = X0 and the arc set A0 where (u, v) ∈ A0

iff v ∈ B(u, r). CCCDs are a family of PCDs using spherical proximity maps, letting

N (x) := B(x, r(x)). One particular family of CCCDs are called pure-CCCDs (P-

CCCDs) wherein the covering ball (or covering hyperball) B(u, r) is viewed as a

region, with u as its center, expanding until it hits the closest non-target class point.

Therefore, r = r(u) := minv∈X1 d(u, v) (Marchette, 2010). Here, d(., .) can be any
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dissimilarity measure but we use the Euclidean distance henceforth. For all u ∈ X0,

the radius r is defined in such a way that no non-target point of X1 is in the covering

ball B(u, r), i.e. X1 ∩ B(u, r) = ∅. The digraph D1 is established by interchanging

the roles of target class being X1 and non-target class being X0.

3.3 Proportional-Edge Proximity Maps

We use a type of proximity map with expansion parameter r, namely proportional-

edge (PE) proximity map, denoted by NPE(·, r). The PE proximity map and the

associated digraphs, PE-PCDs, are defined in Ceyhan and Priebe (2005). Currently,

PE-PCDs are only defined for the points in Xj ∩CH(X1−j). Hence, for the remaining

points of the target class Xj, i.e. Xj \ CH(X1−j), we extend the definition of PE

proximity maps to the outer simplices. Hence, we will be able to show later that the

resulting PCDs have computationally tractable minimum dominating sets which are

equivalent to the exact minimum prototype sets of PE-PCD classifiers for the entire

data set.

3.3.1 PE proximity Maps of d-Simplices

For r ∈ [1,∞), we define NPE(·, r) to be the PE proximity map associated with a

triangle T = T (Y) formed by the set of non-collinear points Y = {y1, y2, y3} ⊂ R2.

Let RMC
(y1), RMC

(y2) and RMC
(y3) be the vertex regions associated with vertices

y1,y2 and y3. Note that the barycentric coordinates of MC are (1/3 : 1/3 : 1/3). For

x ∈ T o, let v(x) ∈ Y be the vertex whose region contains x; hence x ∈ RMC
(v(x)). If

x falls on the boundary of two vertex regions, or on MC , we assign v(x) arbitrarily.

Let e(x) be the edge of T opposite to v(x). Let `(v(x), x) be the line parallel to e(x)

through x. Let d(v(x), `(v(x), x)) be the Euclidean (perpendicular) distance from

v(x) to `(v(x), x). For r ∈ [1,∞), let `r(v(x), x) be the line parallel to e(x) such

that d(v(x), `r(v(x), x)) = rd(v(x), `(v(x), x)). Let Tr(x) be the triangle similar to

and with the same orientation as T where Tr(x) has v(x) as a vertex and `r(v(x), x)

as edge opposite of v(x). Then the proportional-edge proximity region NPE(x, r) is
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Figure 3.1: The proportional-edge proximity region (shaded), NPE(x, r = 2), in a
triangle T ⊆ R2.

defined to be Tr(x) ∩ T . Figure 3.1 illustrates a PE proximity region NPE(x, r) of a

point x in an acute triangle.

The extension of NPE(·, r) to Rd for d > 2 is straightforward. Now, let Y =

{y1, y2, · · · , yd+1} be a set of d + 1 non-coplanar points, and represent the simplex

formed by the these points as S = S(Y). We define the PE proximity map as

follows. Given a point x ∈ So, let v(x) be the vertex in whose region x falls (if x falls

on the boundary of two vertex regions or on MC , we assign v(x) arbitrarily.) Let ϕ(x)

be the face opposite to vertex v(x), and η(v(x), x) be the hyperplane parallel to ϕ(x)

which contains x. Let d(v(x), η(v(x), x)) be the (perpendicular) Euclidean distance

from v(x) to η(v(x), x). For r ∈ [1,∞), let ηr(v(x), x) be the hyperplane parallel to

ϕ(x) such that d(v(x), ηr(v(x), x)) = r d(v(x), η(v(x), x)). Let Sr(x) be the polytope

similar to and with the same orientation as S having v(x) as a vertex and ηr(v(x), x) as

the opposite face. Then the PE proximity region is given by NPE(x, r) := Sr(x)∩S.

We consider the Delaunay tessellation (assumed to exist) of X1−j where S(1)
1−j =

{S1, . . . ,SK} denotes the set of all Delaunay cells (which are d-simplices). We con-

struct the proximity region NPE(x, r) of a point x ∈ Xj depending on which d-

simplex Sk this point reside in. Observe that, this construction pertains to points in

Xj ∩ CH(X1−j) only.
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Figure 3.2: The proportional-edge proximity region, NPE(x, r = 2) (shaded), in an
outer triangle F ⊆ R2.

3.3.2 PE proximity Maps of Outer Simplices

For points of the target class Xj outside of the convex hull of the non-target class X1−j,

i.e. Xj \ CH(X1−j), we define the PE proximity maps similar to the ones defined for

d-simplices. Let F ⊂ R2 be an outer triangle defined by the adjacent boundary points

{y1, y2} ⊂ R2 of CH(X1−j) and by rays
−−−→
CMy1 and

−−−→
CMy2 for CM being the median of

the boundary points of CH(X1−j). Also, let e = F be the edge (or facet) of CH(X1−j)

adjacent to vertices {y1, y2}. Note that there is no center in an outer triangle, but

there is only a single vertex region. For r ∈ [1,∞), we define NPE(·, r) to be the

PE proximity map of the outer triangle. For x ∈ F o, let `(x, e) be the line parallel

to e through x, and let d(e, `(x, e)) be the Euclidean distance from e to `(x, e). For

r ∈ [1,∞), let `r(x, e) be the line parallel to e such that d(e, `r(x, e)) = rd(e, `(x, e)).

Let Fr(x) be a polygon similar to the outer triangle F such that Fr(x) has e and

er(x) = `r(x, e) ∩ F as its two edges, however Fr(x) is a bounded region whereas

F is not. Then, the proximity region NPE(x, r) is defined to be Fr(x). Figure 3.2

illustrates a PE proximity region NPE(x, r) of a point x in an outer triangle.

The extension of NPE(·, r) of outer triangles to Rd for d > 2 is straightforward.
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Let F ⊂ Rd be an outer simplex defined by a set of adjacent points {y1, . . . , yd} ⊂ Rd

on the boundary of CH(X1−j), and let F be defined by rays {−−−→CMy1, . . . ,
−−−→
CMyd}. Also,

let F be the facet of CH(X1−j) adjacent to vertices {y1, . . . , yd}. We define the PE

proximity map as follows. Given a point x ∈ F o, let η(x,F) be the hyperplane

parallel to F through x and let d(F , η(x,F)) be the Euclidean distance from F to

η(x,F). For r ∈ [1,∞), let ηr(x,F) be the hyperplane parallel to F such that

d(F , ηr(x,F)) = rd(F , η(x,F)). Let Fr(x) be the polytope similar to the outer

simplex F such that Fr(x) has F and Fr(x) = ηr(x)∩F as its two faces. Then, the

proximity region NPE(x, r) is defined to be Fr(x).

The convex hull CH(X1−j) has at least d+1 facets (exactly d+1 when n1−j = d+1),

and since each outer simplex is associated with a facet, the number of outer simplices

is at least d + 1. Let S(2)
1−j = {F1, . . . ,FL} denotes the set of all outer simplices.

This construction handles the points in Xj \CH(X1−j) only. Together with the points

inside CH(X1−j), the PE-PCD Dj, whose vertex set is Vj = Xj, has at least

K∑
k=1

I(Xj ∩Sk 6= ∅) +
L∑
l=1

I(Xj ∩Fl 6= ∅)

many disconnected components.

3.4 Central-Similarity Proximity Maps

We use a type of proximity map with expansion parameter τ , namely central-similarity

(CS) proximity map, denoted by NCS(·, τ). The CS proximity map and the associated

digraphs, CS-PCDs, are defined in Ceyhan and Priebe (2005). Currently, CS-PCDs

are only defined for the points in Xj ∩ CH(X1−j). Hence, for the remaining points of

the target class Xj, i.e. Xj \CH(X1−j), we extend the definition of CS proximity maps

to the outer simplices. However, if a point x is outside of CH(X1−j), the point is in an

outer simplex. In that case, the region N (x) is “similar” to this outer simplex which

is an unbounded convex polytope. Although the construction of proximity regions

differ in inside and outside of the convex hull, the proximity regions are associated

with the face (edges in R2) regions.
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Figure 3.3: The central-similarity proximity region (shaded) of an acute triangle ,
NCS(x, τ = 1/2) in R2.

3.4.1 CS proximity Maps for d-simplices

For τ ∈ (0,∞), we define NCS(·, τ) to be the CS proximity map associated with a

triangle T = T (Y) formed by the set of non-collinear points Y = {y1, y2, y3} ⊂ R2. Let

RMC
(e1), RMC

(e2) and RMC
(e3) be the edge regions associated with edge e1,e2 and e3.

Note that the barycentric coordinates of MC are (1/3 : 1/3 : 1/3). For x ∈ T o, let e(x)

be the edge whose region contains x; hence x ∈ R(e(x)). If x falls on the boundary of

two edge regions, or at the center of mass, we assign e(x) arbitrarily. Let d(x, e(x))

be the Euclidean distance from x to the edge e(x). For τ ∈ (0,∞), the triangle

Tτ (x) has an edge eτ (x) parallel to e(x) such that d(x, eτ (x)) = τd(x, e(x)). Here,

d(eτ (x), e(x)) ≤ d(x, e(x)) for τ ∈ (0, 1], and d(eτ (x), e(x)) > d(x, eτ (x)) for τ > 1.

The triangle Tτ (x) has the same orientation as T , and the points x is the center of

mass of Tτ (x). Hence, the proximity region NCS(x, τ) is defined to be Tτ (x) ∩ T .

Figure 3.3 illustrates the proximity region NCS(x, τ). Observe that Tτ (x) ⊆ T if

τ ∈ (0, 1].

The extension of NCS(·, τ) to Rd for d > 2 is straightforward. Now, let Y =

{y1, y2, · · · , yd+1} be a set of d + 1 non-coplanar points, and represent the simplex

formed by the these points as S = S(Y). We define the central-similarity proximity
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map as follows. Let f(x) be the face whose region x falls If x falls on the boundary

of two face regions or at the center of mass, we assign f(x) arbitrarily. Let d(x, f(x))

be the Euclidean distance from x to f(x). For τ ∈ (0,∞], the simplex Sτ (x) has a

face fτ (x) parallel to f(x) such that d(x, fτ (x)) = τd(x, f(x)). The simplex Sτ (x)

has the same orientation as S, and the points x is the center of mass of Sτ (x). Then

the central-similarity proximity region is given by NCS(x, τ) := Sτ (x) ∩S.

So far, we assumed n1−j = d + 1 in the definitions for simplicity. If n1−j >

d + 1 then we consider the Delaunay tessellation (assumed to exist) of X1−j where

S1−j = {S1, . . . ,SK} denotes the set of all Delaunay cells, and m1−j = |{S ∈ S1−j :

S∩X1−j 6= ∅}| denotes the number of triangles having vertices in X1−j. Observe that,

this construction of Dj deals with points in Xj ∩CH(X1−j) only. For these points, the

digraph has at least
∑K

k=1 I(Xj ∩Sk 6= ∅) components.

3.4.2 CS proximity Maps for Outer Simplices

For points of the target class Xj outside of the convex hull of the non-target class

X1−j, i.e. Xj \ CH(X1−j), we define the central-similarity proximity maps similar to

the ones in d-simplices. Let F ⊂ R2 be an outer triangle defined by the adjacent

boundary points {y1, y2} ⊂ R2 of CH(X1−j). Let the center of F be M = MI , the

point equally distant to all edges of outer triangle F , namely the incenter.

For τ ∈ (0,∞), we define NCS(·, τ) to be the central-similarity proximity map. Let

RMI
(e1), RMI

(e2) and RMI
(e∞3) be the edge regions associated with edge e1,e2 and

e∞ using line segments from the incenter MI to the vertices yj, and the ray
−−−−→
CMMI . For

x ∈ T o, let e(x) be the edge whose region contains x; hence x ∈ RMI
(e(x)). If x falls on

the boundary of two edge regions, or at MI , we assign e(x) arbitrarily. Let d(x, e(x))

be the Euclidean distance from x to the edge e(x). For τ ∈ (0,∞), the convex

polytope Fτ (x) has an edge eτ (x) parallel to e(x) such that d(x, eτ (x)) = τd(x, e(x)).

Here, d(eτ (x), e(x)) ≤ d(x, e(x)) for τ ∈ (0, 1], and d(eτ (x), e(x)) > d(x, eτ (x)) for

τ > 1. The convex polytope Fτ (x) has the same orientation as F ; that is,

(i) Fτ (x) has an edge e∞(x, τ) parallel to e∞, and has edges ej(x, τ) parallel to ej
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Figure 3.4: The central-similarity proximity region (shaded) of an outer simplex,
NCS(x, τ = 0.5) in R2.

for j = 1, 2. The polytope Fτ (x) has an additional edge e′(x, τ) parallel to e∞

such that d(e′(x, τ), e∞(x, τ)) = 2 ∗ d(x, e∞(x, τ));

(ii) The point x is as the same type of center of Fτ (x) as MI of F .

Note that Fτ (x) is bounded unlike F . Hence, the proximity region NCS(x, τ) is

defined to be Fτ (x) ∩ F . Figure 3.4 illustrates the proximity region NCS(x, τ).

Observe that Fτ (x) ⊆ F if τ ∈ (0, 1].

The extension of NCS(·, τ) of outer triangles to Rd for d > 2 is straightfor-

ward. Let F = F (Y) be an outer simplex defined by the adjacent boundary points

{y1, . . . , yd} ⊂ Rd of CH(X1−j) and rays {−−−→CMy1, . . . ,
−−−→
CMyd}. Let f(x) be the face

whose region x falls. If x falls on the boundary of two face regions or at the center

of mass, we assign f(x) arbitrarily. Let d(x, f(x)) be the Euclidean distance from x

to f(x). For τ ∈ (0,∞], the simplex Fτ (x) has a face fτ (x) parallel to f(x) such

that d(x, fτ (x)) = τd(x, f(x)). The convex polytope Fτ (x) has the same orienta-
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tion as F such that Fτ (x) has a face f∞(x, τ) parallel to f∞, and has face fj(x, τ)

parallel to fj for j = 1, 2, . . . , d. The polytope Fτ (x) has an additional face f ′(x, τ)

parallel to f∞ such that d(f ′(x, τ), f∞(x, τ)) = 2∗d(x, f∞(x, τ)). Moreover, the point

x is as th same of center of Fτ (x) as MI for F . Note that the polytope Fτ (x) is

bounded unlike F . Hence the central-similarity proximity region of x ∈ F is given

by NCS(x, τ) := Fτ (x) ∩F .

The convex hull CH(X1−j) has at least d+1 facets (exactly d+1 when n1−j = d+1),

and since each outer simplex is associated with a facet, the number of outer simplices

is at least d + 1. Let S(2)
1−j = {F1, . . . ,FL} denotes the set of all outer simplices.

This construction handles the points in Xj \CH(X1−j) only. Together with the points

inside CH(X1−j), the CS-PCD Dj, whose vertex set is Vj = Xj, has at least

K∑
k=1

I(Xj ∩Sk 6= ∅) +
L∑
l=1

I(Xj ∩Fl 6= ∅)

many components. Collection of components both from inner and outer simplices

constitutes a digraph Dj with the vertex set Xj.

3.5 Minimum Dominating Sets

We model the target class, or the data set, with a digraph D such that prototype

sets are equivalent to dominating sets of D. Ceyhan (2010) determined the appealing

properties of minimum dominating set of CCCDs in R as a guideline in defining new

parametric digraphs relative to the Delaunay tessellation of the non-target class. In

R, CCCDs have computationally tractable minimum dominating sets, and the exact

distribution of domination number is known for target class points which are uniformly

distributed within each cell. However, there is no polynomial time algorithm providing

the exact minimum dominating sets of CCCDs in Rd for d > 1. In this section,

we review the greedy algorithms for find the minimum dominating sets of CCCDs.

Moreover, we provide a characterization of minimum dominating sets of PE-PCDs

with barycentric coordinate systems and use them to introduce algorithms for finding

the prototype sets in polynomial time.
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We model the support of the data set, i.e. s(F ), by a mixture of proximity regions.

Our estimate for the support of the class X is Q := ∪x∈XN (x) such that X ⊂ Q.

Nevertheless, the support of the target class X can be estimated by a cover with

lower complexity (fewer proximity regions). For that purpose, we wish to reduce the

model complexity by selecting an appropriate subset of proximity regions that still

gives approximately the same estimate as Q; that is, let this cover be defined as

C := ∪x∈SN (x), where S is a prototype set of points X such that X ⊂ C. Given

the data set has two classes (or more), we model the class cover in a similar fashion.

For the support of class conditional distributions s(F0) and s(F1), we estimate these

classes with lower complexity covers Cj := ∪x∈SjN (x) such that Xj ⊂ Cj for j = 0, 1.

Here, Sj is the prototype set of the target class Xj associated with the PCD Dj. A

reasonable choice of prototype sets for our class covers are the minimum dominating

sets of PE-PCDs, whose elements are often more “central” than the arbitrary sets

of the same size. Dominating sets of minimum size are appealing since the size of

the prototype sets determine the complexity of the model; that is, the smaller the

set in cardinality (i.e. the model is lower in complexity), the higher the expected

classification performance (Gao et al., 2013; Mehta et al., 1995; Rissanen, 1989).

PCD can easily be generalized to the multi-class case with J number of classes. To

establish the set of covers C = {C1, C2, . . . , CJ}, the set of PCDs D = {D1, . . . , DJ},
and the set of MDSs S = {S1, S2 . . . , SJ} associated with a set of classes X =

{X1, X2, . . . ,XJ}, we gather the classes into two classes as XT = Xj and XNT = ∪t6=jXt
for t, j = 1, . . . , J . We refer to classes XT and XNT as target and non-target class,

respectively. More specifically, target class is the class we want to find the cover of,

and the non-target class is the union of the remaining classes. We transform the

multi-class case into the two-class setting and find the cover of j’th class, Cj.

In general, a digraph D = (V ,A) of order n = |V|, a vertex v dominates itself and

all vertices of the form {u : (v, u) ∈ A}. A dominating set, SD, for the digraph D is a

subset of V such that each vertex v ∈ V is dominated by a vertex in SD. A minimum

dominating set (MDS), SMD, is a dominating set of minimum cardinality, and the
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domination number, γ(D), is defined as γ(D) := |SMD|. If an MDS is of size one, we

call it a dominating point. Finding an MDS is, in general, an NP-hard optimization

problem (Arora and Lund, 1996; Karr, 1992). However, an approximate MDS can be

obtained in O(n2) using a well-known greedy algorithm given in Algorithm 1 (Chvatal,

1979; Parekh, 1991). PCDs using N (·) = NS(·, θ) (or CCCDs with parameter θ) and

N (·) = NCS(·, τ) are examples of such digraphs. The existence of polynomial time

algorithm for find the MDS of CS-PCDs is still an open problem (Ceyhan, 2005).

Algorithm 1 The greedy algorithm for finding an approximate MDS of a digraph

D. Here, D[H] is the digraph induced by the set of vertices H ⊆ V (see West, 2000).

Input: A digraph D = (V ,A)

Output: An approximate MDS, S

H = V and S = ∅
while H 6= ∅ do

v∗ ← argmaxv∈V(D) |{u ∈ V(D) : (v, u) ∈ A(D)}|
S ← S ∪ {v∗}
N̄(v∗)← {u ∈ V(D) : (v∗, u) ∈ A(D)} ∪ {v∗}
H ← V(D) \ N̄(v∗)

D ← D[H]

end while

Algorithm 1 can be altered in many ways that satisfies some other properties. We

will see that it is more desirable for cluster catch digraph, unsupervised adaptations

of CCCDs, algorithms to choose covering balls closer to the cluster centers. These

balls are bigger in size and have higher cardinality than those located around edges of

hidden class, or cluster, supports. Hence, we can change Algorithm 1 in such way that

the members of MDS have relatively high out-degrees, i.e. dout(v) := |{u : (v, u) ∈
A(D)}|, compared to the MDSs found by Algorithm 1. In each iteration, Algorithm 2

chooses the vertex with both having maximum out degree and having arcs to those

vertices not yet covered. This approach may produce MDSs whose covering balls are
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much closer to the center of clusters.

Algorithm 2 The greedy algorithm for finding an approximate MDS of a digraph

D exploiting out degrees. Here, D[H] is the digraph induced by the set of vertices

H ⊆ V (see West, 2000).

Input: A digraph D = (V ,A)

Output: An approximate dominating set, S

S = ∅
while V(D) 6= ∅ do

V ′ ← {v ∈ V : (v, u) ∈ A, u ∈ V(D)}
v∗ ← argmaxv∈V ′ |{u ∈ V : (v, u) ∈ A}|
S ← S ∪ {v∗}
V ← V \ v∗

N̄(v∗)← {u ∈ V(D) : (v∗, u) ∈ A} ∪ {v∗}
H ← V(D) \ N̄(v∗)

D ← D[H]

end while

Algorithm 1 selects the vertex with the highest out-degree; however, we may use

other attributes of vertices to select members of the MDSs; that is, let sc : V → R

be a function on the vertices of a digraph, and let each vertex v is associated with a

score sc(v). Algorithm 3 adds a vertex v ∈ V to the set of dominating points S if it

maximizes the score sc(v).

The simplest of scoring functions for digraphs is the out-degree dout(v) of a vertex

v ∈ V(D). In Algorithm 1, the out-degrees of vertices change each time a dominating

point added to S. However, when sc(v) := dout(v) is fixed, the Algorithm 3 takes

the original out degrees into account. This algorithm will successfully locate points

of high domain influence which potentially correspond to the centers of some hidden

classes or clusters when PCDs used for clustering tasks. Note that all these algorithms

can be easily modified to be used on graphs.
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Algorithm 3 The greedy algorithm exploiting the scoring function sc : V → R for

finding an approximate MDS of a digraph D. Here, D[H] is the digraph induced by

the set of vertices H ⊆ V (see West, 2000).

Input: A digraph D = (V ,A) and a score set sc(V ) := sc(v) : v ∈ V
Output: An approximate dominating set, S

H = V and S = ∅
while H 6= ∅ do

v∗ ← argmaxv∈V(D) sc(v)

S ← S ∪ {v∗}
H ← V(D) \ N̄(v∗)

D ← D[H]

end while

3.5.1 MDSs for PCDs of Simplicial Proximity Maps

Exact MDS of PCDs with proximity maps N (·) = NPE(·, r) are computationally

tractable unlike PCDs with maps NS(·, θ). Many attributes of these PE proximity

maps and the proof of the existence of an algorithm to find a set SMD are conveniently

implemented through the barycentric coordinate system. Before proving the results on

the MDS for PE-PCDs, we give the following proposition on barycentric coordinates

of points in a simplex S.

Proposition 3.5.1.1. Let Y = {y1, y2, . . . , yd+1} ⊂ Rd be a set of non-coplanar points

for d > 0, and let S = S(Y) be the d-simplex given by the set Y. For x, x∗ ∈ So, we

have d(x, fi) < d(x∗, fi) if and only if w
(i)
S (x) < w

(i)
S (x∗) for all i = 1, . . . , d+ 1, where

d(x, fi) is the distance between point x and the face fi.

Proof: For i = 1, . . . , d+ 1, note that fi is the face of the simplex S opposite to the

vertex yi. Let L(yi, x) be the line through points x and yi, and let z ∈ fi be the point

that L(yi, x) and fi cross at. Also, recall that η(yi, x) denotes the hyperplane through
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the point x, and parallel to fi. Hence, for α ∈ (0, 1),

x = αyi + (1− α)z,

and since z is a convex combination of the set {yk}k 6=i,

x = αyi +

(
d+1∑

k=1;k 6=i

(1− α)βkyk

)
,

for βk ∈ (0, 1). Thus, w
(i)
S (x) = α by the uniqueness of wS(x). Observe that α =

d(x, z)/d(yi, z) = d(x, fi)/d(yi, fi) since distances d(x, z) and d(x, fi) = d(η(yi, x), fi)

are directly proportional. In fact, points that are on the same line parallel to fi have

the same i’th barycentric coordinate w
(i)
S (x) corresponding to the vertex yi. Also,

recall that with decreasing α, the point x gets closer to fi (x ∈ fi if α = 0, and x = yi

if α = 1). Then, for any two points x, x∗ ∈ So, we have w
(i)
S (x) < w

(i)
S (x∗) if and only

if d(η(yi, x), fi) < d(η(yi, x
∗), fi) if and only if d(x, fi) < d(x∗, fi). �

Barycentric coordinates of a set of points in simplex S help one characterize the

set of local extremum points, where a subset of local extremum points constitute the

MDS SMD. We use the Proposition 3.5.1.1 to prove the following theorem on SMD of

a PE-PCD D.

Theorem 3.5.1.1. Let Z = {z1, z2, . . . , zn} ⊂ Rd and Y = {y1, y2, . . . , yd+1} ⊂ Rd

for d > 0, and let S = S(Y) be the d-simplex given by the set Y such that Z ⊂ So.

Hence, given the map NPE(·, r), we have γ(D) ≤ d + 1 for PE-PCD D with vertex

set V = Z.

Proof: Let x, x∗,M ∈ So. For i = 1, . . . , d + 1, we show that there exists a point

x[i] ∈ Z ∩ RM(yi) such that Z ∩ RM(yi) ⊂ NPE(x[i], r) for all r ∈ (1,∞). It is

easy to see that d(x∗, fi) < d(x, fi) if and only if NPE(x∗, r) ⊂ NPE(x, r). Hence,

d(x[i], fi) = minz∈Z d(z, fi) if and only if NPE(z, r) ⊂ NPE(x[i], r) for all z ∈ Z ∩
RM(yi). Also, by Proposition 3.5.1.1, note that d(x[i], fi) ≤ minz∈Z d(z, fi) if and

only if w
(i)
S (x[i]) ≤ minz∈Z w

(i)
S (z). Thus, the local extremum point x[i] is given by

x[i] := argmin
x∈Z∩RM (yi)

w
(i)
S (x).
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Finally, observe that Z ⊂ ∪d+1
i=1NPE(x[i], r). Hence, the set of all local extremum

points {x[1], . . . , x[d+1]} is a dominating set of the points Z ⊂ So, so γ(D) ≤ d+ 1. �

MDSs of PE-PCDs are found by locating the local extremum point x[i] of the

vertex region RMC
(yi) for all i = 1, . . . , d + 1. By Theorem 3.5.1.1, in RMC

(yi), the

point x[i] is the closest points to the face fi. For a set of d-simplices given by the

Delaunay tessellation of X1−j, Algorithm 4 identifies all the local extremum points of

each d-simplex in order to find the (exact) MDS Sj = SMD.

Let Dj = (Vj,Aj) be a PE-PCD with vertex set V = Xj. In Algorithm 4, we

partition Xj into such subsets that each subset falls into a single d-simplex of the

Delaunay tessellation of the set X1−j. Let S1−j be the set of all d-simplices associated

with X1−j. Moreover, for each S ∈ S1−j, we further partition the subset Xj ∩ S

into subsets that each subset falls into a single vertex region of S. In each vertex

region RMC
(yi), we find the local extremum point x[i]. Let S(D) denote the MDS

and γ(D) denote the domination number of a digraph D. Also, let Dj[S] be the

digraph induced by points of Xj inside the d-simplex S, i.e. Xj ∩S. Recall that, as

a result of Theorem 3.5.1.1, γ(Dj[S]) ≤ d + 1 since Xj ∩ S ⊂ ∪d+1
i=1NPE(x[i], r). To

find S(Dj[S]), we check all subsets of the set of local extremum points, from smallest

cardinality to highest, and check if Xj∩S is in the union of proximity regions of these

subsets of local extremum points. For example, S(Dj[S]) = {x[l]} and γ(Dj[S]) = 1

if Xj ∩ RMC
(yi) ⊂ NPE(x[l], r) for some l = 1, 2, 3; else S(Dj[S]) = {x[l1], x[l2]}

and γ(Dj[S]) = 2 if Xj ∩ RMC
(yi) ⊂ NPE(x[l1], r) ∪ NPE(x[l2], r) for some {l1, l2} ∈({1,2,3}

2

)
; or else S(Dj[S]) = {x[1], x[2], x[3]} and γ(Dj[S]) = 3 if Xj ∩ RMC

(yi) ⊂
∪l=1,2,3NPE(x[l], r). The resulting MDS of Dj for Xj ∩CH(X1−j) is the union of these

sets, i.e., Sj = ∪S∈S1−jS(Dj[S]) and γ(Dj) = |Sj|. Observe that S(Dj[S]) = ∅ if

Xj ∩S = ∅. This algorithm is guaranteed to terminate, as long as n0 and n1 are both

finite.

The level of reduction depends also on the magnitude of the expansion parameter

r. In fact, the larger the magnitude of r, the more likely the S(Dj[S]) have smaller

cardinality, i.e. the more the reduction in the data set. Thus, we have a stochastic
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Algorithm 4 The algorithm for finding the (exact) MDS Sj of a PE-PCD Dj induced

by Xj ∩ CH(X1−j).

Input: The target class Xj, a set of d-simplices of the non-target class S1−j, and the

PE proximity map NPE(·, r).
Output: The MDS, Sj

Sj = ∅
for all S ∈ S1−j where Xj ∩S 6= ∅ do

X ∗j ← Xj ∩S and let {y1, . . . , yd+1} be the vertices of S.

for i = 1, . . . , d+ 1 do

Let x[i] ← argmin
x∈X ∗j ∩RMC (yi)

w
(i)
S (x).

end for

for t = 1, . . . , d+ 1 do

if there exists a set {l1, . . . , lt} ∈
({1, . . . , d+ 1}

t

)
s.t. X ∗j ⊂ ∪ta=1NPE(x[la], r)

then

Sj ← Sj ∪ {x[l1], . . . , x[lt]}
break

end if

end for

end for

ordering as follows:

Theorem 3.5.1.2. Let γ(Dj[S], r) be the domination number of the PE-PCD Dj(S)

with expansion parameter r. Then for r1 < r2, we have γ(Dj[S], r2) ≤ST γ(Dj[S], r1)

where ≤ST stands for “stochastically smaller than”.

Proof: Suppose r1 < r2. Then in a given simplex Sk for k = 1, . . . , K, let γk(r) :=

γ(Sk, r) be the domination number of the component of the PE-PCD Dj whose

vertices are restricted to the interior of Sk. Let Z = {Z1, Z2, . . . , Zn} be a set of i.i.d.

random variables drawn from a continuous distribution F whose support is Sk, and

let Z[i] be the local extremum point of Z ∩RMC
(yi) where yi being the i’th vertex of
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Sk. Also, let Vol(NPE(x, r)) be the volume of the NPE(x, r) of a point x ∈ So
k. Note

that,

Vol(NPE(x, r1)) < Vol(NPE(x, r2)).

Hence, since NPE(x, r1) ⊂ NPE(x, r2),

Vol(NPE(Z[i], r1)) ≤ST Vol(NPE(Z[i], r2)).

Now, let {l1, . . . , lt} ∈
({1, . . . , d+ 1}

t

)
be any set of indices associated with a subset

of all local extremum points t = 1, . . . , d+ 1. Thus,

Vol
(
∪ta=1NPE(Z[la], r1)

)
≤ST Vol

(
∪ta=1NPE(Z[la], r2)

)
.

Hence, given that the event Z ⊂
(
∪ta=1NPE(Z[la], r)

)
implies γk(r) ≤ t, we can show

that

P
(
Z ⊂

(
∪ta=1NPE(Z[la], r2)

))
≤ P

(
Z ⊂

(
∪ta=1NPE(Z[la], r1)

))
,

and

P (γk(r2) ≤ t) ≤ P (γk(r1) ≤ t)

for t = 1, . . . , d+ 1. �

Algorithm 4 ignores the target class points outside the convex hull of the non-

target class. This is not the case with Algorithm 1, since the map NS(·, θ) is defined

over all points Xj whereas the original PE proximity map NPE(·, r) is not. Hence, the

prototype set Sj only yields a reduction in the set Xj ∩ CH(X1−j). Solving this issue

requires different approaches. One solution is to define covering methods with two

proximity maps that are the PE proximity map and the other which does not require

the target class points to be inside the convex hull of the non-target class points, e.g.

spherical proximity regions (proximity maps NS(·, θ)).
Algorithm 5 uses both maps NPE(·, r) and NS(·, θ) to generate a prototype Sj for

the target class Xj. There are two separate MDSs, S
(1)
j which is exactly minimum, and

S
(2)
j which is approximately minimum. Each of the two proximity maps is associated

with two distinct digraphs such that Xj ∩CH(X1−j) constitutes the vertex set of one

digraph and Xj \ CH(X1−j) constitute the vertex of another, where the non-target
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class is always X1−j. Algorithm 4 finds a prototype set S
(1)
j for Xj ∩ CH(X1−j), and

then the prototype set S
(2)
j for Xj \ CH(X1−j) is appended to the overall prototype

set Sj = S
(1)
j ∪ S(2)

j as in Algorithm 5. Note that the set Sj is an approximate MDS

since S
(2)
j is approximately minimum.

Algorithm 5 The algorithm for finding the MDS Sj of PCD Dj defined by the

proximity maps NPE(·, r) and NS(·, θ).
Input: The target class Xj, a set of d-simplices of the non-target class S1−j, and the

proximity maps NPE(·, r) and NS(·, θ).
Output: The approximate MDS, Sj

S
(1)
j = ∅ and S

(2)
j = ∅

Find the MDS of Xj ∩ CH(X1−j) in Algorithm 2 and assign it to S
(1)
j

X ′j = Xj \ CH(X1−j).

Find the approximate MDS as in Algorithm 1 where the target class is X ′j and the

non-target class is X1−j, and assign it to S
(2)
j

Sj = S
(1)
j ∪ S(2)

j

Algorithm 6 uses only the PE proximity map NPE(·, r) with the original version

inside CH(X1−j) and extended version outside CH(X1−j). The cover is a mixture

of d-simplices and d-polytopes. Given a set of d-simplices S(1)
1−j and a set of outer

simplices S(2)
1−j, we find the respective local extremum points of each d-simplex and

outer simplex. Local extremum points of d-simplices are found as in Algorithm 4, and

then we find the local extremum points of the remaining points to get the prototype

set of the entire target class Xj. The following theorem provides a result on the local

extremum points in an outer simplex F . Note that, in Algorithm 6, the set Sj is the

exact MDS since both S
(1)
j and S

(2)
j are exact MDSs for the PE-PCDs induced by

Xj ∩ CH(X1−j) and Xj \ CH(X1−j), respectively.

Theorem 3.5.1.3. Let Z = {z1, z2, . . . , zn} ⊂ Rd, let F be a facet of CH(X1−j) and

let F be the associated outer simplex such that Z ⊂ F o. Hence, the local extremum

point and the SMD of the PE-PCD D restricted to F o is found in linear time and is
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equal to 1.

Proof: We show that there is a point s ∈ Z such that X ⊂ NPE(s, r) for all

r ∈ (1,∞). As a remark, note that η(x,F) denotes the hyperplane through x, and

is parallel to F . Thus, for x, x∗ ∈ Fo, observe that d(x,F) < d(x∗,F) if and only if

d(η(x,F),F) < d(η(x∗,F),F) if and only if NPE(x, r) ⊂ NPE(x∗, r). Thus, the local

extremum point s is given by

s := argmax
x∈Z

d(x,F).

Therefore, SMD = {s} yields the result. �

Algorithm 6 The algorithm for finding the (exact) MDS Sj of PE-PCD Dj with

vertex set Xj.
Input: The target class Xj, the set of d-simplices S(1)

1−j, the set of outer simplices

S(2)
1−j.

Output: The MDS, Sj

S
(1)
j = ∅ and S

(2)
j = ∅

Find the MDS in Algorithm 2 and assign it to S
(1)
j

X ′j = Xj \ CH(X1−j).

for all F ∈ S(2)
1−j where X ′j ∩F 6= ∅ do

X ∗j ← X ′j ∩F

Let s ∈ X ∗j be the local extremum point in F

S
(2)
j ← S

(2)
j ∪ {s}

end for

Sj = S
(1)
j ∪ S(2)

j

Given Theorems 3.5.1.1 and 3.5.1.3, Algorithm 6 may be the most appealing

algorithm since it gives the exact MDS for the complete target class Xj. However,

the following theorem show that the cardinality of such sets increase exponentially

on dimensionality of the data set, even though it is polynomial on the number of

observations.
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Theorem 3.5.1.4. Algorithm 6 finds an exact MDS Sj of the target class Xj in

O(dkn2
1−j + 2dn

dd/2e
1−j ) time for k > 1 where |Sj| = O(dn

dd/2e
1−j ).

Proof: A Delaunay tessellation of the non-target class X1−j ⊂ Rd is found in

O(dkn2
1−j) time with the Bowyer-Watson algorithm for some k > 1, depending on

the complexity of the algorithm that finds the circumcenter of a d-simplex (Watson,

1981). The resulting tessellation with n1−j vertices has at most O(n
dd/2e
1−j ) simplices

and at most O(n
bd/2c
1−j ) facets (Seidel, 1995). Hence the union of sets of d-simplices S(1)

j

and outer simplices S(2)
1−j is of cardinality at most O(n

dd/2e
1−j ). Now, for each simplex

S ∈ S(1)
j or each outer simplex F ∈ S(2)

j , the local extremum points are found in

linear time. Each simplex is divided into d+ 1 vertex regions, having their own set of

local extremum points. A minimum cardinality subset of the set of local extremum

points is of cardinality at most d + 1 and found in a brute force fashion. For outer

simplices, however, the local extremum point is the farthest point to the associated

facet of the Delaunay tessellation. Thus, it takes at most O(2d) and O(1) time to

find the exact minimum subsets of local extremum points for each simplex and outer

simplex, respectively. Then the result follows. �

Theorem 3.5.1.4 shows the exponential increase of the number of prototypes as

dimensionality increases. Thus, the complexity of the class cover model also increases

exponentially, which might lead to overfitting. We will investigate this issue further

in Sections 5.4 and 5.5.
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Chapter 4

CLASSIFICATION OF IMBALANCED DATA WITH

CLASS COVER CATCH DIGRAPHS

4.1 Introduction

Class imbalance problem has recently become a topic of extensive research. In a

two-class setting, imbalance in class(es) occurs when one class is represented by far

more observations (points) than the other class in the data set (Chawla et al., 2004;

López et al., 2013). Class imbalance problem is observed in many areas such as

medicine, fraud detection and education. Some examples are clinical trials in which

only 5% of patients in the data set have a certain disease, such as cancer (Mazurowski

et al., 2008); detecting fraudulent customers where most individuals are law-abiding

in insurance, credit card and telecommunications industries (Phua et al., 2004); and

archives of college students where mostly the ones who have fair results are kept

(Thai-Nghe et al., 2009). In these and many other real life cases, majority class

(i.e., the class with larger size) confounds the classifier performance by hindering the

detection of subjects from the minority class (i.e., the class with fewer points).

The classification methods in machine learning usually suffer from the imbalance of

class sizes in the data sets because most of these methods work on the assumption that

class sizes are balanced (Japkowicz and Stephen, 2002). For example, the commonly

used k-nearest neighbor (k-NN) classification algorithm is highly influenced by the

class imbalance problem. In the k-NN approach, a new point is classified as the class

of the most frequent one from its first k nearest neighbors (Cover and Hart, 1967;

Evelyn Fix, 1989). As a result, in a two-class setting where one class substantially

outnumbers the other, a point is more likely to be classified as the majority class by
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the k-NN classifier. In literature, sensitivity of k-NN classifier to the class imbalance

problem and some solutions on choosing the appropriate k have been discussed in

cases of imbalanced classes (Garćıa et al., 2008; Hand and Vinciotti, 2003; Mani and

Zhang, 2003). Decision trees and support vector machines (SVM) are also some of the

well known classifiers that are sensitive to the class imbalance in a data set (Japkowicz

and Stephen, 2002; Tang et al., 2009). SVMs are among the most commonly used

algorithms in the machine learning literature due to their well understood theory

and high performance among popular algorithms (Fernández-Delgado et al., 2014;

Wu et al., 2008), but these methods have been demonstrated to be inefficient against

highly imbalanced data sets, although SVMs are still robust to moderately imbalanced

data sets (Akbani et al., 2004; Raskutti and Kowalczyk, 2004).

In this chapter, we study the effects of class imbalance on two CCCD classifiers,

P-CCCD and RW-CCCD. Moreover, we report on the effects of class overlapping

problem (which is defined as deterioration of classification performance when class

supports overlap) along with the class imbalance problem to further investigate the

performance of CCCD classifiers when imbalance and overlapping between classes

co-exist. Thus, we show that when there is a considerable amount of class imbalance,

whether class supports overlap or not, the CCCD classifiers perform better than the

k-NN classifier. We show the robustness of CCCD classifiers to the class imbalance by

simulating cases having increasing levels of class imbalance. We also compare CCCD

classifiers with SVM classifiers which are potentially robust to moderate levels of class

imbalance but not to high levels. With respect to class imbalance problem, the k-NN,

SVM and decision tree classifiers may be referred to as “weak” classifiers; that is,

these methods perform weakly when there is imbalance in the data set.

Among the two variations of CCCD classifiers, we show that the RW-CCCD is

more appealing in many aspects. For both simulated and real life examples, RW-

CCCDs perform better than P-CCCDs and other classifiers when the classes of data

sets are imbalanced and/or overlapping. Moreover, we report on the complexity of

the these two CCCD classifiers and demonstrate that RW-CCCDs reduce the data
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sets substantially more than the other classifiers, thus increasing the testing speed.

But most importantly, while reducing the majority class to mitigate the effects of

class imbalances, CCCDs preserve the information on the discarded points of the

majority class. CCCDs provide a novel solution to the class imbalance problem; that

is, they capture the density around prototype points (i.e., members of the dominating

sets) as radii of the covering balls. Hence, CCCDs preserve the information while

reducing the data set In the literature, only classifiers based on ensemble classifiers

achieve a similar task which requires multiple classifiers to be employed, and thus,

result in lengthy training and testing time. However, CCCDs define single classifiers

that undersample the data set with, possibly, a slight loss of information.

4.2 Methods for Handling Class Imbalance Problem

Solving the class imbalance problem received considerable attention in the machine

learning literature (Chawla et al., 2004; Kotsiantis et al., 2006; Longadge and Don-

gre, 2013). Almost all algorithms designed to mitigate the effects of class imbalance

incorporate a “weak” classifier which is modified to show some level of robustness

to the class imbalance problem. The weak algorithm is modified either (i) in data

level which involves a pre-processing of the data set being used in training, or (ii)

in algorithmic level such that a “strong” classifier is constructed with a decision rule

suited for the imbalances in the data set. Many modern algorithms are hybrids of

both types; but in particular, there are mainly three of them: resampling methods,

cost-sensitive methods, and ensemble methods (He and Garcia, 2009).

Resampling methods are commonly employed to remove the effects of class im-

balance in the classification process. Resampling methods provide solutions to the

class imbalance problem by (i) downsizing the majority class (undersampling) or (ii)

generating new (synthetic) points for the minority class (oversampling). Hence, such

methods modify the classifiers only at the data level. It might be useful to clean or

erase some points in the majority class to balance the data (Drummond et al., 2003;

Liu et al., 2009). However, in some cases, all points from both classes may be valu-
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able/important, and hence, should be kept despite the differences in the class sizes.

Oversampling methods generate synthetic points similar to the minority class to mit-

igate the class imbalance problem while preserving the information (Han et al., 2005).

On the other hand, Batista et al. (2004) suggest that the combination of both over

and undersampling methods can further improve the classification performance. One

such method is the SMOTE+ENN method where the oversampling method SMOTE

of Chawla et al. (2002) and edited nearest neighbors (ENN) method of Wilson (1972)

are applied to an imbalanced data set, consecutively. While SMOTE balances the

classes of the data set by generating artificial points between members of the minor-

ity class, ENN cleans the data set to further increase the classification performance

of the weak classifier. Here, ENN method is an undersampling method that primarily

aims to remove noisy points from the data set but not to balance the classes.

Another family of methods, namely cost-sensitive learning methods, has originated

from real life: the cost of misclassifying a minority and a majority class member

is usually not the same (Elkan, 2001). Frequently, the minority class has higher

misclassification cost than the majority class. Classification methods such as decision

trees (e.g., C4.5), can be modified to take these costs into account (Ling et al., 2004;

Zadrozny et al., 2003). C5.0 is an extended version of C4.5 incorporating the cost of

each class (Kuhn and Johnson, 2013). Most weak classifiers can be easily modified

so as to recognizing misclassification costs. The constrained violation cost C of SVM

classifiers can be adjusted to individual class costs (Chang and Lin, 2011). As for k-

NN, one solution is to appoint weights to all points of the data set with respect to their

classes. Hence, such weights are the costs of classes giving precedence to minority

class points (Barandela et al., 2003). On the other hand, for those algorithms that

costs are not inherently recognizable or available, meta-learning schemes can be used

along with weak classifiers without modifying the classifiers. Such learning methods

are similar to ensemble learning methods (Domingos, 1999).

A fast developing field called ensemble learning also contributes to the family of

methods handling the class imbalance problem (Galar et al., 2012). The idea is to
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combine several classifiers to create a new classifier which has significantly better

performance than its constituents (Rokach, 2010). AdaBoost is a popular algorithm

among this family of learning methods (Freund and Schapire, 1997; Wu et al., 2008).

AdaBoost assigns weights to each of the points in the data set and updates these

weights in accordance with how well the points are estimated by each classifier. Galar

et al. (2012) provide a survey of the most important ensemble learning methods that

solve the class imbalance problem. However, it has been observed in some studies that

ensemble learning methods work best when used together with resampling methods

(López et al., 2013). In fact, ensembling and resampling schemes compensate the

shortcomings of each other. The EasyEnsemble is a classifier with two levels of en-

sembles. First, a random undersampled majority class and the original minority class

are used to train an ensemble classifier, then another random sample is drawn in the

same way to train a second ensemble. This process is repeated several times to miti-

gate the effects of information loss as each ensemble would be applied on a different

random subset of the majority class.

4.3 Classification with Class Cover Catch Digraphs

We employ two families of CCCDs, pure CCCDs (P-CCCDs) and random walk CC-

CDs (RW-CCCDs) that differ in the definition of the radius r(x). In these two

digraphs, the (approximate) MDS S and the classifier are defined in slightly different

ways; with the main distinction between the two being the way the covers are defined.

The covering balls of P-CCCDs do not contain any non-target class point whereas

RW-CCCDs possibly allow some non-target class points inside of the class cover of

the target class so as to avoid overfitting. Moreover, some target class points may

also be excluded from the covers of RW-CCCDs.

4.3.1 Classification with P-CCCDs

In P-CCCDs, the covering balls B = B(x, r(x)) exclude all non-target class points.

Thus, for a target class point x ∈ Xj, which is the center of a ball B, the radius
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r(x) should be smaller than the distance between x and the closest non-target point

y ∈ X1−j: r(x) < miny∈X1−j d(x, y). Given θ ∈ (0, 1], the radius r(x) is defined as

follows (Marchette, 2010):

r(x) := (1− θ)d(x, l(x)) + θd(x, u(x)), (4.1)

where

u(x) := argminy∈X1−j d(x, y)

and

l(x) := argmaxz∈Xj{d(x, z) : d(x, z) < d(x, u(x))}.

The effect of parameter θ on the radius r(x) is illustrated in Figure 4.1 (DeVinney,

2003). The ball with radius r(x) catches the neighboring target class points, and

for any θ ∈ (0, 1], the ball B(x, r(x)) catches the same points as well. Hence, the

choice of θ does not effect the structure of digraph but might affect the classification

performance which will be shown later in Section 4.5. On the other hand, for all

x ∈ Xj, the definition of r(x) in Equation (4.1) keeps any non-target point y ∈ X1−j

out of the ball B(x, r(x)), that is X1−j ∪B(x, r(x)) = ∅ for all B(x, r(x)) ∈ Cj. Here,

B(x, r(x)) is an open ball: B(x, r(x)) = {z ∈ Rd : d(x, z) < r(x)}. The digraph

D is “pure” since the balls contain only the target class points; hence, the name

pure-CCCD. Once all balls are constructed, so is the digraph Dj. Therefore, we

have to find a covering set Cj which is equivalent to finding a MDS Sj. The greedy

algorithm of finding an approximate MDS of a P-CCCD is given in Algorithm 1. At

each iteration, the vertex which has the largest neighborhood (i.e., highest number

of arcs) is removed from the graph together with its neighbors. Then, the process is

repeated until all vertices of Dj are removed. The algorithm adds elements to the

dominating set until all points are either dominated or dominate some other points.

Before Algorithm 1 finds an approximate solution, we should first construct the

digraph Dj. The P-CCCD cover Cj and the P-CCCD Dj depend on the distances

between points of the target class Xj, denoted by the matrix Mj, and the distances
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Figure 4.1: The effect of θ on the radius r(x) of the target class point x in a two-
class setting. Grey and black points represent the target and non-target classes,
respectively. The solid circle centered at x is constructed with the radius associated
with θ = 1 and the dashed one with θ = 0.0001 (DeVinney, 2003).

from all points of Xj to all points of X1−j, denoted by matrix Mj,1−j. Later, we

construct the set of balls Bj = {B(x, r(x)) : x ∈ Xj}, and get the set of arcs Aj where

Vj = Xj. Hence, the minimum cardinality ball cover problem is reduced to a MDS

problem. We find such a cover with Algorithm 7 which runs in quadratic time and,

in addition, depends on the dimensionality of the training set X = X0 ∪ X1. The

P-CCCD of one class, its associated class cover (constructed by the elements of the

dominating set), and covers of both classes are illustrated in Figure 4.2.

Algorithm 7 The greedy algorithm for finding an approximate minimum cardinality

ball cover Cj of the target class points Xj given a set of non-target class points X1−j.

Input: The target class Xj , the non-target class X1−j and the P-CCCD parameter θ ∈ (0, 1]

Output: An approximate minimum cardinality ball cover Cj

1: r(x) := (1− θ)d(x, l(x)) + θd(x, u(x)) for all x ∈ Xj
2: Construct the digraph Dj with the set Bj .
3: Find the approximate MDS Sj of digraph D by Algorithm 1.

4: Cj := ∪s∈SB(s, r(s))

Theorem 1 Algorithm 7 is an O(log nj)-approximation algorithm and finds an ap-

proximate minimum cardinality ball cover Cj of the target class Xj in O(nj(nj +
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(a) (b)

(c)

Figure 4.2: An illustration of the CCCDs (with the grey points representing the points
from the target class) in a two-class setting. (a) All covering balls and the digraph
Dj = (Vj,Aj) and (b) the balls that constitute a class cover for the target class and
are centered at points which are the elements of the dominating set Sj ⊆ Vj. (c) The
dominating sets of both classes and their associated balls which establish the class
covers. The class cover of grey points is the union of solid circles, and that of black
points is the union of dashed circles.

n1−j)d) time.

Proof. The algorithm is polynomial time reducible to a greedy minimum set cover

algorithm which finds an approximate solution with size at most O(log nj) times of

the optimum solution (Cannon and Cowen, 2004; Chvatal, 1979). We first calcu-

late the distance matrices Mj and Mj,1−j which take O(n2
jd) and O(njn1−jd) time,

respectively. Constructing the digraph Dj requires computing l(x) and u(x) in Equa-

tion (4.1) for all x ∈ Xj, taking O(n2
j + njn1−j) time in total. Then, we set the arc

set Aj in O(n2
j) time. Finally, the algorithm finds a solution for the digraph Dj in
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O(n2
j) time, hence the total running time of the algorithm is O(nj(nj + n1−j)d). �

When X1−j is the target class, observe that the time complexity is O(n1−j(nj +

n1−j)d), and an approximate solution is of size at most O(log n1−j) times the optimal

solution by Theorem 1, since n1−j = |X1−j|. A P-CCCD classifier consists of the

covers of all classes, hence the total training time of finding CCCDs of a data set with

two-class setting is O((nj + n1−j)
2d).

After establishing both class covers Cj and C1−j, any new data point can be

classified in Rd according to where it resides. Here, there are three cases according to

the location of the given point, z, to be classified: z is (i) only in Cj or C1−j, (ii) in

both Cj and C1−j or (iii) in neither of Cj and C1−j. The case (i) is straightforward:

z belongs to class Xj if z ∈ Cj \ C1−j or to class X1−j if z ∈ C1−j \ Cj. For cases (ii)

and (iii), we need to find a way to decide the class of the point in a reasonable way.

In fact, for all the cases, the estimated class of a given point z is determined by

argminC∈{Cj ,C1−j}

[
min

x:B(x,r)∈C
ρ(z, x)

]
(4.2)

where ρ(z, x) = d(z, x)/r(x) (Marchette, 2010). The dissimilarity measure ρ(x, z)

indicates whether or not the point z is in the ball of radius r(x) with center x, since

ρ(x, z) ≤ 1 if z is inside the (closure of the) ball and > 1 otherwise. The measure

ρ : Ω × Ω → R+ is simply a scaled dissimilarity measure, since Euclidean distance

between two points, d(x, y), is divided (or scaled) with the radius, r(x) or r(y). This

measure violates the symmetry axiom among metric axioms since ρ(x, y) 6= ρ(y, x)

whenever r(x) 6= r(y). However, Priebe et al. (2003a) showed that the dissimilarity

measure ρ satisfies the continuity condition, i.e., under the assumptions that both

F0 and F1 are continuous and strictly separable (infx∈Xj ,y∈X1−j d(x, y) = δ > 0), P-

CCCD classifiers are consistent; that is, their misclassification error approaches to

the Bayes optimal classification error as n0, n1 → ∞. The measure ρ favors points

with bigger radii; that is, for example, for a new point z equidistant to two points,

the point with bigger radius is closer in terms of this scaled dissimilarity measure; for

example, ρ(x, z) < ρ(y, z) when d(x, z) = d(y, z) and r(x) > r(y). The radius r(x)

can be viewed as an indicator of the density around the point x. Thus, a point x with
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bigger radius might suggest that the point z is more likely be drawn from the same

distribution (or class) where x is drawn (i.e., from the denser class).

4.3.2 Classification with Random Walk CCCDs

For P-CCCDs, the class covers defined by CCCDs were “pure” of non-target class

points; that is, no member of the non-target class was allowed inside the cover of the

target class. As in Figure 4.1, the ball centered at the point x cannot expand any

further since its radius is restricted by the distance to the closest non-target class

point. This strategy may cause the cover to overfit or be sensitive to noise or outliers

in the non-target class. By allowing some neighboring non-target class points inside

the cover and some target class points outside the cover, the random walk CCCDs

(RW-CCCDs) catch as much target class points as possible with an adaptive strategy

of choosing the radii (DeVinney et al., 2002). For x ∈ Xj, |Xj| = n and |X1−j| = m,

RW-CCCDs define a function on radius of a ball given by

Rx(r) = Rx(r;Xj,X1−j)

:=
n1

n0

|{z ∈ Xj : d(x, z) ≤ r}| − |{z ∈ X1−j : d(x, z) ≤ r}|.
(4.3)

where second and third arguments in Rx(r;Xj,X1−j) are suppressed when there is

no ambiguity. The function Rx(r) can be viewed as a one-dimensional random walk.

When the ball centered at x ∈ Rd expands, it hits either a target class point or a

non-target class point which increases or decreases the random walk by one unit,

respectively. The ratio n1/n0 is included in the first term as to avoid the bias resulted

by unequal sample sizes (i.e., class imbalance). An illustration is given in Figure 4.3

for the case n0 = n1. The function Rx(r) aims to find such radii that it contains a few

non-target class points and sufficiently many target class points. In addition, we also

want to avoid balls with large radii. Hence, the radius of x is the value maximizing

Rx(r) with an additional penalty function Px(r) which biases toward small radii:

rx := argmaxr∈{d(x,z):z∈Xj∪X1−j}Rx(r)− Px(r). (4.4)

Although a penalty function seems fit, DeVinney (2003) pointed out that the choice of
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Figure 4.3: Two snapshots of Rx(r) associated with the ball Bx centered at x for
m = n.

Px(r) = 0 usually works sufficiently well in practice. As in P-CCCDs, the radius of a

ball represents the density of its center’s neighborhood. Maximizing Rx(r) determines

the best possible radius. Moreover, unlike P-CCCDs, the balls of RW-CCCDs are

closed balls: B(x, r(x)) = {z ∈ Rd : d(x, z) ≤ r(x)}.
Similar to P-CCCDs, finding a cover, or a dominating set, of a RW-CCCD is an

NP-hard problem. However, RW-CCCDs find the MDSs in a slightly different fashion.

We first locate the vertex x∗ (a target class point) which has maximum of some score,

Tx∗ , and remove all target and non-target class points covered with the ball of this

vertex, Bx∗ . In the next iteration, we recalculate the radii of remaining target class

points, find the next point with the maximum score and continue until all target class

points are covered. This greedy method of finding dominating set(s) Sj of RW-CCCDs

is given in Algorithm 8. The resulting dominating set Sj has approximate minimum

cardinality. For each target class point x ∈ Xj, the score Tx is associated with Rx(rx)

and is given by

Tx = Rx(rx)−
rxnu

2dm(x)
(4.5)
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where nu is the number of uncovered target class points in the current iteration,

and dm(x) = maxz∈Xj d(x, z). The term which is linear in rx of the right hand side

of Equation (4.5) is similar to P (r) in Equation (4.4): it biases the scores toward

choosing dominating points with smaller radii. On the other hand, Algorithm 8 is

likely to choose dominating points with radius r = 0. These points only dominate

themselves but they are thought of being not covered since their balls have radii r = 0.

Algorithm 8 The greedy algorithm for finding an approximate MDS for RW-CCCDs

of points Xj from the target class given non-target class points X1−j.

Input: Target class points Xj and non-target class points X1−j

Output: An approximate minimum cardinality ball cover Cj

1: H0 = Xj , H1 = X1−j and Sj = ∅
2: ∀x ∈ Xj , dm(x) = maxz∈Xj d(x, z)

3: while H0 6= ∅ do
4: nu = |H0|
5: for all x ∈ Xj do
6: r(x) = argmaxr Rx(r;H0, H1) for r ∈ {d(x, z) : z ∈ H0 ∪H1}
7: end for

8: x∗ = argmaxx∈H0
Rx(r(x);H0, H1)− r(x)nu

2dm(x)

9: Sj = Sj ∪ {x∗}
10: N̄(v∗)← {u ∈ V(D) : (v∗, u) ∈ A(D)} ∪ {v∗}
11: H0 = H0 \ (N̄(x∗) ∩ Xj) and H1 = H1 \ (N̄(x∗) ∩ X1−j)

12: end while

13: Cj := ∪s∈SjB(s, r(s))

Algorithm 8 is similar to Algorithm 7, however after each iteration, a point is

added to the set S and the random walk Rx(r) is recalculated for all uncovered x ∈ H0.

Hence, we need an additional sweep on the training set which makes Algorithm 8 run

in cubic time.

Theorem 2 Algorithm 8 finds covers Cj of the target class Xj in O((nj + d +

log (nj + n1−j))(nj + n1−j)
2) time.
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Proof. In Algorithm 8, the matrix of distances between points of training set Xj∪X1−j

should be computed since, for all x ∈ Xj ∪ X1−j, the entire data set is swept to

maximize Rx(r). This takes O((nj + n1−j)
2d) time. The algorithm runs until all

target class points are covered, but for each iteration, the random walk Rx(r) is

recalculated. The maximum Rx(rx) could be found by sorting the distances for all

x ∈ H0 which could be done prior to the while loop. This sorting takes O((nj +

n1−j)
2 log (nj + n1−j)) time. Since H0 and H1 are updated at each iteration, we can

just erase the distances corresponding to points covered by N̄(x∗) which does not

change the order of sorted list provided before the while loop. Hence, argmaxRx(rx)

is found and the covered points erased in O((nj+n1−j)
2) time. The while loop iterates

nj times in the worst case, and hence the algorithm runs in a total of O((nj + d +

log (nj + n1−j))(nj + n1−j)
2) time. �

Note that Algorithm 8 finds a cover of X1−j in O((nj + d+ log (nj + n1−j))(nj +

n1−j)
2) time which makes a RW-CCCD classifier trained in O((nj + n1−j)

3) time for

d < n and log (nj + n1−j) < nj. RW-CCCD classifiers are much better classifiers that

potentially avoid overfitting, but with a cost of being much slower compared to the

P-CCCD classifiers.

P-CCCD classifiers tend to overfit (DeVinney, 2003). In RW-CCCDs, covering

balls allow some points of X1−j inside Cj to increase average classification performance.

In that case, Algorithm 8 cannot be reduced to a minimum set cover problem since

the definition of sets change after adding a single point to the dominating set. Hence,

the upper bound O(log nj) does not apply to RW-CCCDs. However, we expect to get

bigger balls in RW-CCCDs compared the ones in P-CCCDs which intuitively suggests

that the covers of RW-CCCDs are lower in cardinality. We conduct empirical studies

to show that RW-CCCDs, in fact, produce dominating sets with lower size compared

to P-CCCDs in some cases.

In RW-CCCD, once the class covers (or dominating sets) are determined, the

scaled dissimilarity measure in Equation (4.2) is a good choice for estimating the

class of a new point z. However, DeVinney (2003) incorporates the scores of each ball
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to produce better performing class covers in classification. Hence, the class of a new

point z is determined by

argminC∈{Cj ,C1−j}

[
min

x:B(x,r)∈C
ρ(z, x)T

e
x

]
where ρ(z, x) is defined as in Equation (4.2). Here, e ∈ [0, 1] controls at what level the

score Tx is incorporated. We observe that for d(z, x) < r(x), ρ(z, x) = d(z, x)/r(x)

decreases as Tx increases. Hence, if a new point z is in both covers, z ∈ Cj ∩C1−j, the

score Tx is a good indicator to which class the new point z belongs since the bigger

the Tx, the more likely the ball contains more target class points. For e = 1, we fully

incorporate each score Tx of covering balls and with e = 0, we ignore the scores. By

introducing a value for the parameter e in (0, 1), it is possible to further improve the

performance of RW-CCCD classifiers.

4.4 Balancing the Class Sizes with CCCDs

The CCCD classifiers substantially reduce the number of majority class observations

in a data set. The reason is that balls of majority class members are more likely

to catch neighboring points of the same class. The greedy algorithm given in Algo-

rithm 1 selects vertices with the largest closed neighborhood. Similarly, Algorithm 8

selects vertices so that their balls are as dense as possible (i.e., target class points

are abundant in the balls) with some contaminating non-target class points. Both

algorithms choose balls with a large number of target class points, and hence sub-

stantially reduce the data set (in particular, majority class points). Points of the

MDS correspond to the centers of balls that establish the class covers. Hence CCCD

classifiers can also be viewed as prototype selection methods where the objective is

finding a set of points, or prototypes, Sj; from the training set to preserve or increase

the classification performance while substantially reducing the sample size. However,

the radii of dominating set(s) are also stored and used in the classification process.

In Figure 4.4, we illustrate the behavior of balls associated with P-CCCDs and

RW-CCCDs. Note that in both families of digraphs, balls of the majority class tend
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to be larger and hence are more likely to catch more majority class points. Since the

majority class has much more members than the minority class, balls of the majority

points are more likely to catch the neighboring majority points. CCCD classifiers

keep the information of ball centers and their associated radii. Larger cardinality of

the majority class allows the construction of bigger balls and hence, larger values of

radii are more likely to correspond to larger number of catched class members. As a

result, CCCDs balance the data set and, at the same time, preserve the information

of the local density by retaining the radii. The data set becomes balanced since the

center of balls are the points of the new training data set which will be employed later

in classification.

The loss of information in undersampling schemes are of course inevitable, however

it is possible to preserve a portion of that discarded information by other means.

EasyEnsemble is an ensemble classifier used for that very purpose; however, it needs

multiple classifiers to be employed. Each classifier is trained on a different balanced

subset of the original training data set, and hence the ensemble classifier preserves the

information on the entire data set given by a collection of unbiased classifiers. On the

other hand, CCCDs achieve the same goal by transforming the density around points

into the radii. CCCDs resemble cluster based resampling methods in that regard.

Instead of randomly sampling the data set, cluster based sampling schemes divide

each class into clusters, and then, oversample the minority class or undersample the

majority class proportional to each subclass. Covering balls of CCCDs have a similar

purpose which has also been discussed in Priebe et al. (2003b). They use the covering

balls of the MDSs to explore the latent subclasses of each class of gene expression data

sets. In fact, the balls of CCCDs may correspond to clusters. Hence, sets of points

associated with each cluster is undersampled to a single point (i.e., a prototype or a

dominating point), and the information on the cluster is provided by the radius which

represents the density of that cluster. The bigger the radius, the more influence a

prototype has over the domain. In P-CCCDs, the radii may be sensitive to noise, but

RW-CCCDs ignore noisy points to avoid overfitting. Moreover, in RW-CCCDs, we
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(a) (b)

Figure 4.4: An illustration of the covering balls associated with majority and minority
(a) P-CCCD (θ = 0.0001) and the corresponding (b) RW-CCCDs of an imbalanced
data set in a two-class setting where majority and minority class points are represented
by grey dots and black triangles, respectively.

have an additional statistic provided by each cluster, the score given in Equation (4.5)

based on the random walk. We use both the radii and these scores to define the RW-

CCCD classifiers, and thus achieve better performing classifiers with more reduction

and less information loss.

We approach the problem of class imbalance from the perspective of class over-

lapping problem as well. Several researchers on class imbalance revealed that overlap

between the class supports degrade the classification performance of imbalanced data

sets even more (Batista et al., 2004, 2005; Galar et al., 2012; Prati et al., 2004). Let

E ⊂ Rd, and let s(F0) and s(F1) be the supports of the classes X0 and X1, respectively.

We define E as the overlapping region of these two class supports, E := s(F0)∩s(F1).

Moreover, let q(E) := |X1−j ∩ E|/|Xj ∩ E| be ratio of class sizes restricted to the

region E ⊂ Rd. We say q(E) is the “local” imbalance ratio with respect to E. Also,

let the “global” imbalance ratio be q = q(Rd) = n1−j/nj. Throughout this chapter,

in both simulated and real data examples, we study and discuss the local imbalance

ratio q(E) restricted to the overlapping region E and the global imbalance ratio q.
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We specifically illustrate the performance of several classifiers for various levels of

class imbalance (local or global) and class overlapping, and assess the performance of

CCCD classifiers compared to k-NN, SVM and C4.5 classifiers.

4.5 Monte Carlo Simulations and Experiments

In this section, we compare the CCCD-based classifiers, namely P-CCCD and RW-

CCCD, with k-NN, support vector machines (SVM) and C4.5, on simulated data

sets. These classifiers are listed in Table 4.1. We employ the cccd, e0171 and RWeka

packages in R to classify test data sets with the P-CCCD, SVM (with Gaussian kernel)

and C4.5 classifiers, respectively (Marchette, 2013; Meyer et al., 2014; R Core Team,

2015).

For each of four classification methods other than C4.5, we assign the optimum

parameter values which are the best performing values among all considered parame-

ters. For example, an optimum P-CCCD parameter θ is found in a preliminary (pilot)

Monte Carlo simulation study associated with the main simulation setting (i.e., the

same setting of the main simulation). We use the area under curve (AUC) measure to

evaluate the performance of the classifiers on the imbalanced data sets (López et al.,

2013). AUC measure is often used on imbalanced real data classes. This measure

has been shown to be better than the correct classification rate in general (Huang

and Ling, 2005). In the pilot study, we perform a Monte Carlo simulation with 200

replications and count how many times a θ value has the maximum AUC among

θ = 0.0, 0.1, · · · , 1.0 in 200 trials. Note that, since θ ∈ (0, 1], we denote θ = ε (ma-

chine epsilon) as θ = 0 for the sake of simplicity. For each replication of the pilot

simulation, we (i) classify the test data set with all θ values, (ii) record the θ values

with maximum AUC and (iii) update the count of the recorded θ values. Finally,

we appoint the one that has the maximum count (the best performing θ) as the θ∗,

the optimum θ. Then, we use θ∗ as the parameter of P-CCCD classifier in our main

simulation. The parameters of optimal k-NN, SVM and RW-CCCD classifiers are

defined similarly. SVM methods often incorporate both a kernel parameter γ and a
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constrained violation cost C. We only optimize γ since the selection of an optimum

C parameter will be more crucial for cost-sensitive SVM methods. Moreover, we con-

sider two versions of the C4.5 classifier where both incorporate Laplace smoothing.

The first tree classifier, C45-LP, prunes the decision tree with %25 confidence level

but the second classifier, C45-LNP, does not use pruning at all.

We first consider a simulation setting similar to the one in DeVinney et al. (2002)

where CCCD classifiers showed relatively good performance compared to the k-

NN classifier. Here, we simulate a two-class setting where observations from both

classes are drawn from separate multivariate uniform distributions: F0 = U(0, 1)d

and F1 = U(0.3, 0.7)d for d = 2, 3, 5, 10. Notice that s(F1) ⊂ s(F0); i.e., E = s(F1).

We perform Monte Carlo replications where on each replication, we train the data with

equal sizes of observations (n = n0 = n1) from each class for n = 50, 100, 200, 500.

On each replication, we record the AUC measures of the classifiers on the test data

set with 100 observations from each class, resulting a test data set of size 200. We

simulate test data sets until AUCs of all classifiers achieve a standard error below

0.0005. Average of AUCs of all classifiers in Table 4.1 are given in Figure 4.5 for all

(n, d) combinations. Additionally, in Figure 4.6, we report the θ values of best per-

forming P-CCCD classifiers in our pilot simulation study for all (n, d) combinations.

In Figure 4.6, there are separate histograms for each combination. Each histogram

represents the number of times a θ value has the maximum AUC. Also in Figure 4.7,

we report the e values of the best performing RW-CCCD classifiers of the same pilot

simulation study for e = 0, 0.1, · · · , 1.0.

We start by investigating the effect of θ and e on CCCD classifiers. The relation-

ship between θ, n and d can also be observed in Figure 4.6. The higher the θ value,

the better the performance of P-CCCD classifier with increasing d and decreasing n.

This may indicate that balls with θ = 0 (i.e., θ = ε) represent the density around their

centers better for low dimensional data sets. However, with increasing dimensionality

and lower class sizes, the set of points gets sparser in Rd. In the case of RW-CCCD,

classifiers with high e values are either better or comparable to those with lower e
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Method Description

P-CCCD P-CCCD with the optimum θ (in the pilot study) among θ =

0, 0.1, · · · , 1.0

RW-CCCD RW-CCCD with the optimum e (in the pilot study) among e =

0, 0.1, · · · , 1.0

k-NN k-NN with optimum k (in the pilot study) among k = 1, 2, · · · , 30

SVM SVM with the radial basis function (Gaussian) kernel with the opti-

mum γ (in the pilot study) among γ = 0.1, 0.2, · · · , 3.9, 4.0 (Joachims,

1999)

C45-LP C4.5 with Laplace smoothing and reduced error pruning (%25 confi-

dence)

C45-LNP C4.5 with Laplace smoothing and no pruning

Table 4.1: The description of classifiers employed.

values. The scores Tx of covering balls are definitely beneficial to the performance

of the RW-CCCD classifiers, however with increasing n and decreasing d (especially

for n = 500 and d = 2) RW-CCCD with lower e is better since the radii success-

fully represent the density around the prototype points due to the high number of

observations in the data set.

Figure 4.5 illustrates the AUCs of all classifiers along with the Bayes optimal per-

formance (the best possible performance) given with the dashed line. Comparing the

performance of CCCD classifiers with other classification methods, we observe that

RW-CCCD and P-CCCD classifiers outperform the k-NN classifier when the support

of one class is entirely embedded inside that of the other class. These results are sim-

ilar to the conclusions of DeVinney et al. (2002): with increasing dimensionality, the

difference between k-NN and CCCD classifiers becomes more apparent, i.e., CCCD

classifiers have nearly 0.20 AUC more than k-NN. On the other hand, the SVM clas-

sifier has about 0.05 more AUC than P-CCCD and RW-CCCD classifiers, especially

for lower class sizes. Although, both versions of CCCD classifiers outperform the

k-NN and C4.5 classifiers with increasing dimensionality, the gap between these two

classifiers and CCCD classifier is getting narrower with increasing class sizes. The

RW-CCCD classifier is slightly better than the P-CCCD classifier for lower n. In

addition, C45-LNP achieves slightly better results than C45-LP.
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Figure 4.5: AUCs in the two-class setting, F0 = U(0, 1)d and F1 = U(0.3, 0.7)d under
various simulation settings, with d = 2, 3, 5, 10 and equal class sizes n = n0 = n1 =
50, 100, 200, 500.

In the setting presented in Figure 4.5, apparently, two classes overlap on the

region E = s(F1) = [0.3, 0.7]d which is the entire support of the class X1−j. For

equal class sizes, q = n1/n0 = 1 but q(E) ≈ (1/0.4)d = Vol(s(F1))/Vol(s(F0)), where

Vol(·) is the volume functional. The classes are clearly imbalanced in E, although

n0 = n1. Hence, class X0 becomes the minority and class X1 becomes the majority

class with respect to E. However, readjusting the class sizes n1 and n0 might change

the performance of P-CCCD and RW-CCCD classifiers compared to the k-NN and

C4.5 classifiers. Therefore, we conduct another simulation study with classes from

the same uniform distributions, but we set n1 = 50 and n0 = 200 for d = 2, 3, and

n1 = 50 and n0 = 1000 for d = 5, 10. In this experiment, we simulated 4 times more

X0 class members than X1 for d = 2, 3, and 20 times more for d = 5, 10. Results of

this second experiment is given in Figure 4.8. k-NN and C4.5 classifiers outperform

P-CCCD classifier in all d cases and has comparable AUC with SVM. However, only
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Figure 4.6: Frequencies of the best performing θ values among θ = 0.0, 0.1, · · · , 1.0
in our pilot study (this is used to determine the optimal θ used in P-CCCD). The
simulation setting is same as to the one presented in Figure 4.5.

for d = 2, 5, RW-CCCD classifier achieves considerably more or comparable AUC

compared to other classifiers. In this example, k-NN classifiers have nearly 0.05 more

AUC than P-CCCDs, and also RW-CCCDs have, in general, 0.05 more AUC than

k-NN classifiers.

Results from Figures 4.5 and 4.8 seem conflicting to each other, even though

E = s(F1). In the simulation setting of Figure 4.8, we draw more samples from

the class X0 to balance the class sizes with respect to E. In fact, the effect on the

difference of AUCs between CCCD, k-NN and C4.5 classifiers depends heavily on the
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Figure 4.7: Frequencies of the best performing e values among θ = 0.0, 0.1, · · · , 1.0
in our pilot study (this is used to determine the optimal e used in RW-CCCD). The
simulation setting is same as to the one presented in Figure 4.5.

local class imbalance restricted to the overlapping region E. The classes in region

E are less imbalanced in setting of Figure 4.8 than in the setting of Figure 4.5.

Observe that q(E) ≈ (1/0.4)d/4 when (n1, n0) = (50, 200), q(E) ≈ (1/0.4)d/20 when

(n1, n0) = (50, 1000), and q(E) ≈ (1/0.4)d in (n1, n0) = (50, 50). Hence, d does

also affect the balance between classes. With increasing d, the region E gets smaller

in volume compared to s(F0) and, as a result, fewer points of the class X0 falls in

E. Thus, we need to draw more samples from X0 as dimensionality increases, in

order to balance the classes with respect to E. These results suggest that, the more
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Figure 4.8: AUCs in a two-class setting, F0 = U(0, 1)d and F1 = U(0.3, 0.7)d with
fixed n0 = 200 and n1 = 50 in d = 2, 3, and with fixed n0 = 1000 and n1 = 50 in
d = 5, 10.

imbalanced the data set in overlapping region E, the worse the performance of k-NN

and C4.5 classifiers while CCCD classifiers preserve their classification performance.

So, CCCD classifiers exhibit robustness (to the class imbalance problem). On the

other hand, in Figure 4.5, we observe that the AUC of k-NN classifier approaches to

the AUC of CCCD classifiers with increasing class sizes. Because, when q and q(E)

are fixed, the classification performance still depends on individual values of n0 or n1.

This result is in line with the results of Japkowicz and Stephen (2002) who reported

that the effect of class imbalance on the classification performance diminishes if both

class sizes are sufficiently large. Furthermore, SVM classifier performs better than

all classifiers in Figure 4.5, and performs worse than RW-CCCD classifiers only for

d = 2, 5 in Figure 4.8. This might be an indication that SVM classifier is also not

affected by the local class imbalance with respect to E, and performs usually better

than both P-CCCD and RW-CCCD classifiers if the support of one class is inside the

other. For the C4.5 classifier, on the other hand, it is known for quite some time that

the pruning is detrimental for classifying imbalanced data sets (Cieslak and Chawla,

2008). In any case, C45-LNP has more AUC than C45-LP in all simulation settings.
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In a two-class setting with an overlapping region E, we should expect CCCD

classifiers to outperform k-NN classifiers in cases of (global or local) class imbalance.

Let F0 = U(0, 1)d and F1 = U(δ, 1 + δ)d for δ, q = 0.05, 0.10, · · · , 0.95, 1.00; d =

2, 3, 5, 10; n = 400 and n1 = qn0. Here, the shifting parameter δ controls the level

of overlap. The class supports get more overlapped with decreasing δ. Since E =

(δ, 1)d and the supports of both classes are unit boxes, observe that q(E) ≈ q. The

closer the value of q to 1, more balanced the classes are. We aim to address the

relationship between the classifiers for various combinations of overlapping and global

class imbalance ratios.

Figure 4.9 illustrates the difference between AUCs of CCCD and other classifiers

(k-NN, SVM and C4.5) in separate heat maps for d = 2, 3, 5, 10. We use the unpruned

C4.5 classifier C45-LNP, since it tends to perform better for imbalanced data sets,

and we refer to C45-LNP as C4.5 for simplicity. Each cell of a single heat map is

associated with a combination of δ and q values. Lighter tone cells indicate that CCCD

classifiers are better than the other classifiers in terms of AUC, and vice versa for the

darker tones. When the classes are imbalanced and moderately overlapping, RW-

CCCD classifier has at least 0.05 more AUC than all other non-CCCD classifiers but

P-CCCD classifier is only better than all others provided that d = 10. If the classes

are balanced or their supports are not considerably overlapping, there seem to be no

visible difference between CCCD and the other classifiers. Thus, the other classifiers

suffer from the imbalance of the data while CCCD classifiers show robustness to the

class imbalance. But more importantly, this difference is getting more apparent with

increasing dimensionality. When d is high, fewer points of the minority class fall in E

although q(E) is fixed. Even though the classes are imbalanced, if the minority class

have substantially small size, the class imbalance problem becomes more detrimental

(Japkowicz and Stephen, 2002). Under the conditions that the data set has substantial

imbalance and overlapping, AUC of RW-CCCD classifier is followed, in order by, the

AUC of C4.5, SVM and k-NN classifiers.

Unlike the comparison of CCCD and SVM classifiers in Figures 4.5 and 4.8, SVM
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Figure 4.9: Differences between the AUCs of CCCD and other classifiers. For example,
the panel titled with ”RW-kNN” presents AUC(RW-CCCD)-AUC(kNN). In this two-
class setting, classes are drawn from F0 = U(0, 1)d and F1 = U(δ, 1 + δ)d with d =
2, 3, 5, 10. Each cell of the grey scale heat map corresponds to a single combination
of simulation parameters δ, q = 0.05, 0.1, · · · , 0.95, 1.00 with n0 = 400 and n1 = qn0.

classifier has less AUC than CCCD classifiers with low δ and low q values in Figure 4.9.

In this setting, n0 is fixed to 400 and the lowest value of n1 is 20. Compared to our

experiments in Figures 4.5 and 4.8, this setting produces highly imbalanced data sets

(one class has far more observations than the other, n1 << n0). Akbani et al. (2004)

conducted a detailed investigation and listed some reasons of SVM classifier being

sensitive to highly imbalanced UCI data sets (Bache and Lichman, 2013). They

did not, however, address the problem of overlapping class supports but offered a

modification to SMOTE algorithm in order to improve the robustness of SVM. On

the other hand, especially for d = 5 and d = 10, SVM, k-NN and C4.5 classifiers

have more AUC than CCCD classifiers with increasing q and decreasing δ. This may

indicate that other other classifiers are better than CCCD classifiers for balanced

classes.

The effects of class imbalance might also be observed when the class supports are

well separated. If the class supports are disjoint, that is s(F0) ∩ s(F1) = ∅, the AUC
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is fairly high. However, it might still be affected by the global imbalance level, q.

Therefore, we simulate a data set with two classes where F0 = U(0, 1)d and F1 =

U(1+δ, 2+δ)×U(0, 1)d−1. Figure 4.10 illustrates the results of this simulation study.

Both class supports are d dimensional unit boxes as in the previous simulation setting,

however they are now disjoint (separated along the first dimension). In addition, the

parameter δ controls the smallest distance between the class supports where δ =

0.05, 0.10, · · · , 0.45, 0.50. With increasing δ, the points of class X1−j move further

away from the points of Xj. Figure 4.10 illustrates the difference between AUCs of

CCCD and other classifiers under this simulation setting.

In Figure 4.10, unlike the performance of CCCD classifiers in Figure 4.9, P-CCCD

classifiers have more AUC than RW-CCCD classifiers. When classes are imbalanced

and supports are close, P-CCCD classifiers outperform both SVM and k-NN classifiers

for all d values, but RW-CCCD classifiers have nearly 0.03 more AUC than these

classifiers only in d = 10. However, this is not the case with C4.5 classifier since

none of the classifiers outperform C4.5; that is, C4.5 yields over 0.04 more AUC than

CCCD classifiers. A well separated data set is more likely to be classified better

with C4.5 tree classifier because a single separating line exists between the two class

supports. Hence, C4.5 locates such a line and efficiently classifies points regardless of

the distance between class supports as long as the distance is positive. On the other

hand, the balls of P-CCCD classifiers establish appealing covers for the class supports

because the supports do not overlap. P-CCCD classifiers establish covering balls, big

enough to catch substantial amount of points from the same class. Similarly, RW-

CCCD classifiers establish pure covers, and this is the result of the separation between

class supports. However, P-CCCD classifiers achieve better classification performance

than RW-CCCD classifiers. When the classes are well separated, the radii of a ball in

random walk, say from class Xj, is likely maxz∈Xj d(z, x) but in P-CCCD classifiers,

it is minz∈X1−j d(z, x). In fact, the RW-CCCD classifiers are nearly equivalent to P-

CCCD classifiers. Thus, when θ > 0, P-CCCD classifiers are more likely to produce

bigger balls than RW-CCCD classifiers, and potentially avoid overfitting.
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In Figure 4.10, RW-CCCD classifiers have slightly or considerably less AUC than

other classifiers when data sets are imbalanced and the supports are slightly far away

from each other. The random walk contaminates the class cover with some non-target

class points to improve the classification performance. However, since the classes are

well separated and one class has substantially fewer points than the other, random

walks are likely to yield balls to cover some points from the support of the non-target

class, resulting in a degradation in the performance of RW-CCCD classifiers. On the

other hand, P-CCCD classifiers outperform both k-NN and SVM classifiers for lower

q and lower δ. The closer and more imbalanced the data, the better the performance

of P-CCCDs than other classifiers. Although the classes do not overlap, the effect

of class imbalance is still observed when the supports are close. When there is mild

imbalance between classes, CCCD classifiers have either comparable or less AUC. In

addition, note that the performances of SVM and k-NN classifiers deteriorate but

P-CCCD classifiers preserve their AUC with increasing d. Let E ⊂ Rd be some

region that contains points of both classes which are sufficiently close to the decision

boundary. With increasing d, fewer minority class points are in this region, and hence

fewer members of this class fall in E. As a result, the performance of both SVM and

k-NN classifiers suffer from local class imbalance with respect to E.

Finally, we investigate the effect of dimensionality when classes are balanced (i.e.,

q = 1) and their supports are overlapping. In this setting, F0 = U(0, 1)d and F1 =

U(δ, 1 + δ)d. Here, let q(E) ≈ q = 1, hence the classes are also locally balanced with

respect to E as well as being globally balanced. Also, δ controls the level of overlap

between two classes. However, we define δ in such a way that the overlapping ratio

α ∈ [0, 1] is fixed for all dimensions. When α is 0, the supports are well separated,

and when α is 1, the supports of classes are the same, i.e., s(F0) = s(F1). The closer

α to 1, the more the supports overlap. Observe that δ ∈ [0, 1] can be expressed in

terms of the overlapping ratio α and dimensionality d:

α =
Vol(s(F0) ∩ s(F1))

Vol(s(F0) ∪ s(F1))
=

(1− δ)d
2− (1− δ)d ⇐⇒ δ = 1−

(
2α

1 + α

)1/d

. (4.6)

Hence, we calculate δ for each (d, α) combination by the Equation (4.6). In Fig-
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Figure 4.10: Differences between the AUCs of CCCD and other classifiers (see Fig-
ure 4.9 for details). In this two-class setting, classes are drawn from F0 = U(0, 1)d

and F1 = U(1 + δ, 2 + δ)×U(0, 1)d−1 where d = 2, 3, 5, 10, δ = 0.05, 0.1, · · · , 0.45, 0.50
and q = 0.05, 0.1, · · · , 0.95, 1.00 with n0 = 400 and n1 = qn0. AUCs of all classifiers
are over 88% since the class supports are well separated.

ure 4.11, each cell of the grey scale heat map corresponds to a single combination

of simulation parameters α = 0.05, 0.1, · · · , 0.95, 1.00 and d = 2, 3, 4, · · · , 20. In Fig-

ure 4.11, the differences between the AUCs of CCCD classifiers and other classifiers

are up to 0.20. The k-NN and SVM classifiers have comparable performance with

CCCD classifiers, or outperform both CCCD classifiers. However, C4.5 has more

AUC with increasing d. Employing CCCD classifiers do not considerably increase the

classification performance over other classifiers when classes are balanced.

4.6 Real Data Examples

In this section, we compare the performance of CCCD classifiers and all other classi-

fiers on several data sets from UC Irvine (UCI) Machine Learning and KEEL repos-

itories (Alcalá-Fdez et al., 2011; Bache and Lichman, 2013). To test the difference
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Figure 4.11: Differences between the AUCs of CCCD and other classifiers (see Fig-
ure 4.9 for details). In this two-class setting, classes are drawn from F0 = U(0, 1)d

and F1 = U(δ, 1 + δ)d where n = 50, 100, 200, 500, α = 0.05, 0.1, · · · , 0.45, 1.00 and
d = 2, 3, 4, · · · , 20.

between the AUC of classifiers, we employ the 5x2 cross validation (CV) paired t-test

(Dietterich, 1998) and the combined 5x2 CV F -test (Alpaydın, 1999). The 5x2 CV

test has been devised by Dietterich (1998) and found to be the most powerful test

among those with acceptable type-I error. However, the test statistics of 5x2 t-tests

depend on which one of the ten folds is used. Hence, Alpaydın (1999) offered a com-

bined 5x2 CV F -test which works as an omnibus test for all ten possible 5x2 t-tests

(for each five repetitions there are two folds, hence ten folds in total). Basically, if

a majority of ten 5x2 t-tests suggests that two classifiers are significantly different

in terms of performance, the F -test also suggests a significant difference. Hence, an

F -test with high p-value suggests that some of the ten t-tests fail to have low p-values.

We also provide the overlapping ratios and imbalance levels of these data sets. In

a simulation study such as the one in Section 4.5, we have control on the overlapping

region of two classes since we can choose the supports of the classes, hence their

overlapping region is exactly known. However, in real data sets where the support of
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classes are neither defined nor available, we need methods to estimate the supports

and hence estimate the overlapping ratios for the two classes. We employ the support

vector data description (SVDD) method of Tax and Duin (2004) for this purpose.

The method finds a description (or a region) of a data set, which covers a desired

percentage of the points. SVDDs are also used in novelty or outlier detection. It has

been inspired by the SVM classifiers and is based on defining a sphere around the

data set. Similar to SVM, kernel functions can be employed to define more relaxed

regions. SVDD is also a one-class learning method where the goal is to decide if a

new point belongs to this particular class or not (Juszczak et al., 2002). By using

SVDD approach, Xiong et al. (2010) found the SVDD regions of each class and its

overlapping region. We also use SVDD to find the overlapping region E of each pair

and report on the imbalance ratio with respect to E. The overlapping ratio is the

percentage of points from both classes that reside in A. We use the Ddtools toolbox

of MATLAB environment to produce the SVDDs of classes (Tax, 2014). Our choice

of the kernel is the same as we have used with SVM classifiers, the radial basis (i.e.,

Gaussian) kernel; for consistency. However, the selection of σ in the kernel is crucial

for the SVDD region.

In Table 4.2, we present the overlapping ratios and the imbalance in the overlap-

ping areas of all data sets for σ = 2, 3, · · · , 10. Although the value of σ produces differ-

ent overlapping ratios, it is apparent that classes of data sets Ionosphere, Abalone19,

Yeast4, Yeast6 and Yeast1289vs7 have more overlap than others, and these overlap-

ping data sets have substantial local class imbalance in their respective overlapping

regions. Other data sets have almost no overlapping nor imbalance in the overlapping

regions even though their classes are globally imbalanced. One of these data sets is

Yeast5 which has a imbalance ratio of q = 32.70 but has no imbalance in the small

overlapping region.

In Table 4.3, we give the average AUC measures and their standard deviations of

all CCCD-based and other classifiers according to the 5x2 CV scheme for the data

sets. All other classifiers, have been two-way tested with 5x2 CV F -test against both
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Table 4.2: Overlapping ratios and (local) imbalance ratios in the overlapping region
of data sets. “IR” stands for the imbalance ratio in the overlapping region and “OR”
stands for the overlapping ratio which is the percentage of points from both classes
residing in the overlapping region. IR=“NA” indicates that one of the classes has no
members in the intersections of SVDD regions of classes.

Data q = n1/n0 n0 + n1 d σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7 σ = 8 σ = 9 σ = 10

Sonar 1.14 208 61
OR 4% 19% 23% 25% 26% 26% 27% 28% 28%

IR 1.22 1.04 0.96 0.93 0.96 0.97 0.97 0.90 0.90

Ionosphere 1.78 351 35
OR 25% 36% 66% 69% 66% 79% 61% 76% 81%

IR 90.00 62.50 8.70 6.20 5.44 3.67 5.02 3.98 3.31

Segment0 6.02 2308 20
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%

IR NA NA NA NA NA NA NA NA NA

Page-Blocks0 8.79 5472 11
OR 0.6% 0.6% 0.6% 0.8% 0.9% 1% 1% 1% 1%

IR 0.47 0.22 0.22 0.25 0.40 0.39 0.43 0.54 0.63

Vowel0 9.98 988 14
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%

IR NA NA NA NA NA NA NA NA NA

Shuttle0vs4 13.87 1829 10
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%

IR NA NA NA NA NA NA NA NA NA

Yeast4 28.10 1484 9
OR 45% 27% 39% 37% 26% 26% 26% 26% 31%

IR 18.97 99.75 18.50 18.24 392.00 390.00 391.00 390.00 41.18

Yeast1289vs7 30.70 947 9
OR 45% 44% 69% 43% 30% 29% 29% 29% 29%

IR 24.47 23.76 24.34 23.00 47.33 45.83 45.83 45.66 45.50

Yeast5 32.70 1484 9
OR 6% 3% 0% 0% 0% 0% 6% 7% 0.1%

IR NA 1.15 NA NA NA NA NA NA NA

Yeast6 41.40 1484 9
OR 30% 46% 42% 31% 30% 30% 10% 13% 13%

IR 64.14 21.03 27.59 76.33 73.66 73.66 38.25 63.00 63.00

Abalone19 129.40 4174 9
OR 25% 20% 15% 14% 13% 12% 12% 11% 11%

IR 104.30 104.30 163.75 197.33 278.00 262.50 253.00 244.00 234.00

RW-CCCD and P-CCCD classifiers. Their p-values are also provided in Table 4.3.

For each of five repetitions, we divide the data into two folds. The AUC of fold 1

is given by using fold 1 as a training set and fold 2 as the test set. For fold 2, the

process is similar. We repeated these experiments five times for all three classifiers.

Looking at results from 11 data sets, RW-CCCD usually performs better than P-

CCCD classifiers. On these data sets, RW-CCCD have significantly more AUC than

the other classifiers. Thus, these results from real data sets seem to resonate with the

results from our simulations and further support the robustness of CCCD classifiers

to the class imbalance problem.
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Table 4.3: Average of AUC values of ten folds, and standard deviations, of CCCD and
other classifiers for real data sets. The p-values of 5x2 CV F -tests show the results of
two-way tests comparing both CCCDs with other classifiers. Some of best performers
are given in bold.

Ionosphere Sonar Yeast6 Yeast5 Yeast4 Yeast1289vs7

RW-CCCD AUC 0.917∓0.023 0.722∓0.050 0.866∓0.051 0.898∓0.063 0.807∓0.048 0.643∓0.057

P-CCCD AUC 0.934∓0.032 0.805∓0.045 0.755∓0.053 0.793∓0.094 0.602∓0.051 0.556∓0.038

k-NN

AUC 0.803∓0.019 0.804∓0.027 0.786∓0.032 0.839∓0.063 0.619∓0.038 0.562∓0.04

p-value (vs RW) 0.000 0.107 0.072 0.573 0.009 0.087

p-value (vs P) 0.005 0.473 0.552 0.209 0.650 0.177

SVM

AUC 0.949∓0.010 0.719∓0.057 0.710∓0.045 0.741∓0.069 0.527∓0.024 0.507∓0.014

p-value (vs RW) 0.088 0.763 0.043 0.096 0.002 0.047

p-value (vs P) 0.582 0.091 0.086 0.467 0.129 0.084

C4.5

AUC 0.851∓0.024 0.712∓0.049 0.742∓0.048 0.803∓0.075 0.613∓0.057 0.570∓0.043

p-value (vs RW) 0.008 0.747 0.015 0.429 0.084 0.270

p-value (vs P) 0.039 0.358 0.634 0.734 0.819 0.508

Vowel0 Shuttle0vs4 Abalone19 Segment0 Page-Blocks0

RW-CCCD AUC 0.877∓0.046 0.996∓0.003 0.603∓0.065 0.895∓0.011 0.875∓0.019

P-CCCD AUC 0.958∓0.025 0.988∓0.016 0.506∓0.019 0.957∓0.010 0.869∓0.009

k-NN

AUC 0.971∓0.031 0.996∓0.004 0.512∓0.015 0.988∓0.004 0.863∓0.009

p-value (vs RW) 0.037 0.693 0.104 0.000 0.604

p-value (vs P) 0.504 0.534 0.735 0.026 0.600

SVM

AUC 0.956∓0.039 0.984∓0.012 0.500∓0.000 0.564∓0.006 0.901∓0.013

p-value (vs RW) 0.095 0.459 0.101 0.000 0.249

p-value (vs P) 0.700 0.632 0.535 0.000 0.016

C4.5

AUC 0.948∓0.032 0.999∓0.001 0.503∓0.009 0.982∓0.004 0.917∓0.012

p-value (vs RW) 0.090 0.242 0.088 0.000 0.229

p-value (vs P) 0.137 0.533 0.535 0.100 0.020

4.7 Conclusions and Discussion

We assess the classification performance of various classifiers such as RW-CCCD,

P-CCCD, k-NN, SVM and C4.5 classifiers and their variants when class imbalance

occurs, and we illustrate the robustness of CCCD classifiers to the class imbalance in

data sets. This imbalance often occurs in real life data sets where, in two-class settings,

minority class (the class with fewer number of observations) is usually dwarfed by

the majority class. Class imbalances hinder the performance of many classification
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algorithms. We studied the performance of CCCD classifiers under class imbalance

problem by first simulating a two-class setting similar to the one used in DeVinney

(2003). In this setting, the support of one class is entirely embedded in the support of

the other. Drawing equal number of observations from both class supports results in

an imbalance between two classes with respect to their overlapping region, called local

class imbalance. This difference in the class sizes was also the case in the example

of DeVinney (2003), and it is the reason that CCCD classifiers show better results

than the k-NN classifier. We show that P-CCCD classifiers with lower θ values tend

to perform better than the ones with higher θ values. This is merely a result of balls

with θ = 0 representing the local density of the target class points better. Similarly,

the RW-CCCD classifiers with lower e values are better when the dimensionality is

low and the class sizes are high. This might indicate that the denser the data set in

Rd, the less useful the scores Tx. However, fully utilizing the scores usually increases

the classification performance.

Analysis of both simulated and real data sets indicate that both CCCD classifiers

show robustness to the class imbalance problem. We demonstrated this by studying

the effects of the class overlapping problem together with the class imbalance problem.

In fact, there are studies in the literature focusing on the performance of classification

methods when class overlapping and class imbalance problems occur simultaneously

(Denil and Trappenberg, 2010; Prati et al., 2004). Overlapping of classes is an impor-

tant factor in the classification of imbalanced data sets; that is, it drastically affects

the classification performance of most algorithms. When classes are both imbalanced

and overlapping, performance of k-NN, SVM and C4.5 classifiers deteriorate whereas

CCCD classifiers are not affected as severely as these methods. We use two alterna-

tives of C4.5 classifiers where we prune the decision tree in one and do not in the other.

It is known for some time that pruning deteriorates the performance of tree classi-

fiers under class imbalance. Moreover, SVM is robust to moderately imbalanced class

sizes but demonstrates no robustness in highly imbalanced cases. However, whether

the data set is highly or moderately imbalanced, CCCD classifiers seem to preserve
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their AUC compared to k-NN, SVM and C4.5 classifiers. Hence, our study suggests

that CCCD classifiers are appealing alternatives when data have class imbalance. In

addition, we mention the effect of the individual class sizes on the class imbalance

problem (Japkowicz and Stephen, 2002). Whatever the ratio between class sizes is, if

the minority class has a substantially high number of points, the effect of imbalances

between classes tend to diminish.

We conduct simulation studies to determine how the classification performance

jointly depends on both (global) class imbalance and class overlapping, parameter-

ized as q and δ, respectively, and we apply all classifiers on several UCI and KEEL

data sets. By using the SVDD method of Tax and Duin (2004), we estimated the

overlapping ratios of all these data sets. We show that CCCD classifiers outperform

or perform comparable to k-NN, SVM and C4.5 classifiers for some overlapping and

imbalance ratios in both simulated and real data sets. In particular, CCCDs are bet-

ter than SVM classifiers in highly imbalanced cases. The effect of high class imbalance

on SVM classifier is also studied in Akbani et al. (2004) and Raskutti and Kowalczyk

(2004). However, when no imbalance occurs between classes, CCCD classifiers usually

show either comparable or slightly worse performance than the other classifiers.

We also investigate the performance of CCCD classifiers under different conditions.

Specifically, in two different experiments, we simulate two classes where (i) classes are

imbalanced but supports are not overlapping (well separated) and (ii) classes are

balanced and supports are overlapping with increasing dimensionality. P-CCCD clas-

sifiers are better than RW-CCCD classifiers in experiment (i). Both CCCD classifiers

mostly outperform k-NN and SVM classifiers when classes are imbalanced and not

overlapping, however RW-CCCD classifiers outperform these classifiers only when di-

mensionality is sufficiently high. In experiment (ii), the classification performance of

CCCD classifiers slightly degrade compared to k-NN and SVM classifiers, especially

with increasing d. Among CCCD classifiers, RW-CCCDs appear to be better when

classes are both overlapping and imbalanced, however our results suggest the use of

P-CCCDs when classes are imbalanced and well separated (i.e., not overlapping).
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In fact, class supports are often overlapping in real life data sets, hence RW-CCCD

classifiers seem to be more appealing in practice.

In practice, classifiers based on CCCD classifiers resemble prototype selection

methods. CCCDs balance the class sizes by defining balls that catch surrounding

points of the same class, and discard these points from the training set. The resulting

data set is composed of the centers of these balls and associated radii which are used in

scaled dissimilarity measures. Although, CCCD classifiers remove substantial amount

of observations from the majority class, they preserve (most of) the information with

the radii. The bigger the radius, the more likely that the balls of CCCD classifiers

contain more points. The radii could be considered as an indicator of the local density

of the target class. The real advantage of CCCD classifiers are these prototype sets

which are of (approximately) minimum cardinality, although training time and space

of P-CCCDs and RW-CCCDs may be considerably high. CCCDs preserve important

information regarding the data sets while substantially increasing the testing speed.

In literature, many classifiers have been devised to preserve the information on the

deleted majority class points, however they are all ensemble based classifiers which

substantially increase both training and testing time complexities. In that regard,

CCCDs offer a novel approach to this particular problem.

Eveland et al. (2005) modified RW-CCCD classifiers as to increase the speed of

the face detection in which imbalances between classes occur naturally. They did

only refer to the real life applications which consist of class imbalances. They did

not, however, investigate the relationship between class imbalance and overlapping

problems as thoroughly as our study does. On the other hand, establishing class

covers with Euclidean balls raise the possibility of using different regions (the regions

are Euclidean hyperballs around target class points in CCCD) to balance the data

and, thus, construct non-parametric classifiers with more classification performance.

Along this line, CCCDs can be generalized using PCDs (Jaromczyk and Toussaint,

1992). In the following chapter, we will show how PCDs can be used to derive new

graph-based classifiers which are also robust to the class imbalance problem.



Chapter 5

PROTOTYPE-BASED CLASSIFICATION WITH

PROXIMITY CATCH DIGRAPHS

5.1 Introduction

Classification methods based on set covering algorithms received considerable atten-

tion because of their use in prototype selection (Angiulli, 2012; Bien and Tibshirani,

2011; Cannon and Cowen, 2004). Prototypes are selected members of a data set so

as to attain various tasks including reducing, condensing or summarizing a data set.

Many learning methods aim to carry out more than one of these tasks, thereby build-

ing efficient learning algorithms (Bien and Tibshirani, 2011; Pȩkalska et al., 2006). A

desirable prototype set reduces the data set in order to decrease running time, con-

denses the data set to preserve information, and summarizes the data set for better

exploration and understanding. The methods we discuss are considered as decision

boundary generators where decisions are made based on class conditional regions, or

class covers, that are composed of a collection of convex sets, each associated with

a prototype (Toussaint, 2002). The union of such convex sets constitute a region

for the class of interest, estimating the support of this class (Schölkopf et al., 2001).

Support estimates have uses in both supervised and unsupervised learning schemes

offering solutions to many problems of machine learning literature (Marchette, 2004).

We propose supervised learning methods, or classifiers, based on these estimates of

the supports constructed with PCDs.

In this chapter, we employ PCDs in statistical classification and investigate their

performance. The PCDs of concern are classifiers based on a two families of proximity

maps called PE and CS proximity maps. The corresponding PCDs are called PE-
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PCDs and CS-PCDs, respectively, and are defined for target class (i.e. the class of

interest) points inside the convex hull of non-target points (Ceyhan, 2005). However,

this construction ignores the target class points outside the convex hull of the non-

target class. We mitigate this shortcoming by partitioning the region outside of the

convex hull into unbounded regions, called outer simplices, which may be viewed as

extensions of outer intervals in R (e.g. intervals with infinite endpoints) to higher

dimensions. We attain proximity regions in these outer simplices by extending PE

and CS proximity maps to outer simplices. We establish two types of classifiers based

on PCDs, namely hybrid and cover classifiers. The first type incorporates the PCD

covers of only points in the convex hull and use other classifiers for points outside the

convex hull of the non-target class, hence we have some kind of a hybrid classifier; the

second type is further based on two class cover models where the first is a hybrid of

PE-PCDs (or CS-PCDs) and CCCDs (composite covers) whereas the second is purely

based on either PE-PCDs or CS-PCDs (standard covers).

One common property of most class covering (or set covering) methods is that

none of the algorithms find the exact minimum number of covering sets in polynomial

time, and solutions are mostly provided by approximation algorithms (Vazirani, 2001).

However, for PE-PCDs, the exact minimum number of covering sets (equivalent to

prototype sets) can be found much faster; that is, the exact minimum solution is found

in a running time polynomial in size of the data set but exponential in dimensionality.

PE-PCDs have computationally tractable (exact) MDSs in Rd (Ceyhan, 2010). On

the other hand, Ceyhan (2005) listed some properties CCCDs in R that can be used

to define new PCDs in Rd for d > 2. CS proximity maps satisfy all these properties

in Rd that may potentially provide better estimations of the class supports than

PE proximity maps. Although the complexity of class covers based on this family

of proximity maps exponentially increases with dimensionality, we apply dimension

reduction methods (e.g. principal components analysis) to substantially reduce the

number of features and to reduce the dimensionality. Hence, based on the transformed

data sets in the reduced dimensions, the PCD (PE-PCD and CS-PCD) based hybrid
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and, in particular, cover classifiers become more appealing in terms of both prototype

selection and classification performance (in the reduced dimension). We use simulated

and real data sets to show that these two types of classifiers based on PCDs have either

comparable or slightly better classification performance than other classifiers when

the data sets exhibit the class imbalance problem.

5.2 PCD covers

We establish class covers with the PE proximity map NPE(·, r), CS proximity map

NCS(·, τ), and spherical proximity map NS(·). We define two types of class covers:

one type is called composite covers where we cover the points in Xj ∩CH(X1−j) with

either PE or CS proximity maps and the points in Xj \ CH(X1−j) with spherical

proximity maps, and the other is called standard cover incorporating either PE or CS

proximity maps for all points in Xj. We use these two types of covers to establish a

specific type of classifier that is more appealing in the sense of prototype selection.

Our composite covers are mixtures of simplicial and spherical proximity regions.

Specifically, given a set of simplices and a set of spheres, the composite cover is the

union of both these sets which constitute proximity regions of two separate PCD

families, hence the name composite cover. The Qj is partitioned into two: the cover

Q
(1)
j of points inside the convex hull of non-target class points, i.e., Xj∩CH(X1−j), and

the cover Q
(2)
j of points outside, i.e., Xj \CH(X1−j). Let Q

(1)
j := ∪x∈Xj∩CH(X1−j)NI(x)

and Q
(2)
j := ∪x∈Xj\CH(X1−j)NO(x) such that Qj := Q

(1)
j ∪Q(2)

j . Here, NI(·) and NO(·)
are proximity maps associated with sets Xj∩CH(X1−j) and Xj\CH(X1−j), respectively.

Hence, in composite covers, target class points inside CH(X1−j) are covered with PE

proximity map NI(·) = NPE(·, r) or CS proximity map NI(·) = NCS(·, τ), and the

remaining points are covered with spherical proximity map NO(·) = NS(·, θ). Given

the covers Q
(1)
j and Q

(2)
j , let C

(1)
j and C

(2)
j be the class covers with lower complexity

associated with the dominating sets S
(1)
j and S

(2)
j . Hence the composite cover is given
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by

Cj := C
(1)
j ∪ C(2)

j =

{ ⋃
s∈S(1)

j

NI(s)

}⋃{ ⋃
s∈S(2)

j

NO(s)

}
.

An illustration of the class covers C0 and C1 with NI(·) = NPE(·, r = 2) and NO(·) =

NS(·, θ = 1), and NI(·) = NCS(·, τ = 1) and NO(·) = NS(·, θ = 1) is given in

Figure 5.1(b) and (c).

By definition, the spherical proximity map NS(·, θ) yields class covers for all points

in Xj. Figure 5.1(a) illustrates the class covers of the map NS(·, θ = 1). We call such

covers, that only constitute a single type of proximity map, as standard covers. Hence

the standard cover of the PCD Dj is a union of d-simplices and d-polytopes:

Cj :=
⋃
s∈Sj

NPE(s, r).

Here, NI(·) = NO(·) = NPE(·, r) for standard covers with PE proximity maps and

NI(·) = NO(·) = NCS(·, τ). An illustration is given in Figure 5.1(d) and (e).

5.3 Classification with PCDs

The elements of Sj are prototypes, for the problem of modelling the class conditional

discriminant regions via a collection of proximity regions (balls, simplices, polytopes,

etc.). The sizes of these regions represent an estimate of the domain of influence,

which is the region in which a given prototype should influence the class labelling.

Our semi-parametric classifiers depends on the class covers given by these proximity

regions. We define various classifiers based on the class covers (composite or standard)

and some other classification methods. We approach classification of points in Rd in

two ways:

Hybrid classifiers: Given the class covers C
(1)
0 and C

(1)
1 associated with classes X0

and X1, we classify a given point z ∈ Rd with gP if z ∈ C(1)
0 ∪C(1)

1 , and with gA

otherwise. Here, gP is the pre-classifier and gA is an alternative classifier.
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(a) (b) (c)

(d) (e)

Figure 5.1: Class covers of a data set with two-class setting in R2 where grey and black
points represent points of two separate classes. The training data set is composed
of two classes X0 and X1 wherein 100 and 20 samples are drawn from multivariate
uniform distributions U([0, 1]2) and U([0.5, 1.5]2), respectively. Cover of one class
is given by solid circle and solid line segments, and the cover of the other is given
by dashed circle and dashed line segments. (a) Standard class covers with NI(·) =
NO(·) = NS(·, θ = 1) (b) Composite class cover with NI(·) = NPE(·, r = 2) and
NO(·) = NS(·, θ = 1) (c) Composite class cover with NI(·) = NCS(·, τ = 1) and
NO(·) = NS(·, θ = 1) (d) Standard class covers with NI(·) = NO(·) = NPE(·, r = 2)
(e) Standard class covers with NI(·) = NO(·) = NCS(·, τ = 1).

Cover classifiers: These classifiers are constructed by class covers only; that is, a

given point z ∈ Rd is classified as gC(z) = j if z ∈ Cj \ C1−j or if ρ(z, Cj) <

ρ(z, C1−j), hence class of the point z is estimated as j if z is only in cover Cj, or

closer to Cj than C1−j. Here, ρ(z, Cj) is a dissimilarity measure between point

z and the cover Cj. Cover classifiers depend on the types of covers which are
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either composite or standard covers.

We incorporate PE-PCDs and CS-PCDs for establishing both of these types of

classifiers. Hence, we will refer to them as hybrid PCD (PE-PCD or CS-PCD) and

cover PCD classifiers. Since the PE and CS proximity maps were originally defined

for points Xj ∩ CH(X1−j), we develop hybrid PCD classifiers to account for points

outside of the convex hull of the non-target class in a convenient fashion. However,

as we shall see later, cover PCD classifiers, especially the ones associated PE-PCDs,

have much more appealing properties than hybrid PE-PCD classifiers in terms of both

efficiency and classification performance. Nevertheless, we consider and compare both

types of classifiers, but first we define the PCD pre-classifier.

5.3.1 PCD Pre-classifier

Let ρ(z, C) be the dissimilarity measure between z and the class cover C. The PE-

PCD pre-classifier is given by

gP (z) :=


j if z ∈ C(1)

j \ C(1)
1−j for j = 0, 1

I(ρ(z, C
(1)
1 ) < ρ(z, C

(1)
0 )) if z ∈ C(1)

0 ∩ C(1)
1

−1 otherwise.

(5.1)

Here, I(·) is the indicator functional and gP (z) = −1 denotes a “no decision” case.

Given that class covers C
(1)
0 and C

(1)
1 are the unions of simplical (PE or CS) proximity

regions of points in dominating sets S
(1)
0 and S

(1)
1 , the closest cover is found by, first,

checking the proximity region of a cover closest to the point z:

ρ(z, C
(1)
j ) = min

s∈S(1)
j

ρ(z,N (s))

which is expressed based on a dissimilarity measure between a point z and the region

N (s). For such measures, we employ convex distance functions. Let H be a convex

set in Rd with center x ∈ H. The point x may be viewed as the center of the set H.

Thus, let the dissimilarity between z and H be defined by

ρ(z,H) :=
d(z, x)

d(t, x)
,
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(a) (b) (c)

Figure 5.2: Illustration of a convex distance between a a point z and an arbitrary (a)
convex set H, (b) ball and (c) 2-simplex in R2.

where d(·, ·) is the Euclidean distance and t is a point on the line L(x, z) := {x +

α(z − x) : α ∈ [0,∞)} such that t ∈ ∂(H), the boundary of the H. An illustration is

given in Figure 5.2 for several convex sets, including balls and simplices in R2.

For spherical proximity map NS(·, θ), the dissimilarity function is defined by the

radius of that ball which is a spherical proximity region: d(x, t) = εθ(x) (Priebe et al.,

2003a). However, for d-simplices, we characterize the dissimilarity measure in terms

of barycentric coordinates of z with respect to d-simplex S(x) = NPE(·, r) for PE

proximity maps and S(x) = NCS(·, τ) for CS proximity maps.

Proposition 5.3.1.1. Let {t1, t2, . . . , td+1} ⊂ Rd be a set of non-collinear points that

are the vertices of simplex S(x) = N (x) with the median MC(x) ∈ S(x)o. Then, for

z ∈ Rd and t ∈ ∂(S(x)),

ρ(z,S(x)) =
d(MC(x), z)

d(MC(x), t)
= 1− (d+ 1)w

(k)
S(x)(z),

where w
(k)
S(x)(z) being the k’th barycentric coordinate of z with respect to S(x). More-

over, ρ(z,S(x)) < 1 if z ∈ S(x)o and ρ(z,S(x)) ≥ 1 if z 6∈ S(x)o.

Proof: Let the line segment L(MC(x), z) and ∂(S(x)) cross at the point t ∈ fk for

fk being the face of S(x) opposite to tk. Thus, for αi ∈ (0, 1) and β ∈ (0, 1),

z = (1− β)MC(x) + βt = (1− β)MC(x) + β

(
d+1∑

i=1;i 6=k

αiti

)
.
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Here, note that β = d(MC(x), z)/d(MC(x), t) = ρ(z,S(x)). Also, since MC(x) is the

median,

z = (1− β)

∑d+1
i=1 ti
d+ 1

+ β

(
d+1∑

i=1;i 6=k

αiti

)
=

1− β
d+ 1

tk +
d+1∑

i=1;i 6=k

(
1− β
d+ 1

+ βαi

)
ti.

Hence (1− β)/(d + 1) = w
(k)
S(x)(z) which implies β = 1− (d + 1)w

(k)
S(x)(z). Therefore,

z ∈ S(x)o if and only if β = 1− (d+ 1)w
(k)
S(x)(z) < 1. �

For (convex) proximity regionsNPE(x, r) andNCS(x, τ), the dissimilarity measure

ρ(z,S(x)) indicates whether or not the point z is in THE proximity region, since

ρ(z,S(x)) < 1 if z ∈ NPE(x, r) and ≥ 1 otherwise. Hence, the PE-PCD pre-classifier

gP may simply be defined by

gP (z) :=

 I(ρ(z, C
(1)
1 ) < ρ(z, C

(1)
0 )) if z ∈ C(1)

0 ∪ C(1)
1

−1 otherwise
(5.2)

since z ∈ C
(1)
0 \ C(1)

1 if and only if ρ(z, C
(1)
0 ) < 1. Let ρ(z, x) := ρ(z,S(x)) be

the dissimilarity between x and z, then the dissimilarity measure ρ(·, ·) violates the

symmetry axiom of the metric since ρ(x, z) 6= ρ(z, x) whenever d(x, t(x)) 6= d(z, t(z))

where proximity regions N (x) and N (z) intersect with the lines L(MC(x), z) and

L(MC(z), x) at points t(x) and t(z), respectively.

5.3.2 Hybrid PE-PCD Classifiers

Constructing hybrid classifiers has many purposes. Some classifiers are designed to

solve harder classification problems by gathering many weak learning methods (often

known as ensemble classifiers) while some others have advantages only when combined

with another single classifier (Woźniak et al., 2014). Our hybrid classifiers are of the

latter type. The PCD pre-classifier gP is able to classify points in the overlapping

region of the class supports, i.e. s(F0) ∩ s(F1), however classifying the remaining

points in Rd requires incorporating an alternative classifier, often one that works for

all points Rd. We use the PCD pre-classifier gP (·) to classify all points of the test

data, and if no decision are made for some of these points, we classify them with the
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alternative classifier gA. Hence, let gH be the hybrid PCD classifier such that

gH(z) :=

 gP (z) if z ∈ C(1)
0 ∪ C(1)

1

gA(z) otherwise.
(5.3)

For “no decision” cases where gP (z) = −1, we rely on the alternative classifier gA; we

will use the k-nearest neighbor, SVM and CCCD classifiers as alternative classifiers.

The parameters are k, the number of closest neighbors to make a majority vote in

the k-NN classifier; γ, the scaling parameter of the radial basis function (RBF) kernel

of the SVM classifier; and θ, the parameter of the CCCD classifier that regulates the

size of each ball as described in Section 3.2.

Hybrid PCD classifiers depend on both the PCD pre-classifier gP and the alter-

native classifier gC . Therefore, we use some of the well known classification methods

in the literature to incorporate them as alternative classifiers. All these classifiers are

well defined for all points in Rd, so we use them when the PCD pre-classifier fails

to make a decision, i.e. gP (z) = −1. In addition to considering these classifiers as

alternative classifiers, we apply them to the entire training data set in our simulated

and real data studies to compare them with our hybrid classifiers as well.

5.3.3 Composite and Standard Cover PE-PCD Classifers

We propose PCD classifiers gC based on composite and standard covers. The classifier

gC is defined as

gC(z) := I(ρ(z, C1) < ρ(z, C0)). (5.4)

The cover is based on either composite covers or standard covers wherein both

Xj ⊂ Cj, hence a decision can be made without an alternative classifier. Note that

composite cover PE-PCD classifiers are, in fact, different types of hybrid classifiers

where the classifiers are only modelled by class covers but with multiple types of

PCDs. Compared to hybrid PCD classifiers, cover PCD classifiers have many appeal-

ing properties. Since a reduction is done over all target class points Xj, depending

on the percentage of reduction, classifying a new point z ∈ Rd is computationally
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faster and more efficient, whereas an alternative classifier might not provide such a

reduction. Note that, given the multi-class covers, the two-class cover PCD classifier

gC can be modified for the multi-class case as

g(z) = argmin
j∈J

ρ(z, Cj). (5.5)

5.3.4 Consistency Analysis

In this section, we prove some results on the consistency of both hybrid PCD classifiers

and cover PCD classifiers when two class conditional distributions are strictly δ-

seperable. For δ ∈ [0,∞), the regions A,B ⊂ Rd are δ-separable if and only if

inf
x∈A,y∈B

d(x, y) ≥ δ.

Moreover, let δ-separable regions A and B be the supports of continuous distributions

FA and FB, respectively. Hence, FA and FB are called δ-separable distributions, and

if δ > 0, strictly δ-separable (Devroye et al., 1996).

We first show the consistency of cover PCD classifiers, and then, we show that the

hybrid PCDs classifiers are also consistent. Cover classifiers are characterized by the

PCDs associated with proximity regions N (x) for x ∈ Rd, and thus, the consistency

of such PCD classifiers depend on the map N (·). We require the following properties

for a proximity map N (·) to satisfy:

P1 For all x ∈ Rd, the proximity region N (x) is an open set, and x is in the interior

of N (x).

P2 Given data sets from two classes X0 and X1 with distributions F0 and F1, and

supports s(F0) and s(F1), and given that x ∈ s(Fj) for j = 0, 1, the proximity

map N (·) associated with the target class Xj is a function on the non-target

class points such that N (x) ∩ X1−j = ∅.

Note that NS(·, θ) for θ ∈ (0, 1], NPE(·, r) for r ∈ (1,∞) and NCS(·, τ) for τ ∈
(0,∞) satisfy P1 and P2. These will be useful in showing that classifiers based
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on our class covers attain Bayes-optimal classification performance for δ-separable

classes. Thus, first, we have to show that the support of a class is almost surely a

subset of the class cover for sufficiently large data sets. Note that all points of the

target class reside inside the class cover Cj, i.e. Xj ⊂ Cj. Hence, we have the following

proposition.

Proposition 5.3.4.1. Let Zn = {Z1, Z2, . . . , Zn} be a set of i.i.d. random variables

drawn from a continuous distribution F whose support is s(F ) ⊆ Rd. Let the proximity

map N (·) satisfy P1, let the corresponding class cover of Zn be denoted as C(Zn)

such that Zn ⊂ C(Zn), and let C∗ := lim infn→∞C(Zn). Hence, we have s(F ) ⊂ C∗

w.p. 1 in the sense that λ(s(F ) \ C∗) → 0 almost surely where λ(·) is the Lebesgue

measure functional.

Proof: Suppose, for a contradiction, s(F ) 6⊂ C∗ w.p. 1. Hence, s(F ) \C∗ 6= ∅ w.p. 1

in such a way that λ(s(F )\C∗) > 0 w.p. 1 since λ(N (Z)) > 0 for all Z ∈ s(F ) by P1.

Hence, Zn ∩ (s(F ) \ C∗) 6= ∅ w.p. 1 as n→∞, but then some Z ∈ Zn ∩ (s(F ) \ C∗)
will not be in C∗, which contradicts the fact that C∗ covers Zn including Z. �

Proposition 5.3.4.1 shows that a class cover almost surely covers the support of

its associated class. However, to show consistency of classifiers based on PCD class

covers, we have to investigate the class covers under the assumption of separability

of class supports.

Let X0 and X1 be two classes of a data set with strictly δ-separable distributions,

the property P2 of the map N (·) establishes pure class covers that include none of

the points of the non-target class, i.e. Cj ∩ X1−j = ∅. In this case, we have the

following proposition showing that the intersection of the cover of the target class

and the support of the non-target class is almost surely empty as n1−j →∞.

Proposition 5.3.4.2. Let X0 = {X1, X2, . . . , Xn0} and X1 = {Y1, Y2, . . . , Yn1} be two

sets of i.i.d. random variables with strictly δ-separable continuous distributions F0

and F1. For j = 0, 1, let the proximity map N (·) satisfy P1 and P2 such that the

map N (·) of the target class is a function on the non-target class X1−j. Then, for
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j = 0, 1, we have C(Xj) ∩ s(F1−j) = ∅ almost surely as n1−j → ∞ in the sense that

λ(C(Xj) \ s(F1−j))→ 0 as n1−j →∞.

Proof: For j = 0, 1, note C(Xj) = ∪X∈SjN (X) for Sj ⊂ Xj being the minimum

prototype set of Xj. We prove the proposition for j = 0 (as the proof of case j = 1

follow by symmetry). Hence, it is sufficient to show that (given N (·) is a function

on X1) N (x) ∩ s(F1) = ∅ w.p. 1 as n1 = |X1| → ∞ for all x ∈ s(F0). Suppose for a

contradiction, λ(C(X0) \ s(F1)) > 0 w.p. 1 as n1 →∞. Then, there exists x ∈ s(F0)

such that N (x)∩ s(F1) 6= ∅ almost surely as n1 →∞. Then, the region N (x)∩ s(F1)

has positive measure. Therefore, some Y ∈ X1 will fall in to this region w.p. 1 as

n1 →∞. This contradicts P2 since Y ∈ N (x) ∩ s(F1) implies N (x) ∩ X1 6= ∅. �

Now, we would like to show that cover PCD classifiers are consistent when class

supports are strictly δ-separable; that is, the error rate of the cover classifier L(gC)

converges to the Bayes optimal error rate L∗, which is 0 for classes with δ-separable

supports, as n0, n1 →∞ (Devroye et al., 1996). Then, we have the following theorem.

Theorem 5.3.4.1. Suppose that the samples of the data set X0∪X1 are i.i.d. with dis-

tribution F = π0 F0 + (1−π0)F1 for π0 ∈ [0, 1], and let class conditional distributions

F0 and F1 are continuous with supports s(F0) and s(F1), being finite dimensional and

strictly δ-separable. Then the cover classifier gC is consistent; that is, L(gc)→ L∗ = 0

as n0, n1 →∞.

Proof: Let Zj be a random variable with distribution Fj for j = 0, 1. Then by

Propositions 5.3.4.1 and 5.3.4.2, we have P (Zj ∈ C(Xj)) → 1 as nj → ∞ and

P (Zj 6∈ C(X1−j))→ 1 as n1−j →∞. Hence,

P (Zj 6∈ C(Xj) and Zj ∈ C(X1−j))→ 0

as n0, n1 →∞. Then, for Cj = C(Xj),

L(gC) = P (gC(Z0) 6= 0)π0 + P (gC(Z1) 6= 1)π1

= P (Z0 6∈ C0 and Z0 ∈ C1)π0 + P (Z1 6∈ C1 and Z1 ∈ C0)π1.
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Hence, L(gC)→ 0 as n0, n1 →∞. �

As a corollary to Theorem 5.3.4.1, we have that classifier gC of standard and

composite covers with maps NS(·, θ) and NPE(·, r) for r > 1 are consistent. A special

case occurs when r = 1; that is, observe that x ∈ ∂(N (x)), and hence N (·) does not

satisfy P1.

We showed that a cover PCD classifier is consistent provided that, as n0, n1 →∞,

support of the target class is a subset of the class cover, and the PCD cover excludes

all points of the non-target class almost surely. However, to show that the hybrid

PCD classifiers are consistent, we need alternative classifiers which are consistent as

well.

Theorem 5.3.4.2. Suppose that the samples of data set X0 ∪ X1 are i.i.d. with dis-

tribution F = π0 F0 + (1−π0)F1 for π0 ∈ [0, 1], and let class conditional distributions

F0 and F1 are continuous with supports s(F0) and s(F1), being finite dimensional and

strictly δ-separable. Then the hybrid classifier gH is consistent provided that alterna-

tive classifier gA is also consistent.

Proof: Note that Cj = C
(1)
j ∪ C(2)

j and C
(1)
j ⊂ CH(X1−j). For j = 0, 1, let Zj ∼ Fj.

Also, let Υj be the event that Zj ∈ C(1)
0 ∪ C(1)

1 and let υj := P (Υj). Note that

L(gH) = P (gH(Z0) 6= 0)π0 + P (gH(Z1) 6= 1)π1.

Hence, for j = 0, 1;

P (gH(Zj) 6= j) = P (gH(Zj) 6= j|Υj)υj + P (gH(Zj) 6= j|Υc
j)(1− υj)

= P (gP (Zj) 6= j|Υj)υj + P (gA(Zj) 6= j|Υc
j)(1− υj).

As n0, n1 →∞, P (gP (Zj) 6= j|Υj)→ 0 by Theorem 5.3.4.1, and P (gA(Zj) 6= j)→ 0

since the classifier gA is consistent. Then the result follows. �

5.4 Monte Carlo Simulations and Experiments

In this section, we assess the classification performance of hybrid and cover PCD

classifiers. We perform simulation studies wherein observations of two classes are



100 Chapter 5: Prototype-based Classification with Proximity Catch Digraphs

drawn from separate distributions where X0 is a random sample from a multivariate

uniform distribution U([0, 1]d) and X1 is from U([ν, 1 + ν]d) for d = 2, 3, 5 with the

overlapping parameter ν ∈ [0, 1]. Here, ν determines the level of overlap between

the two class supports. We regulate ν in such a way that the overlapping ratio ζ is

fixed for all dimensions, i.e. ζ = Vol(s(F0)∩ s(F1))/Vol(s(F0)∪ s(F1)). When ζ = 0,

the supports are well separated, and when ζ = 1, the supports are identical: i.e.

s(F0) = s(F1). Hence, the closer the ζ to 1, the more the supports overlap. Observe

that ν ∈ [0, 1] can be expressed in terms of the overlapping ratio ζ and dimensionality

d:

ζ =
Vol(s(F0) ∩ s(F1))

Vol(s(F0) ∪ s(F1))
=

(1− ν)d

2− (1− ν)d
⇐⇒ ν = 1−

(
2ζ

1 + ζ

)1/d

. (5.6)

In this simulation study, we train the classifiers with n0 = 400 and n1 = qn0

with the imbalance level q = n1/n0 = {0.1, 0.5, 1.0} and overlapping ratio ζ = 0.5.

For values of q closer to zero, classes of the data set are more imbalanced. On each

replication, we form a test data with 100 random samples drawn from each of F0 and

F1, resulting a test data set of size 200. This setting is similar to a setting used in

Chapter 4, where we showed that CCCD classifiers are robust to imbalance in data

sets. We intend to show that the same robustness extends to PE-PCD and CS-PCD

classifiers. We use the area under curve (AUC) measure to evaluate the performance of

the classifiers on the imbalanced data sets (López et al., 2013). AUC measure is often

used on imbalanced real data classes. This measure has been shown to be better than

the correct classification rate in general (Huang and Ling, 2005). Using all classifiers,

at each replication, we record the AUC measures for the test data, and also, we record

the correct classification rates (CCRs) of each class of the test data separately. We

perform these replications until the standard errors of AUCs of all classifiers are below

0.0005. We refer to the CCRs of two classes as “CCR0” and “CCR1”, respectively.

We consider the expansion parameters r = 1, 1.2, . . . , 2.9, 3, 5, 7, 9 for the PE-PCD

classifiers, and τ = 0.1, 0.2, . . . , 1, 2, 5, 10 for the CS-PCD classifiers. Our hybrid

PE-PCD classifiers are referred as PE-SVM, PE-kNN and PE-CCCD classifiers with

alternative classifiers SVM, k-NN and CCCD, respectively. Similarly, our hybrid
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CS-PCD classifiers are referred to as CS-SVM, CS-kNN and CS-CCCD classifiers.

Before the main Monte Carlo simulation, we perform a preliminary (pilot) Monte

Carlo simulation study to determine the values of optimum parameters of SVM,

CCCD and k-NN classifiers. The same values will be used for alternative classifiers

as well. We train the gsvm, gcccd and gknn classifiers, and classify the test data sets for

each classifier to find the optimum parameters. We perform Monte Carlo replications

until the standard error of all AUCs are below 0.0005 and record which parameter

produced the maximum AUC among the set of all parameters in a trial. Specifically,

on each replication, we (i) classify the test data set with each θ value (ii) record the

θ values with maximum AUC and (iii) update the count of the recorded θ values.

Finally, given a set of counts associated with each θ value, we appoint the θ with the

maximum count as the θ∗, the optimum θ (or the best performing θ). Later, we use

θ∗ as the parameter of alternative classifier gcccd in our main simulations. Optimal

parameter selection process is similar for classifiers gknn and gsvm associated with the

parameters k and γ.

The optimum parameters of each simulation setting is listed in Table 5.1. We

consider parameters of SVM γ = 0.1, 0.2, . . . , 4.0, of CCCD θ = 0, 0.1, . . . , 1 (here, θ =

0 is actually equivalent to θ = ε, the machine epsilon), and of k-NN k = 1, 2, . . . , 30.

In Table 5.1, as q and d increases, optimal parameters γ and θ decrease whereas k

increases. In Chapter 4, we showed that dimensionality d may affect the imbalance

between classes when the supports overlap. Observe that in Table 5.1, with increasing

d, optimal parameters are more sensitive to the changes in imbalance level q. For the

CCCD classifier, θ = 1 is usually preferred when the data set is imbalanced, i.e.

q = 0.1 or q = 0.5. Bigger values of θ are better for the classification of imbalanced

data sets, since with θ = 1, the cover of the minority class is substantially bigger

which increases the domain influence of the points of the minority class. For θ closer

to 0, the class cover of the minority class is much smaller compared the class cover of

the majority class, and hence, the CCR1 is much smaller. Bigger values of parameter

k is also detrimental for imbalanced data sets, the bigger the parameter k, the more
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likely a new point is classified as class of the majority class since the points tend to

be labelled as the class of the majority of k neighboring points. As for the parameter

γ, support vectors have more influence over the domain as γ decreases (Wang et al.,

2003). Note that γ = 1/(2σ2) in the radial basis function (RBF) kernel. The smaller

the γ, the bigger the σ. Hence more points are classified as the majority class with

decreasing γ since the majority class has more influence. Thus, bigger values of γ is

better for the imbalanced data sets.

Table 5.1: Optimum parameters for SVM, CCCD and k-NN classifiers used in the
hybrid PE-PCD classifiers.

d q θ (CCCD) k (k-NN) γ (SVM)

2

0.1 1 1 3.8

0.5 1 1 4.0

1.0 0 3 0.1

3

0.1 1 1 2.3

0.5 1 1 0.4

1.0 0 4 0.2

5

0.1 1 1 0.9

0.5 1 4 0.3

1.0 1 10 0.1

Average of AUCs and CCRs of three hybrid PE-PCD classifiers are presented in

Figure 5.3. For q = 0.1, the classifier PE-kNN, for q = 0.5, the classifier PE-CCCD

and, for q = 1.0, the classifier PE-SVM performs better than others. Especially, when

the data set is imbalanced, the CCR1 determines the performance of a classifier; that

is, generally, the better a method classifies the minority class, the better the method

performs overall. When the data is balanced (i.e. q = 1), PE-SVM is expected to

perform well, however it is known that SVM classifiers are confounded by the imbal-

anced data sets (Akbani et al., 2004). Moreover, when q = 0.1, PE-kNN performs

better than PE-CCCD. The reason for this is hybrid PE-PCD classifiers incorporate
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alternative classifiers for points outside of the convex hull and kNN might perform

better for these points. The kNN classifier is prone to missclassify points closer to

the decision boundary when the data is imbalanced, and we expect points outside the

convex hull to be far away from the decision boundary in our simulation setting.

In Figure 5.3, CCR1 increases while CCR0 decreases for some settings of q and d,

and vice versa for some other settings. Recall that Theorem 3.5.1.2 shows a stochastic

ordering of the expansion parameter r; that is, with increasing r, there is an increase in

the probability of exact MDS being less than or equal to some κ = 1, . . . , d+1. Hence

with increasing r, the proximity region NPE(x, r) gets bigger and the cardinality of

the prototype set Sj gets lower. Therefore, we achieve a bigger cover of the minority

class and more reduction in the majority class. The bigger the cover, the higher the

CCR1 is in the imbalanced data sets. However, the decrease in the performance,

when r increases, may suggest that alternative classifiers perform better for these

settings. For example, the CCR1 of PE-SVM increases as r increases for q = 0.1, 0.5

and d = 2, 3, but CCR1 of PE-CCCD and PE-kNN decreases for r ≥ 1.6. The higher

the r, the more the reduction in data set. However, higher values of r may confound

the classification performance. Hence, we choose an optimum value of r. Observe

that for d = 5, the AUCs of all hybrid PE-PCD classifiers are equal for all r. With

increasing dimensionality, the probability that a point of the target class falling in

the convex hull of the non-target class decreases, hence most points remain outside

of the convex hull.

In Figure 5.4, we illustrate the AUC measures of hybrid CS-PCD classifiers. Ap-

parently, the τ values to do not change the performance when d = 5. Note that, with

increasing dimensionality, the probability of target class points residing in the convex

hull of non-target class points are quite slim. Hence, in hybrid CS-PCD classifiers,

CS-PCD pre-classifier makes a ”no decision” for almost all points which makes al-

ternative classifier to classify these points. However, for d = 2, 3, τ values between

0.1 and 1 perform similarly while higher values of τ , i.e. τ = 10, perform relatively

good for imbalanced data sets and for classifiers CS-kNN and CS-CCCD. Increas-
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Figure 5.3: AUCs and CCRs of the three hybrid PE-PCD classifiers versus expansion
parameter r = 1, 1.2, . . . , 2.9, 3, 5, 7, 9 and the alternative classifiers: CCCD, k-NN
and SVM. Here, the classes are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 +ν]d) with
several simulation settings based on ζ = 0.5 given the Equation 5.6, imbalance level
q = 0.1, 0.5, 1, and dimensionality d = 2, 3, 5.

ing the τ value from 5 to 10, we observe a sudden change in CCR0 AND CCR1 for

(d, q) = (2, 0.1) and (d, q) = (2, 0.5). However, the overall AUC increases with τ = 10.

Hence, the performance substantially increases while achieving more reduction in the

data set. This is due to the fact that, the bigger the τ value, the bigger the proximity

region, and hence the less the cardinality of the prototype set. The hybrid classifier

of CS proximity maps and SVM, i.e. CS-SVM, appears to perform worst when the

classes are imbalanced. When q = 0.1 and q = 0.5, CS-CCCD performs the best.

When a data set is has imbalanced classes, CCR of the minority class represent the

overall success of a classifier the best. Hence, looking at CCR1, we observe that CS-

kNN and CS-CCCD works better in imbalanced cases. Although it is known that the

performance of k-NN classifiers deteriorate with imbalanced classes, hybrid CS-PCD

classifiers works fine since k-NN is only used for points outside of the class cover of

CS proximity maps, where the data is not locally imbalanced.
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Figure 5.4: CCRs (CCRall, CCR0 and CCR1) of the three hybrid CS-PCD classifiers
given with proximity maps NCS(·, τ) and the alternative classifiers: CCCD, k-NN
and SVM. Here, the class are drawn as X0 ∼ U(0, 1)d and X1 ∼ U(ν, 1 + ν)d with
several simulation settings based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and
dimensionality d = 2, 3, 5. Classification performance for all expansion parameters
τ = 0.1, 0.2, . . . , 1, 2, 5, 10 is illustrated.

In Figure 5.5, we compare the composite cover PE-PCD classifier and the stan-

dard cover PE-PCD classifier. The standard cover is slightly better in classifying the

minority class, especially when there is imbalance between classes. In general, the

standard cover PE-PCD classifier appear to have more CCR1 than the composite

cover PE-PCD classifiers. However, the composite covers are better when d = 5. The

PE-PCD class covers are surely influenced by the increasing dimensionality. More-

over, for q = 0.1, 0.5, we see that the CCR1 of standard cover PE-PCD classifier

slightly decreases with r, even though the data set is more reduced with increasing r.

Hence, we should choose an optimum value of r that can still be incorporated to both

substantially reduce the data set and to achieve a good classification performance.

In Figure 5.6, we illustrate the AUC measures of the cover CS-PCD classifiers.

Lower values of τ for composite cover CS-PCD classifiers considerably perform better

than other classifiers. Classifiers with low τ has high CCR1 and low CCR0 which
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Figure 5.5: AUCs and CCRs of the two cover PE-PCD classifiers versus expansion
parameter r = 1, 1.2, . . . , 2.9, 3, 5, 7, 9 with composite and standard covers. Here, the
classes are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 + ν]d) with several simulation
settings based on ζ = 0.5 given the Equation 5.6, imbalance level q = 0.1, 0.5, 1, and
dimensionality d = 2, 3, 5.

indicates high classification performance for imbalanced data sets. The performance

of standard classifiers do not apparently change for τ values between 0.1 and 1, but

significantly change for τ = 2 and higher values. It appears higher τ values per-

forms better for imbalanced data sets, especially τ = 10. However, with increasing

dimensionality, composite cover CS-PCD classifiers become superior. This is of course

due to same reasons why hybrid CS-PCD classifiers degrade in performance. With

increasing d, convex hull of the non-target class gets sparse of target class points

exponentially fast.

In Figure 5.7, we compare all five classifiers, three hybrid and two cover PE-PCD

classifiers. We consider the expansion parameter r = 3 since, in both Figures 5.3

and 5.5, class covers with r = 3 perform well and, at the same time, substantially

reduce the data set. For all d = 2, 3, 5, it appears that all classifiers show comparable

performance when q = 1, but PE-SVM and SVM give slightly better results. However,
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Figure 5.6: CCRs (CCRall, CCR0 and CCR1) of the two cover CS-PCD classifiers
given with proximity maps NCS(·, τ) and with composite and standard covers. Here,
the class are drawn as X0 ∼ U(0, 1)d and X1 ∼ U(ν, 1 + ν)d with several simulation
settings based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5.
Classification performance for all expansion parameters τ = 0.1, 0.2, . . . , 1, 2, 5, 10 is
illustrated.

when there is imbalance in the data sets, the performances of PE-SVM and SVM

degrade, and hybrid and cover PE-PCD classifiers and CCCD classifiers have more

AUC values than others. Compared to all other classifiers, on the other hand, the

standard cover PE-PCD classifier is clearly the best performing one for d = 2, 3

and q = 0.1, 0.5. Observe that the standard cover PE-PCD classifier achieves the

highest CCR1 among all classifiers. Apparently, the standard cover constitutes the

most robust (to class imbalance) classifier. The performance of standard cover PE-

PCD classifier is usually comparable to the composite cover PE-PCD classifier, but

slightly better. However, for d = 5, the performance of standard cover PE-PCD

classifier degrades and composite cover PE-PCD classifiers usually perform better.

These results show that cover PE-PCD classifiers are more appealing than hybrid

PE-PCD classifiers. The reason for this is that the cover PE-PCD classifiers have

both good classification performance and reduce the data considerably more since
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Figure 5.7: AUCs and CCRs of the two cover, three hybrid PE-PCD classifiers with
expansion parameter r = 3, and k-NN, SVM and CCCD classifiers. The composite
covers are indicated with “comp.” and standard covers with “stan.”. Here, the classes
are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 + ν]d) with several simulation settings
based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5.

hybrid PE-PCD classifiers provide a data reduction for only Xj ∩ CH(X1−j) whereas

cover PE-PCD classifiers reduce the entire data set. The level of reduction, however,

may decrease as the dimensionality of the data set increases.

In Figure 5.8, we compare all five classifiers, three hybrid and two cover CS-PCD

classifiers. We consider the expansion parameter τ = 10 since, in both Figure 5.4

and 5.6, class covers with higher values of τ perform well and substantially reduce the

data set. Especially for d = 3, standard cover CS-PCD classifier with proximity map

NCS(·, τ = 10) perform slightly better than all other classifiers since this classifier

is more accurate on classifying the minority class. Hybrid and alternative classifiers

based on SVMs perform the worst, and its performance is followed by classifiers

based on k-NN and CCCD. However, cover CS-PCD classifiers perform the best.
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Figure 5.8: CCRs (CCRall, CCR0 and CCR1) of the two cover and three hybrid
CS-PCD classifiers given with composite and standard covers for proximity maps
NCS(·, τ = 10). Here, the class are drawn as X0 ∼ U(0, 1)d and X1 ∼ U(ν, 1 + ν)d

with several simulation settings based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and
dimensionality d = 2, 3, 5. Classification performance for all expansion parameters
τ = 0.1, 0.2, . . . , 1, 2, 5, 10 is illustrated.

The performance of standard cover CS-PCD classifier is usually comparable to the

composite cover CS-PCD classifier, but slightly more.

In Figure 5.9, we compare all five classifiers, three hybrid and two cover PE-PCD

classifiers in a slightly different simulation setting where there exists an inherent class

imbalance. We perform simulation studies wherein equal number of observations

n = n0 = n1 are drawn from separate distributions where X0 is a random sample

from a multivariate uniform distribution U([0, 1]d) and X1 is from U([0.3, 0.7]d) for

d = 2, 3, 5 and n = 50, 100, 200, 500. Observe that the support of one class in entirely

inside of the other, i.e. s(F1) ⊂ s(F1). The same simulation setting have been used

to highlight the robustness of CCCD classifiers to imbalanced data sets in Chapter 4.

In Figure 5.9, the performance of kNN and PE-kNN classifiers degrade as d increases
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Figure 5.9: AUCs and CCRs of the two cover, three hybrid PE-PCD classifiers with
expansion parameter r = 2.2, and k-NN, SVM and CCCD classifiers. The composite
covers are indicated with “comp.” and standard covers with “stan.”. Here, the classes
are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([0.3, 0.7]d) with several simulation settings
based on number of observarions n = 50, 100, 200, 500 and dimensionality d = 2, 3, 5.

and n decreases. With sufficiently high d and low n, the minority class X0 is sparsely

distributed around the overlapping region of class supports s(F1) ∩ s(F0) which is

the support of X1. Hence, although the number of observations are equal in both

classes, there exists a “local” imbalance between classses. However, CCCD and SVM

classifiers, including the associated hybrid PE-PCD classifiers perform fairly good.

Although the cover PE-PCD classifiers have considerably less CCR1, they perform

relatively good compared to other classifiers and generally have more CCR0 than

other classifiers. Similar to other simulation settings, cover PE-PCD classifiers are

also affected by the increasing dimensionality of this data set.

In Figure 5.10, we compare all five classifiers, three hybrid and two cover CS-PCD

classifiers in a slightly different simulation setting where there exists an inherent local
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class imbalance. We perform simulation studies wherein equal number of observations

n = n0 = n1 are drawn from separate distributions where X0 is a random sample

from a multivariate uniform distribution U([0, 1]d) and X1 is from U([0.3, 0.7]d) for

d = 2, 3, 5 and n = 50, 100, 200, 500. Observe that the support of one class in entirely

inside of the other, i.e. s(F1) ⊂ s(F1). Observe that the local imbalance is assumed to

occur around the region of overlap s(F1) = s(F1)∩ s(F0) where a deterioration in the

classification performance is presumably seen for sufficiently high d and low n. Hence,

in this setting the class X0 becomes the minority class with respect to the overlapping

region s(F1). In Figure 5.10, the performance of kNN and PE-kNN classifiers degrade

as d increases and n decreases. However, CCCD and SVM classifiers, including the

associated hybrid CS-PCD classifiers perform fairly good. Although the cover CS-

PCD classifiers have considerably less CCR1, they perform relatively good compared

to other classifiers and generally have more CCR0 (i.e. the CCR0 of the minority class)

than other classifiers. Similar to other simulation settings, cover CS-PCD classifiers

are also affected by the increasing dimensionality of this data set.

Although the PE-PCD based standard cover classifiers are competitive in classi-

fication performance, a case should be made on how much they reduce the data sets

during the training phase. In Figure 5.11, we illustrate the percentage of reduction

in the training data set, and separately, in both minority and majority classes, using

PE-PCD for r = 1, 2, 3. The overall reduction increases with r, which is also indicated

by Theorem 3.5.1.2, and the reduction in the majority class is much more than in mi-

nority class when q = 0.1, 0.5 since proximity regions of the majority class catch more

points unlike the minority class. The majority class is reduced over nearly %60 when

q = 0.1, and %40 when q = 0.5. Indeed, the more the imbalance between classes, the

more the reduction in the abundantly populated classes. On the other hand, as the

dimensionality increases, composite covers reduce the data set more than the stan-

dard covers. The number of the facets and simplices increases exponentially with d,

and hence the cardinality of MDS (or the prototype set) also increases exponentially

with d (see Theorem 3.5.1.4). As a result, composite PE-PCD covers achieve much
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Figure 5.10: AUCs and CCRs of the two cover, three hybrid CS-PCD classifiers with
expansion parameter τ = 10, and k-NN, SVM and CCCD classifiers. The composite
covers are indicated with “comp.” and standard covers with “stan.”. Here, the classes
are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([0.3, 0.7]d) with several simulation settings
based on number of observarions n = 50, 100, 200, 500 and dimensionality d = 2, 3, 5.

more reduction than standard PE-PCD covers.

In Figure 5.12, we plot the percentage of reduction in the training data set,

and separately, in both minority and majority classes, using the map NCS(·, τ) for

τ = 0.5, 1, 2, 10. The overall reduction increases with τ , and the reduction in the

majority class is much more then in minority class when q = 0.1, 0.5 since proximity

regions of the majority class catch more points unlike the minority class. The more

the imbalance between classes, the more the reduction in the abundantly populated

class. In Chapter 4, it has been showed that the class covers of the majority class

substantially reduce the number of observations of the majority class, balancing the

number of both classes. However, compared to composite covers, standard covers

provide almost no reduction to either minority or majority class. CS proximity maps
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Figure 5.11: The percentage of reduction of the composite (comp.) and standard
(stan.) PE-PCD covers. The “red.all” indicates the overall reduction in the training
data set, 1− (|S0 +S1|/(n0 +n1)), “red.0” the reduction in the X0 class, 1− (|S0|/n0),
and “red.1” the reduction in the X1 class, 1− (|S1|/n1). Here, the classes are drawn
as X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 + ν]d) with several simulation settings based on
ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5.

do not substantially reduce the data set, even though they may potentially provide

good estimations of the class supports.

5.5 Real Data Examples

In this section, we apply the hybrid and cover PCD (PE-PCD and CS-PCD) classifiers

on UCI and KEEL data sets (Alcalá-Fdez et al., 2011; Bache and Lichman, 2013).

We start with a trivial but a popular data set, iris. This data set is composed of

150 flowers classified into three types based on their petal and sepal lengths. Hence
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Figure 5.12: The percentage of reduction of the composite (comp.) and standard
(stan.) cover CS-PCD classifiers given with proximity maps NCS(·, τ). Here, the class
are drawn as X0 ∼ U(0, 1)d and X1 ∼ U(ν, 1 + ν)d with several simulation settings
based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5.

it constitutes a nice example for class covers of multi-class data sets. In Figure 5.13,

we illustrate standard and composite of PE-PCD covers, and CCCD covers of the

first and the third variables of iris data set, sepal and petal lengths. We refer to

this data set as iris13. Observe that in composite covers of Figure 5.13(c), only a

few or no triangles are used to cover the setosa and virginica classes. Points of these

classes are almost all outside of the convex hull of the versicolor class points, and

hence covered mostly by spherical proximity regions. However, the standard covers

of Figure 5.13(d) and (f) cover setosa and virginica classes with polygons since these

classes are in the outer triangles of the convex hull of the versicolor class. Here, the

polygons of CS-PCD covers appear to successfully estimate the class supports; that

is, proximity regions, or polygons, are central and covered by only two prototypes.

To test the difference between the AUC of classifiers, we employ the 5x2 paired
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setosa
versicolor
virginica

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Class covers of iris13 data set. (a) The data set with variables sepal
and petal length. (b) Standard covers with NS(·, θ = 1), (c) composite covers with
NI(·) = NPE(·, r = 1) and NO(·) = NS(·, θ = 1), (d) standard covers with NI(·) =
NO(·) = NPE(·, r = 1), (e) composite covers with NI(·) = NCS(·, τ = 1) and NO(·) =
NS(·, τ = 1) and (f) standard covers with NI(·) = NO(·) = NCS(·, τ = 1).
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cross validation (CV) paired t-test and the combined 5x2 CV F -test (Alpaydın, 1999;

Dietterich, 1998). Refer to Section 4.6 for a review and definition of the combined

5x2 CV F -test.

Recall that the number of prototypes increases exponentially with d as shown by

Theorem 3.5.1.4. Simulation studies in Section 5.4 also indicated that the dimension-

ality of a data set affects the classification performance. Hence, we apply dimension

reduction to mitigate the effects of dimensionality. We use principal component anal-

ysis (PCA) to extract the principal components with high variance. For iris, let us

incorporate the first two principal components with two highest variance. We refer

to this new data set with two variables as irispc2. The information on the four

variables of iris data set has projected onto two dimensions, and we expect that

standard cover PCD classifiers works better than that in iris data set.

We give the AUC measures of PE-PCD classifiers compared to other classifiers

on iris13, iris and irispc2 data set in Table 5.2 and the p-values of the 5x2

CV F -test in Table 5.3. All classifiers perform well in classifying all three iris data

sets. Although hybrid PE-PCD classifier (PE-kNN, PE-SVM and PE-CCCD) perform

comparable to other kNN, SVM and CCCD classifiers, they seem to perform slightly

better than the hybrid PE-PCD classifiers. Since iris data set and its variants

in Table 5.2 are well separated and the classes are balanced, it is not surprising

that kNN and SVM performs better. In iris13 data set, standard cover PE-PCD

classifier produces comparable AUC to other hybrid and cover PE-PCD classifiers. For

example, standard cover PE-PCD classifier has nearly 0.05 AUC less than PE-kNN

classifier in CV repetitions 1 and 3; but, on the other hand, 0.05 more AUC than PE-

kNN in repetition 5. However, in iris data set, standard cover PE-PCD classifier has

significantly much less AUC (about 0.1 AUC less) than other classifiers. Observe that

d = 2 in iris13 data set, but d = 4 in iris data set. Since the complexity of the class

cover increases with dimensionality, the class cover of the standard cover PE-PCD

classifier becomes less appealing. Although the composite cover PE-PCD classifier

has substantially more AUC than standard cover PE-PCD classifier for iris data set,
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it still performs worse than the CCCD classifier. However, in irispc2, observe that

AUC of the standard cover PE-PCD classifier has substantially increased compared

to that in iris data set. Obviously, the increase in the performance of standard cover

PE-PCD classifiers is a result of the low dimensionality. The lower the dimension, the

less the complexity of the class cover and the fewer the number of prototype sets, and

thus better the classification performance. Moreover, we also report on the optimum

parameters of all classifiers in Table 5.2. It appears that, in general, θ increases, and

k and γ decrease as expansion parameter r increases. As reviewed in Section 5.4, the

smaller the values of k and γ, the higher the values of θ and r.

We give the AUC measures of of CS-PCD classifiers compared to other classifiers

on iris13, iris and irispc2 data set in Table 5.4 and the p-values of the 5x2

CV F -test in Table 5.5. All classifiers perform considerably well in classifying the iris

data set. Hybrid CS-PCD classifiers perform slightly less than k-NN, SVM and CCCD

classifiers, although CS-CCCD classifier achieves 0.02 more AUC than CCCD classifier

in one fold. Although composite cover CS-PCD classifier performs comparably well,

standard CS-PCD classifier significantly underperforms; that is, no AUC value is

more than 0.85 while all other classifiers produce at least 0.90 AUC. In iris13 and

irispc2 data set, standard cover CS-PCD classifier performs comparable to other

classifier. The standard cover CS-PCD classifiers achieves even more AUC than other

classifiers in some folds, and therefore, there is no significant difference in the AUC

values, as seen in Table 5.3. Dimensionality of the data set shows a great deal of

importance; that is, the lower the dimensionality, the lower the complexity of the

standard cover, and hence the lower complexity of the associated CS-PCD classifier.

We observe that optimum τ values are ¿ 2. High τ values generate big proximity

regions around prototypes that have high domain of influence.

Cover PE-PCD classifiers perform better if the data has low dimensionality. Hence,

we reduce the dimensionality of data sets by means of say, PCA, and then classify the

data set with the cover PE-PCD classifiers trained over this data set in the reduced

dimension. The Ionosphere data set has 34 variables. We refer to the Ionosphere
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Table 5.2: AUC measures of the best performing (ones with their respective optimum
paramaters) hybrid and cover PE-PCD classifiers for three variants of both iris and
Ionosphere data sets.

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

Data Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2

opt. r = 2.8 k = 10 k = 10 r = 2.8 γ = 3.1 γ = 3.1 r = 2.8 θ = 0.1 θ = 0.1 r = 2.8 θ = 0.1 r = 2.8

iris13

1 0.95 0.97 0.93 0.97 0.95 0.90 0.96 0.90 0.92 0.96 0.92 0.96 0.95 0.92 0.92 0.92

2 0.88 0.96 0.92 0.99 0.88 0.96 0.92 0.99 0.85 0.96 0.89 0.96 0.89 0.97 0.87 0.94

3 0.96 0.86 0.99 0.93 0.96 0.86 1.00 0.95 0.96 0.86 0.99 0.89 0.97 0.88 0.95 0.90

4 0.91 0.96 0.96 0.96 0.92 0.93 0.96 0.93 0.88 0.96 0.93 0.96 0.92 0.96 0.91 0.95

5 0.96 0.88 0.95 0.93 0.91 0.88 0.87 0.92 0.96 0.88 0.92 0.89 0.95 0.88 0.93 0.91

opt. r = 2 k = 8 k = 8 r = 2 γ = 0.1 γ = 0.1 r = 2 θ = 0.6 θ = 0.6 r = 2 θ = 0.6 r = 2

iris

1 0.96 0.97 0.97 0.97 0.93 0.99 0.95 0.99 0.96 0.97 0.97 0.97 0.97 0.92 0.76 0.76

2 0.95 0.97 0.95 0.97 0.95 0.97 0.93 0.97 0.92 0.97 0.92 0.97 0.91 0.97 0.71 0.70

3 0.97 0.92 0.97 0.95 0.97 0.92 0.97 0.94 0.97 0.92 0.97 0.95 0.97 0.85 0.84 0.81

4 0.96 0.96 0.96 0.97 0.95 0.92 0.95 0.92 0.96 0.92 0.96 0.93 0.96 0.96 0.71 0.76

5 0.96 0.93 0.97 0.93 0.95 0.93 0.96 0.93 0.91 0.92 0.91 0.92 0.92 0.95 0.75 0.77

opt. r = 4 k = 3 k = 3 r = 4 γ = 0.8 γ = 0.8 r = 4 θ = 0.8 θ = 0.8 r = 4 θ = 0.8 r = 4

irispc2

1 0.94 0.89 0.97 0.99 0.94 0.86 0.97 0.96 0.94 0.89 0.96 0.97 0.93 0.91 0.87 0.89

2 0.92 0.93 0.95 0.97 0.92 0.92 0.92 0.96 0.92 0.93 0.95 0.97 0.92 0.96 0.93 0.89

3 0.90 0.95 0.96 0.96 0.90 0.95 0.96 0.96 0.90 0.93 0.97 0.96 0.95 0.95 0.91 0.95

4 0.88 0.96 0.94 0.96 0.88 0.93 0.92 0.93 0.88 0.96 0.94 0.97 0.95 0.96 0.95 0.95

5 0.97 0.90 0.97 0.95 0.97 0.90 0.99 0.95 0.95 0.90 0.95 0.95 0.93 0.93 0.91 0.93

opt. r = 1.3 k = 9 k = 9 r = 1.3 γ = 0.9 γ = 0.9 r = 1.3 θ = 0.1 θ = 0.1 r = 1.3 θ = 0.1 r = 1.3

Ionopc2

1 0.75 0.73 0.76 0.75 0.77 0.76 0.78 0.77 0.76 0.74 0.76 0.75 0.72 0.70 0.76 0.72

2 0.72 0.74 0.73 0.78 0.71 0.76 0.73 0.79 0.71 0.76 0.74 0.76 0.71 0.74 0.73 0.76

3 0.80 0.73 0.82 0.72 0.79 0.72 0.82 0.73 0.74 0.72 0.74 0.72 0.75 0.68 0.78 0.70

4 0.74 0.76 0.78 0.77 0.76 0.73 0.79 0.72 0.73 0.75 0.77 0.74 0.71 0.73 0.71 0.72

5 0.75 0.74 0.78 0.75 0.75 0.76 0.78 0.77 0.74 0.72 0.75 0.72 0.74 0.74 0.75 0.72

opt. r = 1.9 k = 6 k = 6 r = 1.9 γ = 2 γ = 2 r = 1.9 θ = 0.4 θ = 0.4 r = 1.9 θ = 0.4 r = 1.9

Ionopc3

1 0.87 0.83 0.88 0.84 0.88 0.82 0.89 0.82 0.86 0.80 0.86 0.80 0.86 0.81 0.88 0.80

2 0.81 0.83 0.81 0.85 0.83 0.82 0.84 0.83 0.81 0.83 0.83 0.83 0.84 0.79 0.81 0.80

3 0.83 0.81 0.84 0.81 0.82 0.86 0.84 0.86 0.81 0.84 0.83 0.83 0.85 0.84 0.83 0.84

4 0.79 0.86 0.80 0.87 0.86 0.86 0.86 0.86 0.83 0.84 0.84 0.84 0.84 0.84 0.80 0.83

5 0.81 0.81 0.84 0.81 0.80 0.80 0.83 0.80 0.82 0.78 0.84 0.79 0.80 0.80 0.81 0.78

opt. r = 1.9 k = 4 k = 4 r = 1.9 γ = 4 γ = 4 r = 1.9 θ = 0 θ = 0 r = 1.9 θ = 0 r = 1.9

Ionopc5

1 0.88 0.84 0.88 0.84 0.94 0.89 0.94 0.90 0.92 0.83 0.92 0.83 0.87 0.81 0.86 0.84

2 0.85 0.85 0.85 0.85 0.91 0.89 0.91 0.89 0.93 0.86 0.93 0.86 0.91 0.83 0.88 0.83

3 0.86 0.86 0.86 0.86 0.87 0.90 0.87 0.90 0.88 0.90 0.88 0.90 0.89 0.87 0.84 0.78

4 0.85 0.88 0.85 0.88 0.91 0.89 0.91 0.89 0.89 0.87 0.89 0.87 0.84 0.88 0.80 0.85

5 0.84 0.86 0.84 0.86 0.91 0.94 0.91 0.95 0.89 0.84 0.89 0.84 0.84 0.84 0.81 0.78

data set with two principal components of two highest variance as Ionopc2, and also,

with three principal components as Ionopc3, and with five as Ionopc5. We give the

AUC measures of all classifiers on these dimensionaly reduced Ionosphere data sets
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Table 5.3: The p-values of the 5x2 CV F test of AUC values in Figure 5.2. The
p-values below 0.1 are given in boldface.

iris13

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,315 0,442 0,404 0,454 0,690 0,389 0,526

kNN 0,227 0,498 0,251 0,545 0,439 0,506

PE-SVM 0,285 0,367 0,549 0,305 0,270

SVM 0,315 0,420 0,540 0,447

PE-CCCD 0,482 0,384 0,434

CCCD 0,780 0,719

Composite 0,656

iris

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,403 0,627 0,635 0,402 0,708 0,628 0,005

kNN 0,535 0,617 0,227 0,391 0,532 0,003

PE-SVM 0,433 0,350 0,641 0,706 0,020

SVM 0,120 0,309 0,576 0,014

PE-CCCD 0,389 0,756 0,010

CCCD 0,793 0,005

Composite 0,008

irispr2

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,219 0,535 0,307 0,535 0,327 0,628 0,695

kNN 0,184 0,205 0,122 0,386 0,066 0,081

PE-SVM 0,224 0,535 0,279 0,484 0,694

SVM 0,178 0,356 0,038 0,196

PE-CCCD 0,186 0,495 0,676

CCCD 0,133 0,117

Composite 0,535

Ionopr2

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,324 0,528 0,515 0,328 0,438 0,000 0,093

kNN 0,282 0,521 0,294 0,424 0,028 0,038

PE-SVM 0,398 0,439 0,435 0,045 0,343

SVM 0,419 0,434 0,137 0,301

PE-CCCD 0,589 0,130 0,574

CCCD 0,182 0,467

Composite 0,118

Ionopr3

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,430 0,638 0,507 0,727 0,693 0,655 0,656

kNN 0,672 0,620 0,542 0,594 0,631 0,479

PE-SVM 0,434 0,420 0,617 0,610 0,154

SVM 0,074 0,108 0,350 0,014

PE-CCCD 0,578 0,732 0,486

CCCD 0,659 0,282

Composite 0,584

Ionopr5

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0,500 0,022 0,020 0,548 0,548 0,618 0,223

kNN 0,022 0,020 0,548 0,548 0,618 0,223

PE-SVM 0,535 0,324 0,324 0,096 0,062

SVM 0,338 0,338 0,094 0,061

PE-CCCD 0,500 0,452 0,168

CCCD 0,452 0,168

Composite 0,076
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Table 5.4: AUC measures of the best performing (ones with their respective optimum
paramaters) hybrid and cover CS-PCD classifiers for three variants of both iris and
Ionosphere data sets.

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

Data Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2

opt. τ = 5 k = 10 k = 10 τ = 5 γ = 3.1 γ = 3.1 τ = 5 θ = 0.1 θ = 0.1 τ = 5 θ = 0.1 τ = 5

iris13

1 0.91 0.97 0.96 0.97 0.89 0.97 0.95 0.97 0.87 0.97 0.87 0.97 0.91 0.96 0.91 0.92

2 0.85 0.97 0.93 0.99 0.85 0.97 0.91 1.00 0.84 0.97 0.91 0.99 0.89 0.97 0.91 0.93

3 0.95 0.89 0.97 0.92 0.95 0.89 0.99 0.95 0.91 0.88 0.93 0.93 0.95 0.90 0.95 0.93

4 0.93 0.96 0.96 0.96 0.92 0.95 0.95 0.95 0.92 0.93 0.95 0.93 0.92 0.95 0.91 0.96

5 0.95 0.88 0.93 0.93 0.89 0.88 0.88 0.92 0.92 0.88 0.91 0.92 0.91 0.90 0.89 0.89

opt. τ = 10 k = 8 k = 8 τ = 10 γ = 0.1 γ = 0.1 τ = 10 θ = 0.6 θ = 0.6 τ = 10 θ = 0.6 τ = 10

iris

1 0.97 0.97 0.97 0.97 0.95 0.99 0.95 0.99 0.96 0.97 0.96 0.97 0.97 0.95 0.79 0.72

2 0.97 0.96 0.97 0.97 0.95 0.96 0.95 0.97 0.95 0.96 0.93 0.97 0.93 0.97 0.85 0.68

3 0.99 0.93 0.99 0.95 0.99 0.93 0.99 0.96 0.99 0.93 0.99 0.95 0.99 0.85 0.85 0.82

4 0.96 0.96 0.96 0.97 0.95 0.92 0.95 0.92 0.97 0.93 0.97 0.94 0.97 0.96 0.79 0.85

5 0.96 0.93 0.97 0.95 0.95 0.94 0.95 0.96 0.91 0.93 0.92 0.93 0.92 0.92 0.81 0.74

opt. τ = 10 k = 3 k = 3 τ = 10 γ = 0.8 γ = 0.8 τ = 10 θ = 0.8 θ = 0.8 τ = 10 θ = 0.8 τ = 10

irispc2

1 0.95 0.92 0.96 0.99 0.95 0.88 0.97 0.94 0.95 0.92 0.97 0.97 0.96 0.89 0.92 0.86

2 0.93 0.93 0.93 0.99 0.91 0.92 0.89 0.95 0.92 0.93 0.93 0.97 0.91 0.97 0.92 0.89

3 0.92 0.92 0.95 0.96 0.91 0.89 0.95 0.93 0.91 0.92 0.96 0.95 0.95 0.92 0.91 0.89

4 0.95 0.96 0.95 0.96 0.94 0.95 0.94 0.96 0.95 0.96 0.97 0.95 0.91 0.92 0.90 0.93

5 0.97 0.90 0.97 0.96 0.97 0.90 0.97 0.95 0.93 0.90 0.95 0.95 0.93 0.95 0.89 0.92

opt. τ = 2 k = 9 k = 9 τ = 2 γ = 0.9 γ = 0.9 τ = 2 θ = 0.1 θ = 0.1 τ = 2 θ = 0.1 τ = 2

Ionopc2

1 0.75 0.75 0.77 0.76 0.76 0.76 0.78 0.77 0.74 0.77 0.76 0.78 0.70 0.74 0.75 0.77

2 0.71 0.73 0.73 0.78 0.71 0.74 0.73 0.80 0.72 0.72 0.75 0.76 0.72 0.71 0.73 0.70

3 0.76 0.70 0.82 0.70 0.76 0.70 0.82 0.72 0.76 0.72 0.76 0.75 0.75 0.67 0.77 0.67

4 0.73 0.75 0.77 0.75 0.74 0.75 0.78 0.72 0.71 0.76 0.77 0.75 0.68 0.77 0.70 0.78

5 0.76 0.75 0.78 0.75 0.76 0.76 0.78 0.78 0.73 0.71 0.74 0.74 0.74 0.71 0.74 0.74

opt. τ = 10 k = 6 k = 6 τ = 10 γ = 2 γ = 2 τ = 10 θ = 0.4 θ = 0.4 τ = 10 θ = 0.4 τ = 10

Ionopc3

1 0.85 0.81 0.87 0.82 0.87 0.81 0.89 0.82 0.85 0.79 0.85 0.80 0.87 0.82 0.84 0.83

2 0.80 0.83 0.80 0.85 0.81 0.82 0.83 0.83 0.81 0.83 0.83 0.85 0.85 0.79 0.83 0.78

3 0.84 0.81 0.84 0.82 0.84 0.85 0.85 0.86 0.84 0.81 0.84 0.81 0.87 0.81 0.84 0.82

4 0.80 0.85 0.82 0.86 0.84 0.87 0.85 0.87 0.85 0.84 0.86 0.85 0.81 0.83 0.78 0.81

5 0.80 0.80 0.83 0.80 0.79 0.80 0.83 0.80 0.82 0.77 0.86 0.77 0.83 0.80 0.76 0.82

opt. τ = 10 k = 4 k = 4 τ = 10 γ = 4 γ = 4 τ = 10 θ = 0 θ = 0 τ = 10 θ = 0 τ = 10

Ionopc5

1 0.88 0.84 0.88 0.84 0.95 0.91 0.95 0.91 0.94 0.84 0.94 0.84 0.88 0.81 0.85 0.81

2 0.85 0.84 0.85 0.84 0.90 0.89 0.90 0.89 0.93 0.86 0.93 0.86 0.88 0.82 0.79 0.79

3 0.86 0.85 0.86 0.85 0.89 0.91 0.89 0.91 0.89 0.91 0.90 0.91 0.89 0.84 0.79 0.75

4 0.84 0.88 0.84 0.88 0.92 0.88 0.92 0.87 0.85 0.87 0.85 0.87 0.83 0.87 0.69 0.84

5 0.85 0.86 0.84 0.86 0.90 0.92 0.90 0.92 0.89 0.86 0.89 0.87 0.85 0.87 0.82 0.75

in Table 5.2 and the p-values of the 5x2 CV F -test in Table 5.3. In all three data

sets, SVM classifiers seem to have the highest AUC values. Hybrid PE-PCD clas-

sifiers perform slightly worse compared to their corresponding classifiers which are
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used as alternative classifiers. However, for Ionopc2 data set, both composite and

standard cover PE-PCD classifiers have comparable performance to other classifiers.

For Ionopc3 and Ionopc5, on the other hand, the AUC of composite and standard

cover PE-PCD classifiers relatively deteriorate compared to other classifiers. Although

PE-PCD classifiers have computationally tractable MDSs and potentially have com-

parable performance to those other classifiers, the high dimensionality of the data

sets are detrimental for these classifiers based on PE-PCD class covers.

In Table 5.6, we reduce the dimensionality and classify eleven KEEL and UCL

data sets with all classifiers. All data sets, except Yeast6, achieved maximum AUC

when reduced to two dimensions, and for these dimensionally low data sets, standard

cover PE-PCD classifiers perform, in general, comparable to other classifiers. Observe

that low dimensionality mitigates the effects on the complexity of the standard cover,

and hence, a relatively good classification performance is achieved. Hybrid PE-PCD

classifiers usually perform slightly worse then their alternative classifier counterparts.

However, the hybrid PE-PCD classifier PE-kNN increases the AUC of k-NN 0.01

AUC more.

For CS-PCD classifiers, the performance is substantially high in dimensions either

d = 2 and d = 3. In Segment0 and Wine data sets, other classifiers clearly achieve

more AUC than composite and standard cover CS-PCD classifiers. However, in all

data sets, except Yeast6, achieved maximum AUC when reduced to two dimensions,

and for these dimensionally low data sets, standard cover PE-PCD classifiers perform,

in general, comparable to other classifiers. Observe that low dimensionality mitigates

the effects on the complexity of the standard covers, and hence, a relatively good

classification performance is achieved. Hybrid CS-PCD classifiers usually perform

slightly worse then their alternative classifier counterparts. However, the hybrid CS-

PCD classifier PE-kNN increases the AUC of k-NN 0.01 AUC more.
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5.6 Conclusions and Discussion

We use PCDs to construct semi-parametric classifiers. These families of random ge-

ometric digraphs constitute class covers of a class of interest (i.e. the target class)

in order to generate decision-boundaries for classifiers. PCDs are generalized ver-

sions of CCCDs. For imbalanced data sets, CCCDs showed better performance than

some other commonly used classifiers in previous studies, as also showed in Chapter 4

(DeVinney et al., 2002). CCCDs are actually examples of PCDs with spherical prox-

imity maps. Our PCDs, however, are based on simplicial proximity maps, e.g. PE

proximity maps. Our PCD class covers are extended to be unions of simplicial and

polygonal regions whereas original PCD class covers were composed of only simplicial

regions. The most important advantage of these family of PE proximity maps is that

their respective digraphs, or namely PE-PCDs, have computationally tractable MDSs.

The class covers of such digraphs are minimum in complexity, offering maximum re-

duction of the entire data set with comparable and, potentially, better classification

performance. On the other hand, tractability of MDSs of CS-PCDs are still an open

problem.

The PE-PCDs and CS-PCDs are defined on the Delaunay tessellation of the non-

target class (i.e. the class not of interest). These PCDs, and associated proximity

maps, were only defined for the points inside of the convex hull of the non-target class,

CH(X1−j), in previous studies. Here, we introduce the outer simplices associated with

facets of CH(X1−j) and thus extend the definition of both PE and CS proximity maps

to these outer simplices. Hence, the class covers of PE-PCDs and CS-PCDs apply for

all points of the target class Xj. PE-PCDs and CS-PCDs are based on the regions

of simplices associated with the vertices and faces of these simplices, called M -vertex

regions and M -face regions, respectively. We characterize these vertex regions with

barycentric coordinates of target class points with respect to the vertices of the d-

simplices. However, the barycentric coordinates only apply for the target class points

inside the CH(X1−j). For those points outside the convex hull, we may incorporate the

generalized barycentric coordinates of, for example, Warren (1996). Such coordinate
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systems are convenient for locating points outside CH(X1−j) since outer simplices are

similar to convex d-polytopes even though they are unbounded. However, generalized

barycentric coordinates of the points with respect to these convex polytopes are not

unique. Hence, properties on MDSs and convex distance measures are not well-

defined.

PE-PCD class covers are low in complexity; that is, by finding the MDSs of these

PE-PCDs, we can construct class covers with minimum number of proximity regions.

The MDS, or the prototype set, is viewed as a reduced data set that potentially in-

creases the testing speed of a classifier. CCCDs have the same properties, but only for

data sets in R. By extending outer intervals, i.e. intervals with infinite end points, to

outer simplices in Rd for d > 1, we established classifiers having the same appealing

properties of CCCDs in R. The expansion parameter r of the PE proximity maps

substantially decreases the cardinality of the MDS, but the classification performance

decreases for very large r. Hence, an optimal choice of r value is in order. On the

other hand, the complexity of the prototype set increases exponentially with d, the

dimensionality of the data set. This fact is due to the Delaunay tessellation of the non-

target class since the number of simplices and facets increases exponentially on d (see

Theorem 3.5.1.4). Therefore, these class covers become inconvenient for modelling

the support of the class for high d. We employ dimensionality reduction, e.g. prin-

cipal components analysis, to mitigate the effects of the dimensionality. Hence, the

classification performance substantially increases with these dimensionally reduced

data sets as shown in Section 5.5. The Monte Carlo simulations and experiments

in Section 5.4 also indicate that PE-PCDs have good reduction percentage in lower

dimensions.

We define two types of classifiers based on PCDs, namely hybrid and cover PCD

classifiers. In hybrid PCD classifiers, alternative classifiers are used when PCD pre-

classifiers are unable to make a decision on a query point. These pre-classifiers are

only defined by the simplices provided in the Delaunay tessellation of the set X1−j,

hence only for target class points in CH(X1−j). We considered alternative classifiers
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k-NN, SVM and CCCD. The cover PCD classifiers, on the other hand, are based on

two types of covers: composite covers where the target class points inside and out-

side of the convex hull of the non-target class are covered with separate proximity

regions, and standard covers where all points are covered with regions based on the

same family of proximity maps. For composite covers, we consider a composition of

spherical proximity maps (used in CCCDs) and PE proximity maps. Results on both

hybrid and cover PCD classifiers indicate that when the dimensionality is low and

classes are imbalanced, standard cover PCD classifiers achieve either comparable or

slightly better classification performance than others. We show that these classifiers

are better in classifying the minority class in particular. This makes cover PCD clas-

sifiers appealing since they present slightly better performance than other classifiers

(including hybrid PCD classifiers) with a high reduction in the data set.

PE-PCDs offer classifiers of (exact) minimum complexity based on estimation of

the class supports. The MDSs are computationally tractable, and hence, the maxi-

mum reduction is achieved in polynomial time (on the size of the training data set).

This property of PE-PCDs, however, achieved by partitioning of Rd by Delaunay

tessellation, and as a result, the number of the simplices and facets of the convex

hull of the non-target class determines the complexity of the model which increases

exponentially fast with the dimensionality of the data set. Indeed, this leads to an

overfitting of the data set. We employ PCA to extract the features with the most

variation, and thus reduce the dimensions to mitigate the effects of dimensionality.

PCA, however, is one of the oldest dimensionality reduction method, and there are

many dimension reduction methods in the literature that may potentially increase the

classification performance of PCD classifiers. Moreover, PE-PCDs are one of many

family of PCDs using simplicial proximity maps investigated in Ceyhan (2010). Their

construction is also based on the Delaunay tessellations of the non-target class, and

similar to PE-PCDs, they enjoy some other properties of CCCDs in R, and they can

also be used to establish PCD classifiers. However, our work proves the idea that rela-

tively good performing classifiers with minimum prototype sets can be provided with
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PCDs based on partitioning schemes (e.g. Delaunay tessellations), but we believe an

alternative partitioning method, say for example a rectangular partitioning scheme,

that produces less partitioning than a Delaunay tessellation would be more appealing

for the class cover. Such schemes could also have computationally tractable MDSs.

Such classifiers and their classification performance are topics of ongoing research.
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Table 5.5: The p-values of the 5x2 CV F test of AUC values in Figure 5.4. The
p-values below 0.1 are given in bold font.

iris13

CS-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

PE-kNN 0.445 0.511 0.466 0.387 0.661 0.680 0.711

kNN 0.237 0.281 0.272 0.526 0.134 0.116

PE-SVM 0.245 0.409 0.470 0.464 0.778

SVM 0.244 0.424 0.219 0.360

PE-CCCD 0.318 0.506 0.699

CCCD 0.708 0.708

Composite 0.651

iris

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

CS-kNN 0.323 0.566 0.626 0.604 0.655 0.535 0.014

kNN 0.421 0.557 0.365 0.395 0.438 0.013

CS-SVM 0.535 0.366 0.433 0.501 0.038

SVM 0.207 0.154 0.468 0.040

CS-CCCD 0.684 0.590 0.043

CCCD 0.553 0.050

Composite 0.064

irispr2

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

CS-kNN 0.390 0.323 0.550 0.535 0.430 0.651 0.379

kNN 0.306 0.352 0.149 0.657 0.378 0.169

CS-SVM 0.301 0.489 0.264 0.517 0.578

SVM 0.196 0.369 0.194 0.188

CS-CCCD 0.130 0.438 0.296

CCCD 0.262 0.113

Composite 0.311

Ionopr2

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

CS-kNN 0.385 0.298 0.364 0.337 0.285 0.489 0.764

kNN 0.444 0.599 0.504 0.779 0.372 0.557

CS-SVM 0.361 0.379 0.323 0.452 0.758

SVM 0.473 0.651 0.414 0.558

CS-CCCD 0.392 0.268 0.646

CCCD 0.404 0.622

Composite 0.167

Ionopr3

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

CS-kNN 0.342 0.348 0.283 0.727 0.645 0.749 0.704

kNN 0.558 0.512 0.511 0.676 0.787 0.633

CS-SVM 0.335 0.663 0.676 0.648 0.394

SVM 0.202 0.507 0.558 0.388

CS-CCCD 0.318 0.570 0.654

CCCD 0.597 0.607

Composite 0.649

Ionopr5

CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

CS-kNN 0.535 0.061 0.089 0.301 0.236 0.714 0.114

kNN 0.055 0.082 0.315 0.245 0.693 0.133

CS-SVM 0.535 0.460 0.462 0.151 0.090

SVM 0.508 0.514 0.182 0.104

CS-CCCD 0.535 0.274 0.082

CCCD 0.177 0.075

Composite 0.154
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Table 5.6: Average of ten folds of 5x2 CV F -test AUC values of all classifiers on
eleven KEEL and UCL data sets. The symbol “*” indicate a difference with the AUC
of standard cover PCD classifier at significant level of 0.1, and “**” at level 0.05.
“PCd” indicates the number of principal components used.

Data PC d PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

iris 2 0,924 0,962* 0,918 0,952 0,920 0,959 0,939 0,918

Ionosphere 2 0,747* 0,763** 0,752 0,767 0,737 0,746 0,720 0,735

New-Thyroid1 2 0,962 0,965 0,947 0,950 0,960 0,963 0,966 0,963

New-Thyroid2 2 0,977 0,977 0,948 0,948 0,986 0,986 0,986 0,969

Segment0 3 0.740** 0.907** 0.896** 0.910** 0.858** 0.842** 0.752 0.745

Shuttle0vs4 2 0,995 0,995 1,000 1,000 0,998 0,998 0,998 0,997

Wine 2 0,974** 0,975** 0,971** 0,972** 0,965 0,965 0,955 0,950

Yeast4 2 0,579 0,588 0,555 0,504** 0,569 0,564 0,562 0,553

Yeast5 2 0,711 0,721 0,675 0,624 0,688 0,683 0,668 0,666

Yeast6 3 0,687* 0,676* 0,621 0,557 0,655 0,641 0,594 0,613

Yeast1289vs7 2 0,559 0,547 0,548 0,503 0,552 0,535 0,546 0,549

Data PC d CS-kNN kNN CS-SVM SVM CS-CCCD CCCD Composite Standard

iris 2 0.935 0.962 0.922 0.945 0.929 0.957 0.931 0.903

Ionosphere 3 0.819 0.831 0.830 0.843 0.821 0.832 0.828 0.811

New-Thyroid1 2 0.965 0.965 0.950 0.950 0.963 0.963 0.967 0.976

New-Thyroid2 2 0.977 0.977 0.948 0.948 0.986 0.986 0.986 0.973

Segment0 3 0.892** 0.908** 0.893** 0.907** 0.847** 0.842** 0.722 0.723

Shuttle0vs4 3 1.000 1.000 0.995 0.995 0.997 0.997 0.997 0.998

Wine 2 0.975** 0.975** 0.972** 0.972** 0.966 0.965 0.943 0.951

Yeast4 2 0.586 0.604 0.544 0.504 0.565 0.572 0.549 0.546

Yeast5 2 0.730 0.728 0.689 0.633 0.708 0.693 0.684 0.682

Yeast6 2 0.639 0.640 0.606 0.523 0.619 0.618 0.612 0.602

Yeast1289vs7 3 0.571* 0.563* 0.521 0.500 0.551 0.539 0.527 0.524

Data N d q = m/n k γ θ r τ

iris 150 4 2.00 3 0.8 0.8 4.0 10

Ionosphere 351 35 1.78 9 0.9 0.1 1.3 10

New-Thyroid1 215 5 5.14 5 2.5 1.0 2.5 0.2

New-Thyroid2 215 5 5.14 4 3.5 1.0 4.0 2.0

Segment0 2308 20 6.02 30 3.3 1 1.5 10

Shuttle0vs4 1829 10 13.87 1 0.1 0.2 1.1 0.8

Wine 178 13 2.00 24 1.0 0.4 1.4 0.8

Yeast4 1484 9 28.10 1 0.7 1.0 7.0 10

Yeast5 1484 9 32.70 6 2.5 1.0 1.0 10

Yeast6 1484 9 41.40 1 2.3 1.0 9.0 10

Yeast1289vs7 1484 9 30.70 1 4.0 0.3 4.0 10
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Chapter 6

PARAMETER-FREE CLUSTERING WITH CLUSTER

CATCH DIGRAPHS

6.1 Introduction

Clustering is one of the most challenging tasks in machine learning, and perhaps,

discovering the exact number of clusters of an unlabelled data set is the most impor-

tant problem. Many clustering methods find the clusters (or hidden classes) and the

number of these clusters simultaneously (Sajana et al., 2016). Although there exist

methods to validate and compare the quality of a partitioning of a data set, algorithms

that provides the (estimated) number of clusters without any input parameter are still

appealing. However, such methods or algorithms rely on other parameters viewed as

the intensity, i.e. expected number of objects in a unit area, of presumably existing

clusters. Choice of such parameters are often challenging since different values of such

parameters may drastically change the result. We use unsupervised adaptations of a

family of CCCDs, that showed relatively good performance in statistical classification

(Priebe et al., 2003a). Unsupervised versions of CCCDs are called cluster catch di-

graphs (CCDs). Primarily, CCDs use statistics that require an intensity parameter to

be specified. We approach this problem by incorporating spatial data analysis tools

that estimate the spatial intensity of regions in the domain. We propose algorithms

using Ripley’s K function with CCDs to establish density-based clustering methods

that find the optimal partitioning of unlabelled data sets, without the definition of

any priori parameter.

Clustering algorithms based on CCDs are, very similar to density-based clustering

methods, which can find the exact number of arbitrarily shaped cluster in a data
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sets (Sajana et al., 2016). Jarvis-Patrick method and DBSCAN are some of the first

density-based clustering methods (Ester et al., 1996; Jarvis and Patrick, 1973). How-

ever, all of these algorithms require prior domain knowledge on the spatial intensity

of the data set. We propose slight modifications to the existing CCD methods in

order to drop the necessity of knowing the intensity. We estimate the second-order

moments of a set of points in a domain, and tell whether the points are clustered.

Ripley (1977) introduced the K function to estimate the second-order moments and

introduced tests for clustering of the spatial data set. We combine Ripley’s K function

with the CCDs to successfully find clusters with no prior assumption on the intensity.

We show that our adaptations of CCDs do not require any domain knowledge (i.e. the

number of assumed clusters or the spatial intensity) and able to detect both spher-

ical and arbitrarily shaped clusters. Our algorithms are similar to some parameter

free clustering algorithms such as DBCLASS of Xu et al. (1998) and the graph-based

clustering algorithm of Streib and Davis (2011). However, they only demonstrated

the performance of their algorithm in two dimensional data sets, whereas we conduct

Monte Carlo and real life experiments on general family of data sets.

We introduce two clustering algorithms designed specifically for data sets with

either spherical shaped or arbitrarily shaped clusters. For data sets with spherical

shaped clusters, we use the approximate MDSs of the CCDs to locate possible clusters.

Our adaptations of CCDs successfully separate noise clusters from the true clusters;

however, we use cluster validity methods to decide which clusters are either true

clusters or noise clusters. Moreover, the cluster validity methods help choosing a

subset of the approximate MDS in such a way that the CCDs are efficient against

data sets with unimodal clusters. Hence, the method works considerably well for

data sets composed of either uniformly or normally distributed clusters. For data

sets with arbitrarily shaped clusters, we find the maximal disconnected components

of CCDs to locate the clusters of data sets. In both algorithms, the support of the

data set is estimated with a union of covering balls which allows us to explore possible

partitionings of data sets with different types of clusters. We conduct Monte Carlo
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simulations, as well as real data experiments, to show that the new CCDs improve

over the existing clustering methods based on CCDs, and to demonstrate that the

new CCDs perform comparable to the some existing methods in the literature while

being parameter free.

6.2 Data Clustering

Let (Ω,M) be a measurable space, and let X = {X1, X2, · · · , Xn} ⊂ Ω be a set of

Ω-valued random variables with distribution F and the support s(F ). Here, we as-

sume Xi is drawn from a finite mixture of distributions {F1, F2, · · · , FM}. Thus, let

Xi ∼ F :=
∑K

m=1 Fmπm for K being the number of components of F (i.e. the number

of clusters) and πm ∈ [0, 1] such that
∑

m πm = 1. The goal of a partitional clustering

algorithm is to divide the data set X into K̂, i.e. the estimate of K, number of disjoint

subsets P = {P1, P2, · · · , PK̂} where X = ∪K̂m=1Pm, and hence to minimize (or maxi-

mize) some objective function h(P) that gives the “best” or “optimal” partitioning.

Here, K̂ is either unknown or assumed prior to the partitioning. In reality, there is

no best partitioning (and thus no best function h) of a data set X since the objective

function h depends on the distribution F , and most importantly, on the user of the

algorithm. We review some of the most frequently used types of partitional clustering

algorithms for data sets with both spherical shaped and arbitrarily shaped clusters.

Prototype-based, graph-based and density-based clustering algorithms are some

of the most well known families of clustering algorithms available (Gan et al., 2007).

Prototype-based methods, for example the famous k-means algorithms, find an op-

timal partitioning of the data set assuming the number of clusters are exactly k.

Graph-based and density-based algorithms, however, group the objects to similar

clusters of a data set if either they are close to some high density regions of the do-

main or if they satisfy some similarity/dissimilarity relation. These methods mostly

rely on some parameter that determines the lowest density of a point that they could

be viewed as members of a cluster, which could be summarized as the spatial inten-

sity. The clustering methods we discuss in this chapter are hybrids of graph-based
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and density-based algorithms. We determine the regions of high density in a data set

by choosing the size and the location of the covering balls that are associated with

the potential cluster centers. Once the size (or the radius) of each ball is determined,

we establish geometric digraphs to find the clusters and their exact number simulta-

neously. We highlight the relation between our methods and other methods similar

to ours, thus demonstrate the advantages of our methods. Later, we briefly describe

some validity indices and methods for evaluating clustering algorithms. These indices

will be useful to locate and identify true clusters, and as well as noise clusters, in the

data set.

6.2.1 Algorithms for Spherical and Arbitrarily Shaped Clusters

The k-means algorithm is perhaps the most known and commonly used clustering

algorithm in the literature, even though it is simple and prone to errors for some

common types of data sets (Ball and Hall, 1965). Let the (estimated and presumed)

number of clusters k = K̂ be given. The objective function hk of the k-means algo-

rithm is defined as

hk(P) =
n∑
i

K̂∑
m

d2(Xi, µ(Pm)).

Here, d(·, ·) is the dissimilarity measure (e.g. Euclidean distance measure), and

µ(Pm) ∈ Rd is the center of the cluster Pm randomly given prior to the execution

of the algorithm. At each step, µ(Pm) is updated as the current center of mass of

all points in Pm, and the members of Pm as the collection of all closest points to

µ(Pm). This is repeated until no considerable change is observed in µ(Pm) for all

m = 1, · · · , K̂. There are many extensions of k-means such that each mitigates the

effects of some difficulties observed in real life data sets. One such algorithm is the

ISODATA where the number of clusters are initialized before the execution of the

algorithm; however, the clusters are merged or split during the run based on some

criteria (such as minimum number of points in a cluster or the minimum distance

between two clusters) (Ball and Hall, 1965). But ISODATA is sensitive to weakly
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separated compact clusters (i.e. clusters that are close to each other), and may merge

or split existing clusters, diverging from the optimal solution. Dunn (1973) intro-

duced two adaptations of k-means, known as fuzzy c-means, where the first is a fuzzy

version of ISODATA, and the latter is a completely novel fuzzy partitioning algorithm

with the objective function

hc(P) =
n∑
i

K̂∑
m

uqijd
2(Xi, µ(Pm)).

The objective function hc is slightly different than the function hk where uim denotes

the magnitude of membership of Xi in cluster Pm, and q > 1 is some parameter

to adjust fuzziness. Clustering methods with fuzzy membership functions are more

robust to weakly separated clusters; that is, they tend to converge to the optimal

clustering solution when clusters are substantially close to each other.

Clustering methods such as k-means perform relatively well if the clusters in a data

set are spherical and compact. However, all such algorithms requires to be initialized

with a prior knowledge on the number of clusters which may not be estimated or

guessed easily before the execution of the algorithm. In addition, these algorithms

satisfy a partitioning criteria which may not be suitable for data sets with arbitrarily

shaped clusters. These special types of data sets do not necessarily have centers.

Density-based methods are based on capturing the density around points, and hence

they estimate the true number of clusters (or latent classes). The Jarvis-Patrick

algorithm is one of the first methods of this kind to capture arbitrarily shaped and

non-arbitrarily shaped clusters (Jarvis and Patrick, 1973). The DBSCAN algorithm of

Ester et al. (1996), and the OPTICS algorithm of Ankerst et al. (1999) work in similar

fashion. Given two parameters, the radii ε and the minimum number of points MinPts

in the neighborhood of a point, the data set is divided into several types of points

wherein one set of points are called core points. The union of the neighborhoods

(i.e. the points within the radius ε) of core points constitutes the clusters. The

parameters ε and MinPts may change the result of the analysis drastically. Both of

these parameters represent the intensity of the spatial distribution of clusters we are
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looking for in a data set. Kernel-based clustering algorithms are often employed for

both estimating the true number of clusters and locating arbitrarily shaped clusters in

a data set. The intensity of a spatial distribution is provided by the width parameter

of the Gaussian kernel. One such algorithm is the pdfCluster where clustering depends

on the density estimation of the data sets via Delaunay triangulation (or Delaunay

tessellation in Rd for d > 2). Vertices of the triangulation, whose estimated pdf

is below a certain cut value are removed, and the remaining connected components

of the triangulation are set to be the clusters. A culmination of results from several

choices of cut values are analyzed to decide the final partitioning. The density around

each point is estimated with a kernel function Φ (mostly a Gaussian kernel with width

h) as follows: for y ∈ Rd,

f(y) =
n∑
i=1

1

nhi,1 · · ·hi,d

d∑
j=1

Φ

(
y −Xi,j

hi,j

)
.

where Xij and h1−j are the value and the kernel width, respectively, of j’th coordinate

of the random variable associated with the i’th observation.

6.2.2 Validation of the Clustering Algorithms

A partitioning P can be validated by a variety of indices. These families of indices

often divided into three major family of indices based on the criteria. These are

referred to as internal, external and relative criteria (Gan et al., 2007). Some existing

indices can be modified to be used as an index of either internal or external criteria.

These are Hubert’s Γ statistics and Goodman-Kruskal γ statistics. Moreover, Rand

statistic, Jaccard statistic and Folkes-Mallows index are used as indices of external;

and cophenetic correlation coefficient is used as an index of internal criteria. We focus

on the relative criteria since our algorithms are based on these family of indices.

Indices of relative criteria are only meaningful when several clustering algorithms

are to be compared. However, we use these indices to locate an appropriate subset

of our approximate MDSs which correspond to the true clusters. We will show that

relative indices are particularly appealing to find a set of distant and compact clusters
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in which both the true and noise clusters reside. Many indices of relative criteria

indicate or measure some relationship between inter-cluster distances (the distances

between the members of the same cluster) and intra-cluster distances (the distances

between the members of different clusters). A simple index based on this criteria

is the silhouette index (Gan et al., 2007). Given a certain partitioning of the data

set, the silhouette index measures how well a data set is clustered. Let the point Xi

appointed to the cluster Pm. Let a(i) be the average distance from Xi to all other

points of the same cluster Pm, and let b(i) be the distance to the closest cluster to the

point Xi where the distance between a cluster a point is given as the average distance

to all points in the cluster to the point Xi. Hence, for Xi being a member of the

cluster Pm,

a(i) :=
1

|Pm|
∑
Y ∈Pm

d(Xi, Y )

and

b(i) := min
i 6=m

1

|Pm|
∑
Y ∈Pm

d(Xi, Y ).

Thus, the silhouette sil(i) of the random variable Xi is denoted as

sil(i) :=
b(i)− a(i)

max{a(i), b(i)} .

Here, sil(i) indicates how well the point Xi clustered in Pm given the partitioning P .

An overall assessment of how well the entire data set is clustered can be given by the

average of silhouette of a partitioning, i.e. sil(P) =
∑

i sil(i)/n.

The maximum average silhouette is often employed to choose the best k, or K̂, in

k-means clustering method. The algorithm is executed for a set of different number

of clusters K̂, and the partitioning which produces the maximum average silhouette

is chosen to be the best clustering of the data set. Unlike methods such as k-means

where the number of clusters should be specified before execution, we will incorporate

this measure to choose a minimum subset of the MDSs of a digraph family to reveal

the true clusters. Hence, the algorithm is only executed once.
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6.3 Cluster Catch Digraphs

Cluster Catch Digraphs (CCDs) are unsupervised adaptations of CCCDs (Marchette,

2004). The definition of a CCD is similar to CCCDs; that is, a CCD is a digraph

D = (V ,A) such that V = X and, for u, v ∈ V , we have (u, v) ∈ A iff v ∈ B(u, r). In

CCCDs, however, each point X ∈ X is the center of covering ball B(X, r(X)) where

r(X) is a function on both the target and non-target classes. In CCDs, we do not

have (or know the existance of) a non-target class to determine the radius. Instead,

the objective is to locate, or catch, existing clusters around the point X, hence the

name cluster catch digraph. In CCDs, defined by DeVinney (2003), the radius r(X)

is determined by maximizing a Kolmogorov-Smirnov (K-S) based statistic. We have

r(X) := argmax
r∈{d(X,Z):Z∈X}

RW (X, r)− F0(X, r). (6.1)

Here, RW (X, r) is the random walk function proportional to the percentage of points

lying inside the covering ball B(X, r); i.e.

RW (X, r) =
∑
Z∈X

I(d(X,Z) < r) (6.2)

Here, I(·) is the indicator functional, and F0(X, r) is a function proportional to the null

distribution that the data set tested against; that is, the distribution assuming that

the points randomly fall inside the covering ball. A maximum value of RW (X, r) −
F0(X, r) on the radius r indicates that the points inside B(X, r) more likely constitute

cluster than a random collection of points. We take F0(X, r) = δrd for X ⊂ Rd but

other choices of the form of this function are also possible (Marchette, 2004). Here,

the null hypothesis assumes that the points are randomly fell in the covering ball,

then the density is proportional to the volume of the ball. However, the function

F0(X, r) depends on the parameter δ which represents the intensity of the assumed

(or tested against) homogeneous Poisson process. After we determine r(X) for all

X ∈ X , we construct the CCD, D, and find the approximate MDS.



Chapter 6: Parameter-Free Clustering with Cluster Catch Digraphs 137

6.3.1 Clustering with CCDs

Let X = {X1, X2, · · · , Xn} be a set of Rd-valued random variables with some dis-

tribution F and the support s(F ), and assume Xi is drawn from a finite mixture of

distributions. The objective is to find the number of these components (i.e. clusters),

as well as which component Xi is more likely drawn from. We estimate the number

of clusters K, denoted as the estimand K̂, and offer algorithms to partition the data

set into estimated number of disjoint sets. To do so, we use the lower complexity

covers to reveal the hidden clusters provided by the covering balls associated with

approximate MDSs.

Although the cover gives an estimate of some hidden class supports, each indi-

vidual ball may not be equivalent to an hidden class since CCD (similar to CCCDs)

are vector quantization methods, i.e. the support is modeled by a set of prototypes

(Marchette, 2004). We exploit some relationship between the set of covering balls and

prototypes to estimate possibly existing clusters. We assume that covering balls of the

same cluster are more likely to intersect each other as, by construction, their centers

would be closer to each other. Hence, MDSs, found by the Algorithm 2, are more ap-

pealing since the resulting covering balls are more likely to intersect than ones found

by the Algorithm 1. We consider two covering balls intersect if and only if the neigh-

borhoods of vertices in CCDs share at least one vertex. Let D = (V ,A) be a graph

such that, for v ∈ V , we define the neighborhood of v as N(v) := {u ∈ V : (v, u) ∈ A}.
Therefore, let the graph GMD = (VMD, EMD) be defined by VMD = SMD where, for

v ∈ VMD and for v, u ∈ VMD, we have (v, u) ∈ EMD if and only if N(v) ∩ N(u) 6= ∅.
Hence, the graph GMD is referred to as an intersection graph (Das et al., 1989). We

use S(GMD) to denote the MDS of GMD.

The more the data sets become noisy, the more we find spurious clusters. A

collection of noise in the data set may be misinterpreted as a member of separate

cluster, or two or more clusters may appear as a single cluster. Ben-David and

Haghtalab (2014) states that a clustering algorithm may become robust to noise;

that is, the noise clusters could be separated from the true clusters by increasing
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the presumed number of clusters before executing the algorithm. Hence, it is viewed

as the algorithm includes a “garbage collector”, a term to refer to a collection of

noise in the data set. We show that silhouette measure can separate noise clusters

and the true clusters with a similar fashion. We assume that the more cardinality the

covering have, the closer it is to the center. Starting from the two elements of S(GMD)

with most cardinality, we incrementally add points of S(GMD) to a set S until the

silhouette measure reaches to a maximum value. Here, S is the set of true cluster

centers. The reason for that is, the more the silhouette measure is, the better the

partitioning. If a maximum or substantially high silhouette measure is obtained, this

suggest that there is no need to add more clusters, and thus, the remaining clusters

are viewed potentially noise clusters.

We illustrate the cover of a data set with two clusters in Figure 6.1(a). Observe

that, some covering balls associated with SMD intersect each other, however there

seem to be two sets of covering balls that do not intersect one another. These two

sets of covering balls may represent seperate estimates of two class supports that

may be the clusters we are looking for. We illustrate the covering balls of S(GMD)

in Figure 6.1(b). Although the cardinality of the set SMD is seven; that is, the

MDS of CCD D has seven elements, two big covering balls are those with the most

cardinality. The centers of these two covering balls are elements of the MDS and they

are closely located at the center of the clusters. Finally, we illustrate the covering

balls of S(GMD) and S to demonstrate the use of silhouette measure in Figure 6.2.

The data sets have three normally distributed classes such that some points may have

realized as noise. The silhouette measure is maximized when the three most dense

covering balls added to the final set of MDSs that are the true clusters.

Some points in the data set, however, are not covered by any ball since no signif-

icant clustering have found around them, or some of them are neglected since they

were the members of the noise clusters. We set the radius r(X) = 0 for such points, so

they only cover themselves. To decide which clusters these uncovered points belong

to, we find the closest covering ball. Given a convex set H ⊂ Ω, for x ∈ H, we use
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(a) (b)

Figure 6.1: (a) Covering balls based on the points of the MDS SMD. The data set
is composed of two sets of the same size, n = 50 randomly drawn from distributions
F0 = U([0, 1]2) and F1 = U([2.5, 3.5]×[0, 1]). Here, the intensity parameter is δ = 0.2.
(b) Covering balls of S(GMD). Balls of dominating points of S(GMD) are given with
solid lines, and balls of points of SMD \ S(GMD) with dashed lines.

the distance function ρ(x, z) of the form

ρ(z,H) :=
d(z, x)

d(y, x)
. (6.3)

Here, y is the point of intersection of the line segment L(x, z) and the boundary

of the convex set ∂(H). Some illustration on the distance ρ(z,H) can be found in

Section 5.3.1.

We give the psuedo code of the CCD algorithm with K-S based statistics in Al-

gorithm 9. First, for all points of the data set, we choose the best radii r(X) by

maximizing the K-S statistics as in Equation 6.1. Later, we find the MDS, SMD,

which constitutes the estimates of the supports of possible hidden classes. Later, to

reveal cluster centers and the number of hidden classes, we construct the intersection

graph with the vertex set SMD, and find its own dominating set S(GMD). Finally,

we incrementally add more points of the S(GMD) to S until the silhouette measure

is maximized. The algorithm runs in O(n3) time when d < n.

Theorem 6.3.1.1. Let X ⊂ Rd be a data set with n = |X | observations. Algorithm 9

partitions the data set X in O(n3 + n2(d+ log n)) time.
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(a) (b)

Figure 6.2: Clustering of a data set with three normally distributed classes in R2 (a)
centers of clusters that are either the true or the noise clusters (b) the true clusters
which maximize the silhouette index.

Proof: In Algorithm 9, the matrix of distances between points of training set X
should be computed which takes O(n2d) time. For each iteration, the radius r(x)

that maximizes RW (x, r) − δrd could easily be computed by sorting the distances

from each x to all other points. This sorting takes O(n log n) time for each x ∈ X .

Also, the r(x) is found on linear time. Hence, the digraph D is computed in a total

of O(n2logn) time. Both Algorithm 2 and Algorithm 3 run in O(n2) time in the

worse case. Finally, to maximize the silhouette, for each added element of S(GMD),

we partition the data set and calculate the silhouette in O(n2) time, which makes

selection of silhouette take O(n3) time in the worst case. �

Here, the choice of the intensity parameter δ is of utmost importance; that is,

a variety of different results can be provided by CCDs with different values of δ.

Figure 6.3 illustrates the results for different values of the intensity parameter δ.

Observe that the best result is obtained by δ = 0.2; however, just a single cluster is

found with δ = 0.05 (no cluster, the data set is composed of only a single class or

drawn from a single distribution), three clusters are found with δ = 0.4, and three

small clusters have been found for δ = 0.6. Obviously, none of these δ values provide

the true result other than δ = 0.2. In the following section, we introduce another
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Algorithm 9 CCD clustering algorithm with K-S based statistics

Input: The data set X and the parameter δ ∈ R+

Output: The set of centers S and their corresponding radii

1: for all x ∈ X do

2: r(x) = argmaxr∈{d(x,z):z∈X}RW (x, r)− δrd.
3: end for

4: Construct D = (V ,A)

5: Find SMD with Algorithm 2

6: Construct GMD = (VMD, EMD)

7: Find S(GMD) with Algorithm 3 given sc(v) = |N(v)|
8: S ← ∅
9: for all s ∈ S(GMD) do

10: S ← S ∪ s
11: Let P be the partitioning provided by S

12: if sil(P) decrease then

13: break

14: end if

15: end for

family of CCDs that does not require any intensity parameter. Such digraphs can be

used to establish parameter free clustering methods.

6.3.2 CCDs with Ripley’s K function

We introduce an adaptation of CCDs employing Ripley’s K function instead of K-S

based statistics. In CCDs, the K-S statistics in Equation (6.1) is maximized over the

radius r(X) to find which radius achieves a covering ball with points inside clustered

the most. We will refer to this family of digraphs as KS-CCDs throughout this

chapter. K-S statistics does not test the relative distribution of data points inside

covering ball, and hence may misinterpret a collection of points from two clusters
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(a) δ = 0.05 (b) δ = 0.2

(c) δ = 0.4 (d) δ = 0.6

Figure 6.3: Results of Algorithm 9 with different choices of the intensity parameter
δ. Here, we consider δ = 0.05, 0.20, 0.40, 0.60. Covering balls of the set S(GMD) are
given with solid lines, and balls of the set SMD \ S(GMD) with dashed lines.

as a single cluster. On the other hand, tests based on the K̂ function, exploits the

second-order properties of a spatial distribution, and hence may potentially give a

better description of clustering. We use the K̂(t) function to test whether points

inside a ball (or a window) are from the same support or region inside has positive

density.

Here, we think of each ball B as a window that we test whether points inside the

ball are drawn from a homogeneous Poisson process with λ̂ = n/Vol(B) (i.e. complete

spatial randomness), where n is the size of the data set and Vol(B) is the area (or

volume) of the ball. Hence, we employ a spherical window that we use the translation

correction to mitigate the effects of bias resulted by the edges. Let the covering ball,
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or the window, B has radius R, and let SC(a,R) be the spherical cap with height a

of the d-sphere B (a sphere of dimension d). Hence, given the distance between the

pair z, z′ ∈ Rd denoted by ρ(z, z′), let the translation correction coefficient ϑ(z, z′) for

Equation (2.11) be defined as:

ϑ(z, z′) :=
Vol(B)

2 Vol(SC(a,R))
=

πd/2Rd

Γ( d
2

+1)

2π
(d−1)/2Rd

Γ( d+1
2

)

∫ arccos(
ρ(z,z′)

2R
)

0
sind(t)dt

. (6.4)

However, we achieved better performance ignoring the translation correction. The

test rejects the null hypothesis, if there are significantly empty regions or there is

sufficient evidence that clusters exists inside the ball. To reject the null, we do only

check if the observed curve is above the upper envelope to test for possible clustering.

if the curve of K̂(t) is below the lower curve of the envelope, the test for CSR rejected

and point pattern of the data is significantly regular. However, we are not interested

with regular spatial patterns at this point, since we only test if the balls are subsets

of the support of hidden classes (Ripley, 1977). Moreover, we choose a tmax, i.e. the

maximum value of distance t of K̂(t), as 1 which is the radius of the ball, or window,

B.

The envelopes are empirically computed given a set of Monte Carlo experiments on

a ball, or window, with some radius and center. However, similar to the Algorithm 9,

each time the radius of a ball centered on X is increased, we have to repeat the test,

and hence repeat the Monte Carlo experiment to compute envelopes. However, to

decrease the computation time of the test, we rely on the invariance property of the

K̂ function under linear transformation of random sequences whose support is a ball,

or the window, itself. The following theorem shows how a single set of Monte Carlo

experiments could be used for multiple covering balls.

Theorem 6.3.2.1. Let Z = {Z1, Z2, · · · , Zn} be a set of Rd-valued random variables

with support B(0d×1, 1) where B(0d×1, 1) ⊂ Rd is the hyperball with radius 1 and

centered on 0d×1. Also, let G be a group of transformation on Rd such that, for all

g ∈ G and x ∈ Rd, x′ = g(x) iff x′ := ax + b for some a ∈ R and b ∈ Rd. Therefore,

we have that the tests with K̂ function is invariant under the group G.
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Proof: For Z ∈ Z, define by Z ′ = g(Z) = aZ + b for some g ∈ G. Hence, Z ′ has

the support B(b, a). Now, let K̂(Z, B, t) denote the K̂(t) associated with the set Z
in window B, and let Z ′ = g(Z) := {g(Z) : Z ∈ Z}. Then,

K̂(Z, B(0d×1, 1), t) = K̂(Z ′, B(b, a), at)

since, for all x, y ∈ B(0d×1, 1), the statement d(x, y) < t is equivalent to d(g(x), g(y)) <

at. �

Theorem 6.3.2.1 shows that, regardless of the center or the radius of the ball

B(X, r(X)), K̂ value is the same for all X ∈ X if the distance t for the test is

scaled accordingly; that is, for all B(b, a) for some a ∈ R and b ∈ Rd there exists

an equivalent test for a ball B(0d×1, 1). This fact decreases the computation time

drastically such that the envelopes could be calculated. Algorithm 10 illustrates the

clustering algorithm that uses CCD adaptations with Ripley’s K function. We call

such digraphs R-CCDs. One difference of Algorithm 9 with the KS-CCD algorithm is

how the radii of the covering balls are chosen. Instead of looking at each possible ball

for all X ∈ X of the data set, we incrementally check the radii until the test for CSR

is rejected. Moreover, before the main loop, we simulate CSR data sets in B(0d×1, 1)

and calculate envelopes.

An illustration on how the method works and how the test rejects the CSR for a

given points X ∈ X is given in Figure 6.4. The last panel on the far right illustrates

a covering ball centered on a point from one class that encapsulates some points

from the other class. As seen from the L̂(t) − t below, the observed curve is above

the envelope for some values of t; that is, the distribution inside the covering ball

significantly deviates from CSR. Hence, we stop increasing the radius, and use the

previous radius as the radius of covering ball. After finding radii of all points on the

condition that the supports of clusters are sufficiently far away from each other, the

MDS of the intersection graph provides the clusters successfully. Although the gap

between the clusters are slightly wide, the test based on the function K̂(t) rejects

the hypothesis if the covering ball centered on some point x begins to cover regions

outside of its respective cluster. In Figure 6.4, the ball gets larger until it stumbles on
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Algorithm 10 CCD clustering algorithm using Ripley’s K function (R-CCD).

Input: The data set X
Output: The set of centers S and their corresponding radii

1: Calculate K̂(t) for all N number of data sets simulated in B(0d×1, 1)

2: for all x ∈ X do

3: D(x) := {d(x, y) : y ∈ X \ {x}}
4: for all r ∈ D(x) in ascending order do

5: Let B := B(x, r) and X ′ := X ∩B
6: r(x)← r

7: if test is rejected for X ′ then

8: break

9: end if

10: end for

11: end for

12: Construct D = (V ,A)

13: Find SMD with Algorithm 2

14: Construct GMD = (VMD, EMD)

15: Find S(GMD) with Algorithm 3 given sc(v) = |N(v)|
16: S ← ∅
17: for all s ∈ S(GMD) do

18: S ← S ∪ s
19: Let P be the partitioning provided by S

20: if sil(P) decrease then

21: break

22: end if

23: end for

a point from another cluster or if there are some empty or sparsely populated regions.

In Figure 6.5, we illustrate some example data sets in R2 of the results of R-CCDs.
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Figure 6.4: Four snapshots of the growing balls. Solid points are those inside the
covering ball (top). The envelopes of four snapshots plotting L̂(t)− t (y-axis) against
t (x-axis) where solid lines are L̂(t) − t curve of the data set and dashed lines are
envelopes provided by the Monte Carlo Simulation (bottom).

Ripley’s K function based CCDs successfully locate the true clusters of data sets with

3 or 14 clusters where each cluster is either uniformly distributed inside a unit box or

normally distributed.

Algorithm 10 works well against data sets with spherical shaped clusters. MDSs

are equivalent to the possible cluster centers whose balls have considerably high cardi-

nality. On the other hand, arbitrarily shaped clusters rarely have centers. These type

of data sets are often characterized not by their centers but by their shape. Hence, we

have to slightly revise Algorithm 10 to locate the arbitrarily shaped clusters. Instead

of finding the (approximate) MDS S(GMD) of the intersection graph GMD, we find

the number of connected components of GMD. The covering balls are subsets of the

hidden class supports where the union estimates the clusters we are looking for.

Algorithm 10 is an parameter free version of CCD clustering algorithm given in

Algorithm 9; however, R-CCDs are much slower than KS-CCDs in computation.

Theorem 6.3.2.2. Let X ⊂ Rd be a data set with n = |X | observations, and let N
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(a) (b)

(c) (d)

Figure 6.5: Four different settings with 3 or 14 classes, and the results of R-CCD
algorithm. Each covering ball represents a cluster. (a) Three class setting with
F1 = U([0, 1]2), F2 = U([3, 4] × [0, 1]) and F3 = U([0.5, 3.5] × [3, 4]). (b) Three class
setting with F1 = N(µ1, I2), F2 = N(µ2, I2) and F3 = N(µ3, I2) where µ1, µ2, µ3 ∈ R2

and I2 is the identity matrix of size 2. (c) 14 classes where each are uniformly
distributed in some square regions from R2 (d) 14 classes where each are normally
distributed in R2.

be the number of Monte Carlo replicants required for the confidence bands of K̂(t).

Algorithm 10 partition the data set X ⊂ Rd in O(n4 + n3N + n2d) time

Proof: Following Theorem 6.3.1.1, the only difference between Algorithm 9 and

Algorithm 10 is how r(x) is computed for each point x ∈ X . The distance matrix is

found in O(n2d) time. For sorted distances from x to all other points, we calculate
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the K̂(t) value of points inside each window B(x, r). This takes at worst O(n3) for

each x since, for each value r ∈ D(x), K̂(t) is calculated in O(n2) time. We calculate

the upper envelope before the main loop and that takes at most O(n3N) for N being

the number of simulated data sets, and the K̂(t) is calculated for each the data set

which takes O(n3) time. �

6.4 Monte Carlo Simulations and Experiments

In this section, we conduct series of Monte Carlo experiments to assess the per-

formance of R-CCDs, and other clustering algorithms; KS-CCDs, fuzzy c-means

(FCmeans), and pdfCluster (pdfC); on data sets with spherical clusters. In each

trial, for each method, we record the relative frequency of finding the correct num-

ber of the clusters, and if the correct number was found, we also record the AUC

measure. We use the area under curve (AUC) measure to evaluate the performance

of the classifiers on the imbalanced data sets (López et al., 2013). AUC measure is

often used on imbalanced real data classes (Huang and Ling, 2005). We report on the

number of successes each method achieves in 100 trials, and also report the average

AUC of successful trials (hence, we ignore the AUC of unsuccessful trials, which have

AUC measure of 0 and thus no contribution to overall AUC). We aim to only mea-

sure the AUC of successful trails in order to assess in what degree the true clusters

have been found. We investigate the performance of clustering methods on clustered

data sets with fixed centers, and with random cluster centers (generated by a Strauss

process), and on clustered data sets with noise. For each clustered data settings, we

consider K = 2, 3, 5 as the number of clusters, n = 30, 50, 100, 200 as the number of

observations from each cluster, and d = 2, 3, 5 as the dimensionality of the data set.

R-CCDs are parameter free clustering methods, and hence do not require any pa-

rameter to be specified. On the other hand, FCmeans method require specifying the

desired number of clusters K̂, and KS-CCD and pdfC methods require specifying the

spatial intensity parameters δ and h, respectively. We incorporate a set of parameters

for each method and report the parameters that perform the best. However, only for
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Table 6.1: Centers of the clusters used in Monte Carlo simulations.

Uniform Normal

d = 2 d = 3 d = 5 d = 2 d = 3 d = 5

K = 2
c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0) c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0)

c2 = (3, 0) c2 = (3, 0, 0) c2 = (3, 0, 0, 0, 0) c2 = (5, 0) c2 = (5, 0, 0) c2 = (5, 0, 0, 0, 0)

K = 3

c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0) c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0)

c2 = (3, 0) c2 = (3, 0, 0) c2 = (3, 0, 0, 0, 0) c2 = (5, 0) c2 = (5, 0, 0) c2 = (5, 0, 0, 0, 0)

c3 = (1.5, 2) c3 = (1.5, 2, 2) c3 = (1.5, 2, 2, 0, 0) c3 = (2, 4) c3 = (2, 3, 3) c3 = (2, 3, 3, 0, 0)

K = 5

c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0) c1 = (0, 0) c1 = (0, 0, 0) c1 = (0, 0, 0, 0, 0)

c2 = (3, 0) c2 = (3, 0, 0) c2 = (3, 0, 0, 0, 0) c2 = (5, 0) c2 = (5, 0, 0) c2 = (5, 0, 0, 0, 0)

c3 = (0, 3) c3 = (0, 3, 0) c3 = (0, 3, 0, 0, 0) c3 = (0, 5) c3 = (0, 5, 0) c3 = (0, 5, 0, 0, 0)

c4 = (3, 3) c4 = (3, 3, 0) c4 = (3, 3, 0, 0, 0) c4 = (5, 5) c4 = (5, 5, 0) c4 = (5, 5, 0, 0, 0)

c5 = (1.5, 6) c5 = (1.5, 1.5, 3) c5 = (1.5, 1.5, 3, 0, 0) c5 = (2.5, 10) c5 = (2.5, 2.5, 5) c5 = (2.5, 2.5, 5, 0, 0)

fuzzy c-means, we use the silhouette measure to choose a number of clusters that at-

tain the best partitioning, hence we select the partitioning that achieves the maximum

silhouette as the final partitioning. On the other hand, we report on the optimum

parameters of KS-CCD and pdfC methods to investigate the relation between the

intensity parameters and success rate of these methods. We choose k = 2, · · · , 10 for

fuzzy c-means, δ = 5, 5.05, 5.10, · · · , 15 for CCDs, and h = 0.5, 0.55, 0.60, · · · , 4 for

pdfC.

We start with simulation settings where simulated data sets have clusters with

fixed centers. These centers, corresponding to each simulation setting, are given in

Table 6.1. We conduct two separate experiments where in first, points of each cluster

are drawn uniformly from a unit box in Rd, and in second, points of each cluster are

normally distributed in Rd with variance Id which is an identity matrix of dimension

d = 2, 3, 5. As in Table 6.1, for dimensions d = 3, 5, we do only change cluster centers

in first two dimensions. Hence with increasing dimensionality, intra-cluster distance

do not change drastically but inter-cluster distances increase, hence we expect that it

would be harder to find the true clusters with increasing dimensionality.

In Table 6.2, we provide the relative frequency of success and the average AUC

measures on simulated data sets of settings from Table 6.1. For uniformly distributed
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clusters in d = 2, 3, the R-CCDs achieves nearly % 90 success in finding the true

number of clusters with almost 1.00 AUC. In these settings, low success rates are

observed only on cases where (K, n) = (3, 30) and (K, n) = (5, 30). The low num-

ber of observations in each cluster establishes data sets with low spatial intensity.

Therefore, the average inter-cluster distances are closer to intra-cluster distances that

makes it harder to distinguish existing clusters, hence results in a deterioration of

the performance of R-CCDs. However, especially FCmeans, all clustering methods

achieve slightly more success rates than R-CCDs. For uniformly distributed clusters in

d = 2, 3, pdfC performs relatively the worse with 52% success rate in (K, n) = (2, 30)

but in all other cases, achieve nearly or above 90% success rate. The optimum param-

eters of KS-CCDs and pdfCs are nearly 5.00 and 1.00, respectively, although there is

a slight decrease in both parameters with increasing number of clusters K. For the

settings with d = 5 however, R-CCDs perform much better than both KS-CCD and

pdfCs, even though FCmeans still achieves 100% success rate in all settings includ-

ing the ones with d = 5. Although FCmeans achieves the best performance among

all methods, R-CCDs relatively perform well given that no parameters were to be

introduced.

Almost in all settings, all clustering methods, especially R-CCDs, achieve nearly

1.00 AUC, but both KS-CCDs and pdfC have considerably less AUC than other

methods for d = 5. R-CCDs and FCmeans perform relatively well although the

performance of KS-CCDs and pdfC degrade with increasing dimensionality. For d = 5

and K = 3, 5, because of the relationship between average inter-cluster distances and

intra-cluster distances, we observe a decrease in the success rate. Other clustering

methods show slightly better results than R-CCDs in d = 2, 3 but these methods

required apriori parameters to achieve such high rates. Nevertheless, R-CCDs show

relatively good performance despite the lack of any parameters. In settings with

higher dimensions and higher number of clusters, the success rate of R-CCD decrease

slightly but it still shows comparably great performance. When there are few number

of observations and clusters being relatively close to each other, it is in fact harder
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to detect the clusters. The smaller the inter-cluster distances, the easier for CCDs to

catch the true clusters.

Compared to all other clustering methods, R-CCD shows promising results, even

though no assumptions on any parameter is made. The covering balls test the data set

against CSR, it also works well with normally distributed clusters. With increasing

number of observations, R-CCDs achieve nearly 80% success rate in finding the true

normally distributed clusters for settings with d = 2. The reason for that is, once a

covering ball grows closer to the center of one normally distributed cluster, it detects

some locally homogeneous Poisson process, and keep growing until reaches some region

of low density, i.e. a region with less intensity, which eventually make the test reject

the null hypothesis. However, the greedy algorithm is able to detect these balls with

high density which are more likely the centers of the normally distributed clusters. In

summary, although R-CCDs test against locally CSR regions to find possible clusters,

it works well for clusters with heterogeneous intensity which are unimodal (clusters

with points distributed around a center).

The performance of a clustering method depends on both the intra-cluster and

inter-cluster distances of several clusters in a data set. In some cases, although the

data set is sampled from a mixed distribution, the samples from two or more clusters

may be close to each other such that two or more clusters are estimated as a single

cluster. We aim to investigate the performance of R-CCDs when clusters are forced to

be distant. Therefore, we simulate data sets such that the parent distribution of the

mixed distribution (the distribution of the cluster centers) is a Strauss Process. In this

model, we generate cluster centers in a unit box of Rd that are at least t ∈ R+ apart

from each other (by fixing β = 0 in the Strauss Process). We conduct two separate

experiments where in first, each cluster is uniformly distributed in some square box

from Rd, where t = (2 + θ)r and 2r being the range of the uniform distribution in all

dimensions. And in second, each cluster is normally distributed with Σ = Id×d(r/5),

where t = (2 + θ)r. Here, we fix θ = 0.3 and r = 0.15. Hence, we aim to investigate

how well R-CCDs capture possible clusters compared to other methods when some
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Table 6.2: Success rates and optimum parameters of all clustering methods where
centers of clusters listed as in Table 6.1.

Success Rate param

d = 2 d = 3 d = 5 d = 2 d = 3 d = 5

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC δ h δ h δ h

Unif

2 30 81 100 100 75 99 96 100 52 97 70 100 45 5.20 1.30 5.05 1.00 5.00 0.50

2 50 100 100 100 87 97 99 100 56 94 68 100 52 5.20 1.45 5.10 1.25 5.00 0.70

2 100 98 100 100 95 92 100 100 70 84 81 100 59 5.20 1.65 5.10 1.35 5.00 0.90

2 200 96 100 100 98 89 100 100 83 87 92 100 50 5.20 1.90 5.10 1.65 5.00 1.05

3 30 20 61 99 90 96 91 100 94 95 30 100 20 5.15 0.95 5.05 1.10 5.35 0.80

3 50 46 68 100 97 98 91 100 100 93 27 100 41 5.15 1.15 5.05 1.00 5.00 0.50

3 100 99 78 100 97 98 95 100 100 40 27 100 53 5.15 1.15 5.05 1.05 5.00 0.95

3 200 93 85 100 100 86 96 100 100 55 30 100 75 5.15 1.25 5.05 1.05 5.00 1.20

5 30 83 99 100 97 91 81 100 90 90 20 100 1 5.05 0.85 5.00 0.90 5.30 0.50

5 50 95 100 100 99 96 95 100 100 91 18 100 13 5.05 1.00 5.00 1.05 5.50 0.55

5 100 81 100 100 100 92 100 100 100 57 16 100 37 5.05 0.90 5.00 0.95 5.85 0.65

5 200 79 100 100 100 80 20 100 100 32 6 100 40 5.05 1.05 7.20 0.95 5.50 0.95

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC δ h δ h δ h

Normal

2 30 95 97 100 96 100 88 100 63 94 26 100 34 5.05 1.10 5.00 0.95 5.00 0.50

2 50 94 93 100 100 93 93 100 81 99 30 100 43 5.05 1.30 5.00 1.05 5.00 0.50

2 100 88 91 100 100 85 88 100 95 73 27 100 55 5.10 1.25 5.00 1.15 5.10 0.60

2 200 71 93 100 100 70 86 100 100 62 22 100 61 5.10 1.25 5.00 1.35 5.20 0.75

3 30 48 79 100 100 75 56 100 98 70 18 100 9 5.05 0.85 5.00 0.95 5.00 0.60

3 50 58 81 100 100 80 61 100 100 84 20 100 44 5.05 0.75 5.00 1.05 5.00 0.55

3 100 68 82 100 100 71 47 100 100 57 22 100 66 5.05 0.75 5.00 0.80 5.10 0.70

3 200 70 66 100 100 73 55 100 100 49 27 100 91 5.05 0.75 5.00 0.80 5.25 1.05

5 30 46 75 100 99 56 19 100 99 67 2 100 1 5.00 0.75 5.20 0.75 5.00 0.70

5 50 70 70 100 100 75 21 100 100 81 14 100 15 5.00 0.70 5.40 1.00 5.00 0.50

5 100 73 76 100 0 57 18 100 100 54 22 100 41 5.00 0.00 5.75 0.90 5.05 0.50

5 200 62 13 100 100 62 17 100 100 49 18 100 74 5.05 0.60 6.95 0.70 5.10 0.90

clusters are relatively close to each other.

The relative frequency of success have been given in Table 6.4. We omit reporting

the AUC measures since all methods achieve almost 1.00 AUC. Compared to our

previous simulation studies (see Table 6.2), some clusters are quite distant from each

other. Hence, even in higher dimensions, R-CCDs achieve nearly and above 80% per-

cent success rate in finding the true number of clusters both in uniform and normally

clustered data sets. With increasing K however, clusters are less distant from each

other, and thus, success rate degrades. Also, with decreasing n and increasing K,

the performance of R-CCDs deteriorate. FCmeans and pdfC methods achieve con-

siderably more performance, however their performance also degrade with increasing

dimensionality and number of clusters. Unlike the results in Table 6.2, FCmeans

achieves nearly %60 success rate, however R-CCDs even exceed the success rates of

FCmeans in some cases. Optimum parameters of both KS-CCDs and pdfCs, decrease
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Table 6.3: AUC measures of all clustering methods given in Figure 6.2.

d = 2 d = 3 d = 5

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC

Uniform

2 30 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.89 0.99 1.00 1.00 0.70

2 50 0.99 1.00 1.00 0.98 1.00 1.00 1.00 0.95 0.99 1.00 1.00 0.72

2 100 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.74

2 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.84

3 30 0.94 0.96 0.99 0.97 0.99 1.00 1.00 1.00 0.98 0.76 1.00 0.84

3 50 0.93 0.96 0.99 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.63

3 100 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.91

3 200 0.99 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

5 30 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.97 0.69 1.00 0.60

5 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.71 1.00 0.59

5 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 1.00 0.68

5 200 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.61 1.00 0.00

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC

Normal

2 30 0.97 0.99 0.99 0.99 0.98 0.99 0.99 0.95 0.98 0.94 0.99 0.71

2 50 0.98 0.99 1.00 0.99 0.98 0.99 0.99 0.97 0.98 0.97 0.99 0.73

2 100 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.96 0.99 0.71

2 200 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.83

3 30 0.94 0.98 0.98 0.98 0.96 0.98 0.99 0.98 0.95 0.78 0.99 0.79

3 50 0.95 0.98 0.98 0.98 0.97 0.98 0.99 0.98 0.96 0.76 0.98 0.75

3 100 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.77 0.99 0.89

3 200 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.97 0.74 0.99 0.98

5 30 0.94 0.98 0.99 0.99 0.95 0.67 0.99 0.98 0.95 0.50 0.99 0.61

5 50 0.97 0.98 0.99 0.99 0.97 0.67 0.99 0.99 0.96 0.68 0.99 0.73

5 100 0.98 0.99 0.99 0.00 0.98 0.68 0.99 0.99 0.97 0.62 0.99 0.70

5 200 0.98 0.65 0.99 0.99 0.98 0.68 0.99 0.99 0.97 0.68 0.99 0.95

with number of clusters, but are usually around δ = 15 and h = 1, respectively,

for increasing number of dimensions. Although normally distributed clusters are lo-

cated much harder than uniformly distributed clusters (since covering balls are tested

against null hypothesis of data sets being CSR), R-CCDs locate the true clusters with

considerably high success rate.

The settings, of which we illustrated the performance in Figure 6.4, were free of any

noise in the data set. Even though a particular data set is noise free, with increasing

dimensionality, some points in the domain could be viewed as noise due to the sparsity

of the data set. Clustering in higher dimensions is often challenging, especially for

density-based clustering methods. Our algorithms use the silhouette measure to clean



154 Chapter 6: Parameter-Free Clustering with Cluster Catch Digraphs

Table 6.4: Success rates and optimum parameters of all clustering methods where
cluster centers are drawn from a Strauss process. AUC measures are all above 0,99,
hence omitted.

Success param

d = 2 d = 3 d = 5 d = 2 d = 3 d = 5

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC δ h δ h δ h

Unif

2 30 95 100 100 96 99 83 100 91 99 82 100 65 11.95 1.30 14.80 1.20 13.50 0.85

2 50 99 99 100 97 100 82 100 92 100 79 100 85 11.70 1.35 14.55 1.35 14.80 1.00

2 100 99 100 100 99 100 68 100 98 100 79 100 96 12.55 1.75 14.25 1.50 12.75 1.25

2 200 100 99 100 100 98 88 100 100 99 77 100 98 11.55 1.90 14.80 1.75 12.20 1.45

3 30 85 94 91 95 95 78 85 95 92 50 88 51 8.70 0.85 15.00 0.95 14.70 0.75

3 50 81 90 90 98 86 64 81 95 89 64 84 80 9.10 0.95 15.00 1.05 14.40 0.85

3 100 88 93 86 99 84 75 80 98 91 60 86 97 8.40 1.10 14.90 1.10 14.85 1.10

3 200 93 92 92 98 88 75 84 99 93 58 89 99 8.15 1.30 14.95 1.35 14.55 1.35

5 30 44 77 90 95 85 82 84 89 98 36 90 13 5.45 0.65 14.00 0.75 14.80 0.70

5 50 70 82 88 96 86 83 86 97 94 39 88 66 5.65 0.70 15.00 0.75 14.80 0.85

5 100 86 87 93 99 82 88 90 100 90 31 90 95 5.70 0.75 14.80 0.80 14.90 0.85

5 200 82 93 97 100 78 87 86 100 83 30 87 98 5.90 0.90 14.95 1.05 14.40 0.90

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC δ h δ h δ h

Normal

2 30 96 100 100 100 98 82 100 97 97 75 100 69 12.65 1.05 14.80 0.95 14.70 0.50

2 50 99 98 100 100 97 71 100 99 100 77 100 93 13.70 1.20 14.20 0.90 14.75 0.85

2 100 93 98 100 100 97 77 100 99 99 74 100 99 12.15 1.45 14.25 1.05 14.15 0.95

2 200 87 99 100 100 90 74 100 100 96 68 100 100 14.90 1.25 14.95 1.10 14.90 0.95

3 30 75 84 81 99 73 67 79 97 79 56 73 63 9.70 0.85 14.90 0.85 14.85 0.85

3 50 86 85 89 100 88 54 76 97 83 60 83 88 9.70 0.80 14.90 0.85 14.75 0.85

3 100 71 95 91 100 73 58 70 100 84 42 78 99 10.05 0.90 15.00 0.90 14.15 1.20

3 200 66 84 88 100 70 59 75 100 79 53 83 100 9.30 0.70 14.60 0.90 14.55 0.80

5 30 48 73 92 99 70 59 76 89 80 29 70 29 6.05 0.60 14.80 0.60 14.70 0.55

5 50 59 86 95 100 82 49 76 100 80 19 69 80 6.70 0.55 14.80 0.65 14.50 0.50

5 100 59 79 95 100 61 43 80 100 72 18 69 98 7.35 0.60 15.00 0.75 14.40 0.80

5 200 60 79 94 100 68 40 74 100 50 18 60 100 7.35 0.60 14.65 0.75 14.90 0.65

the set of MDSs from points which are centers of possible noise clusters. Silhouette

measure is also very effective in discovering the true number of clusters when the

data set is sparse. On the other hand, we simulate some data sets with clusters

which are accompanied with some artificial noise. Hence, we repeat the experiments

of Table 6.4 with just some background noise on mixed uniform distributions. We

generate noisy points around the centers of each uniform clusters where these noise

clusters are normally distributed with Σ = Id×d(r/5), and we sample δ = n/5 noisy

points for each cluster.

The relative frequency of success and the average AUC measures have been given

in Table 6.5. We do not report AUC measures since all methods achieve almost

1.00 AUC. Even with the existence of noise clusters, R-CCDs were able to achieve

high success rates. Whether the data sets have noise or not, the performance of our
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Table 6.5: Success rates and optimum parameters of all clustering methods where
cluster centers are drawn from a Strauss process with some background noise around
each cluster. AUC measures are all above 0,99, hence omitted.

Success param

d = 2 d = 3 d = 5 d = 2 d = 3 d = 5

K N R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC R-CCD KS-CCD FCmeans pdfC δ h δ h δ h

2 30 100 100 100 96 100 93 100 91 100 85 100 71 11.90 1.25 14.30 1.10 15.00 0.75

2 50 97 98 100 98 100 93 100 93 100 80 100 94 11.40 1.35 14.45 1.30 15.00 1.00

2 100 100 98 100 99 100 87 100 100 100 75 100 97 12.65 1.40 13.55 1.50 14.65 1.10

2 200 97 99 100 100 99 90 100 100 100 84 100 100 12.85 1.80 14.50 1.35 13.75 1.10

3 30 71 86 76 98 90 73 71 96 86 62 85 62 7.90 0.85 14.50 0.95 14.85 0.85

3 50 75 79 77 98 90 67 76 94 89 65 80 84 8.45 0.90 13.40 1.05 15.00 1.15

3 100 92 89 88 97 90 65 83 97 93 60 78 98 10.00 0.95 14.50 1.05 14.70 1.05

3 200 86 92 81 98 92 73 71 98 92 32 81 100 8.80 1.10 14.45 1.35 14.55 1.05

5 30 22 61 86 92 73 78 84 89 92 42 86 35 5.35 0.70 13.70 0.65 14.55 0.65

5 50 58 71 93 96 88 77 86 96 95 38 80 80 5.20 0.75 14.95 0.70 13.85 0.90

5 100 80 75 91 100 81 77 79 96 91 30 82 98 5.85 0.80 13.95 0.90 14.90 0.80

5 200 65 75 91 100 79 74 83 98 94 27 86 99 5.70 0.95 14.85 0.90 7.60 0.95

clustering algorithms degrade with increasing number of clusters and dimensionality.

Hence, similar to other clustering algorithms, our methods are also affected by the

existence of closely located clusters. Success rates of pdfC and KS-CCDs are consid-

erably worse than R-CCDs and FCmeans, but R-CCDs have more success rate than

the other methods in d = 5. However, R-CCDs still performs worse than others in the

case (K, n, d) = (5, 30, 2) since the clusters are substantially close to each other. The

success rate of all other clustering methods degrade with increasing number of clus-

ters, however R-CCDs perform relatively well compared to all these methods. Also,

the optimum parameters δ and h behave similar to those in results of Table 6.4.

6.5 Real Data Examples

In this section, we assess the performance of our CCD algorithms in real life data

sets with arbitrarily shaped and non-arbitrarily shaped clusters (Alcalá-Fdez et al.,

2011; Bache and Lichman, 2013). For data sets with considerably high variance, we

apply dimension reduction to mitigate the effects of dimensionality. We use principal

component analysis (PCA) to extract the principal components with high variance.

We illustrate the number of clusters found and the corresponding AUC of all real
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data sets we consider in Table 6.6. Moreover, We illustrate some of the data sets

and the clustering solutions of CCD algorithm in Figure 6.6. The ecoli2 and wine

data sets are of dimensionality more than 2; however, we project these data sets to

illustrate the clustering results. R-CCDs successfully locate the clusters of iris and

wine data sets where in both are composed of three clusters with 0.89 and 0.86 AUC,

respectively. The data set of ecoli2 inherently have two clusters but visually constitute

three clusters. R-CCDs and FCmeans were able to find these three clusters, however

for those optimum parameters of pdfC and KS-CCDs, the AUC is 0.66 which is low.

For data sets with more clusters, R-CCDs had some errors in D31 data sets; that is,

confused two clusters as one. Other than FCmeans in iris data set, all methods were

able to find the true number of clusters in both iris and wine data sets. However,

KS-CCDs were only able to achieve 0.56 AUC in detecting the clusters in iris data

set. Moreover, the optimum values of δ for KS-CCD are drastically different for wine

and iris data sets. For h value for pdfC, however, there seems to be no considerable

difference. Other than FCmeans all methods were able to find 15 clusters in R15

data set. Yeast and glass data sets, in particular, constitute hard clustering problems

where all methods produced different number of cluster, none of them being the

true number. On the other hand, in aggregation data set, R-CCDs detect 4 clusters

where in fact the true number is 4. However, the remaining three clusters are small

clusters compared to the clusters detected by R-CCDs. In Figure 6.7, we illustrate

the detected clusters before and after sweeped by the silhouette measure. R-CCDs

were able to find the true number of clusters before applying the silhouette measure.

The data sets jain, spiral and, in particular, aggregation are data sets with arbi-

trarily shaped clusters that we use the Algorithm 10 of R-CCDs to do the partitioning

(Chang and Yeung, 2008; Jain and Law, 2005). We compare the results of R-CCDs,

KS-CCDs and DBSCAN on there data sets. In Figure 6.7, we illustrate the results

of our R-CCD algorithm on these three spatial data sets, and we give the clustering

results and optimum parameters of R-CCDs, KS-CCDs and DBSCAN in Table 6.7.

In all data sets, unions of covering balls do not extend far from the supports of the
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Table 6.6: Success rates and optimum parameters of all clustering methods for real
data sets with spherical shaped clusters. PCd provides the number of principal com-
ponents extracted for the associated data set. AUC measures are all above 0,99, hence
ignored. (*) Without using the silhouette measure, the true number of clusters are
7 with 0.99 AUC. (**) Inherent number of spherical shaped clusters are 3 in ecoli2
data. (***) There are visually 3 possible clusters in the glass data

Data R-CCD KS-CCD FCmeans pdfC

N d PCd K K̂ AUC K̂ AUC δ K̂ AUC K̂ AUC h

wine 178 13 4 3 3 0.86 3.00 0.95 0.020 3 0.96 3 0.89 0.75

iris 150 4 . 3 3 0.89 3.00 0.56 4.440 2 0.00 3 0.89 0.59

R15 600 2 . 15 15 0.99 15.00 0.99 20.000 14 0.00 15 0.99 0.50

D31 3100 2 . 31 30 0.00 31 0.94 31 0.99 0.50

aggregation 788 2 . 7* 4 0.00 7.00 0.99 0.007 3 0.00 7 0.99 0.61

yeast 1484 8 3 10 4 0.00 4 0.00 6.000 2 0.00 10 0.15 0.70

ecoli2 336 7 2 2** 3 0.00 2 0.66 0.400 3 0.00 2 0.69 1.70

glass 214 9 4 6*** 5 0.00 4.00 0.00 0.002 2 0.00 6 0.29 0.09

data sets, even though their supports are not spherical shaped clusters. In jain data

set, one cluster has less spatial intensity then the other (less average number of points

in a unit area), and hence, its covering balls are much smaller compared to the other

cluster. In spiral data set, however, points closer to the center of the data set is more

compact than the points far from the center which produce bigger covering balls.

The reason is that, within the same clusters, points have locally different intensity,

but R-CCDs catch locally homogenuous sets of points, and hence CCDs are able to

detect clusters with varying inter-cluster intensity. Aggregation data set has seven

spherical shaped clusters but has five arbitrarily shaped clusters with two pairs of

clusters weakly connected to each other. Algorithm 10 successfully locate all these

clusters despite of the weak connection.

KS-CCD and DBSCAN algorithms were able to find the exact number of clusters

in all data sets with arbitrarily shaped clusters. Optimum parameters are generally

between [3,5] and [0.05,0.1] for KS-CCDs and DBSCAN algorithms, respectively. Al-

though these parameters need to be initialize before the execution, and hence their
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(a) (b)

(c) (d)

Figure 6.6: Illustrations of R-CCD results on real data sets with spherical shaped
clusters. (a) ecoli2 data set has inherently 2 clusters but visually constitute 3 spherical
clusters. (b) wine data set has three clusters, and R-CCDs successfully locate them.
(c) The clusters of the aggregation data set with silhouette measure, (d) the clusters
without silhouette measure.

selection is critical. However, R-CCDs were able to find the true number of clusters

with no parameters are given.

6.6 Conclusions and Discussion

We use cluster catch digraphs (CCDs) to locate clusters and to find an optimal par-

titioning of data sets. CCDs are unsupervised adaptations of CCCDs, introduced to

provide graph-theoretic solutions to the CCP. We use these covers to estimate the sup-
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Table 6.7: Success rates and optimum parameters of all clustering methods for real
data sets with arbitrarily shaped clusters. AUC measures are all above 0,99, hence
ignored.

Data R-CCD KS-CCD DBSCAN

N d K K̂ AUC K̂ AUC δ K̂ AUC ε

aggregation 788 2 5 5 1.00 5 1.00 5.0 5 1.00 0.05

spiral 312 2 3 3 1.00 3 1.00 5.5 3 1.00 0.09

jain 600 2 2 2 1.00 2 1.00 3.5 2 1.00 0.09

port of the distribution of the data set, presumably a mixed distribution with a finite

number of components, or clusters. We develop methods to increase the performance

of recently introduced clustering methods based on CCDs, namely KS-CCDs, and use

them as a framework for novel clustering algorithms. These methods are based on

spatial pattern tests that incorporate Ripley’s K function. We refer to these methods

as R-CCDs. One important advantage of R-CCDs is that they find and estimate the

number of clusters in the data set without any parameters. In the literature, density-

based methods often estimate the number of clusters but these methods require prior

parameters that assumes the density, or spatial intensity, around points of the data

sets. DBSCAN and pdfCluster are examples of such methods. Both KS-CCDs and

R-CCDs are hybrids of density- and graph-based methods, and in particular, R-CCDs

estimate the spatial intensity of data sets unlike other commonly used density-based

methods, including KS-CCDs.

Our estimates of the support are provided by a collection of balls that encapsulate

the data set. These estimates constitute a cover given by the MDSs of CCDs. In

KS-CCDs, the radius of each covering ball is the distance that maximizes a K-S based

statistics. However, it require an intensity parameter of the spatial distribution of the

data set if it were assumed to be drawn from a homogeneous Poisson process. In

R-CCDs, however, the radius of each covering ball is chosen by a test based on the

estimate K̂(t); that is, the radius is increased until the null hypothesis is rejected,
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(a) (b)

(c) (d)

Figure 6.7: Clustering results of Algorithm 10 on data sets with arbitrarily shaped
clusters (a) spiral data sets with three spirally distributed clusters. (b) jain data set
with cluster shaped as half rings (c) Covering balls that are produced. (d) Partitioning
of the data.

indicating that the spatial distribution of a set of points inside the covering ball signif-

icantly deviates from complete spatial randomness (CSR). The rejection implies that

a ball covers a region of the domain outside of the class support. More importantly,

R-CCDs find an optimal partitioning without any parameters since K̂(t) is calculated

by estimates of the spatial intensity parameter. We separately investigate data sets
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exhibiting spherical shaped and arbitrarily shaped clusters, and provide two types of

algorithms for both KS-CCDs and R-CCDs, clustering these two types of data sets.

We show that spherical shaped clusters are captured, or located, by MDSs of the

intersection graphs, whereas we look for disconnected components of the same types

of graphs to find arbitrarily shaped clusters.

By incorporating both the K̂(t) function and the silhouette measure, we develop

clustering algorithms that are robust to noise, and work well against any data set with

unimodal clusters. We demonstrate that CCD based methods successfully locate data

sets with both uniformly and normally distributed clusters which may indicate that

CCDs are able to detect the clusters of any data set whose clusters are spherical

and have a single mode. Each covering ball is a representation of the local density;

that is, the covering balls with high cardinality are more likely be the centers of

normally distributed clusters. The greedy algorithm detects centers of clusters while

the silhouette measure separates the low intensity regions of each individual normally

distributed clusters from their centers. Moreover, we show that the CCDs are also

non-sensitive to noise. CCD based clustering methods separate the true and noise

clusters without assuming the number of noise clusters. We choose a minimum subset

of the MDSs maximizing the silhouette measure, and we assume that the rest are noise

clusters. These collections of noisy points do not substantially change the partitioning

of the data set, and hence the average silhouette of the data set does not increase.

First, we conduct two extensive Monte Carlo simulations wherein simulated data

sets have spherical shaped clusters. We assess the performance of both KS-CCDs and

R-CCDs on these simulated data sets, and also on real data sets. We compare these

methods with some partitional-based and density-based clustering methods; such as

fuzzy c-means and pdfCluster. First, we incorporate fixed centers for the clusters,

then, we generate cluster centers from a Strauss Process. On both simulation settings,

around each cluster center, we either simulate clusters of uniformly distributed points

of unit box or normally distributed points with some covariance matrix. The results

show that our R-CCDs perform comparable to KS-CCDs and other methods. R-
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CCDs achieve similar rates of correctly estimating the number of clusters in the data

sets. R-CCDs also provide extremely high AUC if the number of clusters are correctly

estimated. However, the performance of R-CCDs degrade on some cases when there

are a high number of clusters, and the data set has high dimensionality. In these cases,

average inter-cluster and intra-cluster distances gets closer, and hence, the clustering

performance naturally decreases. Moreover, similar to other density-based methods,

the performance also decreases with low number of points in each cluster. It is known

that density-based methods are inefficient in locating clusters in data sets with low

intensity. We also assess the performance of CCD clustering methods on real data

sets with arbitrarily shaped clusters, and compare them with DBSCAN. R-CCDs

successfully locate the clusters of data sets with high number of clusters, and also

find arbitrarily shaped clusters with unequal spatial intensities; for example, the jain

data set.

Although R-CCDs are appealing clustering algorithms, they are computationally

intensive. We report on the computational complexity of both CCD methods, and

show that KS-CCDs are cubic time and, in particular, R-CCDs are quartic time

algorithms which makes them extremely slow compared to some other density-based

methods. R-CCD based clustering algorithms are much slower in comparison to KS-

CCDs, and it is due to the fact that R-CCDs are parameter free algorithms whereas

KS-CCDs and other methods are not. Although the computation of envelopes before

the execution of the main algorithm substantially decrease the computation time, the

observed K̂(t) value of the data set should be computed for each point of the data

set which makes the computation much slower. In that case, alternative spatial data

analysis tools could be incorporated to decrease the computation time. However, our

work proves the idea that parameter free CCD algorithms can be devised by estimating

the spatial intensity. On the other hand, silhouette measure is sensitive to clusters

with varying number of observations; that is, some clusters could be considered as

noise even though they are compact and well separated from the rest of clusters,

and hence a measure that robust the class imbalances could be employed instead of
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the silhouette measure. In our Monte Carlo experiments, the methods assuming the

spatial intensity or the number of clusters may perform slightly better than R-CCDs.

However, it may not always be easy to assume, or guess, such parameters.



Chapter 7

ENSEMBLE-BASED CLUSTERING WITH PROXIMITY

CATCH DIGRAPHS

7.1 Introduction

Bagging, or bootstrap aggregating, is a method for strengthening the performance of

learning methods. It is often the practice that a set of random samples of a data set is

used to train a weak, i.e. unstable and non-optimal, learning method. Resulting set of

learners constitute a meta-learner that a majority decision among the set of learners

provide the final decision. A more general type of learning methods, referred to as

ensemble learning, combine several learnings methods to create a new one which has

significantly better performance than its constituents (Rokach, 2010). Bagging can

also be used to aggregate the performance of clustering algorithms; that is, we can

combine a set of different partitioning of a data set, i.e. cluster ensembles, to find an

optimal partitioning of the data set (Strehl and Ghosh, 2002). We propose a bagging

approach to increase the clustering performance of PCDs that are well defined only

for labeled data sets. We offer algorithms to establish unsupervised adaptations of

recently developed PCD families, and assess their performance in clustering.

In this chapter, we construct clustering algorithms with PE-PCDs and CS-PCDs.

Clustering algorithms based on PCDs are also similar to density-based clustering

methods. However, PE and CS proximity maps are ill-defined for unlabelled data sets;

that is, both PE and CS maps depend on the existence of at least two classes in a data

set. We choose random samples from the data set, and label these samples as members

of the non-target class. We use each randomly labeled data set to construct PCDs and,

later, to partition the data set. Finally, we use all these collections of partitionings
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to establish cluster ensembles. We show that, similar to CCDs, Ripley’s K function

can be used to establish the PE proximity regions whereas CS proximity regions do

not require the Ripley’s K function. We estimate the second-order moments of a set

of points in a domain, and tell whether the points are clustered or fit to some sort of

spatial distribution. Ripley (1977) introduced the K function to estimate the second-

order moments and introduced tests for clustering of the data set. Our objective is

to combine Ripley’s K function with the PCDs to successfully find spherical shaped

clusters.

7.2 Clustering with PCDs

Let X = {X1, X2, · · · , Xn} be a set of Rd-valued random variables with some dis-

tribution F and the support s(F ), and assume F is a finite mixture distributions.

The objective is to find the number of these components (i.e. clusters), as well as

which component Xi is more likely drawn from. We estimate the number of clusters

K, denoted as the estimand K̂, and offer algorithms to partition the data set into K̂
number of disjoint sets. To do so, we use the lower complexity covers to reveal the

hidden clusters provided by the proximity regions associated with the MDSs.

We propose cluster ensembles with PCDs, whose each partitioning attained by

a random set of the non-target class. Both PE-PCDs and CS-PCDs depend on the

convex hull of CH(Z) for some subset Z ⊂ X of the data set that we don’t know if

it exist. We choose a random subset Z to construct these PCDs. However, such an

approach on clustering data sets would highly biased depending on the Z. Hence, we

repeat this for substantial amount of time, and use a collection of results to make a

final decision on the partitioning of the data set. We show that, if the constituents

of the ensemble are of considerably high amount, a majority of the constituents find

the true number of clusters of data sets with spherical shaped clusters.

Once the data set is divided into the target class and non-target class, we construct

the Delaunay tessellation of the convex hull CH(XNT ) for Z = XNT . Proximity regions

of each triangle is independent from the ones from other triangles. Hence, we first
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investigate the clustering with proximity regions in a single triangle, then move on to

the algorithms for clustering the entire data set.

7.2.1 Clustering in Single Triangle Case

We use the Algorithm 4 and Algorithm 1 to find the MDSs of digraphs PE-PCDs

and CS-PCDs. An advantage of PE proximity maps is that MDSs are computational

tractable with respect to the size of XNT ; however, they are less appealing compared

to the CS proximity maps. CS maps satisfy more properties listed by Ceyhan (2010)

and represent the domain influence of a point x in a triangle T much better than

PE proximity maps. Given τ ∈ (0, 1], CS proximity maps are both central, i.e. the

associated member of the dominating set is the center of its proximity region, and

the proximity region is a proper subset of T . Therefore, we use Ripley’s K function

to determine the local extremum points of PE proximity maps, but drop their use for

CS proximity maps. Hence, we show that CS-PCDs are more efficient in clustering

data sets, but PE-PCDs are more accurate.

As in Chapter 2, barycentric coordinates of a set of points with respect to T (Y) are

used to characterize the set of local extremum points, where a subset of local extremum

points constitute the minimum dominating set SMD. However, we slightly change the

definition of these local extremum points for clustering tasks. For i = 1, 2, · · · , d+ 1,

let x[i] denote the local extremum point associated with the vertex region RMC
(yi).

We defined x[i] as point with the minimum barycentric coordinate with respect to yi,

i.e.

x[i] := argmin
x∈Z∩RM (yi)

w
(i)
S (x).

For PE proximity regions to reveal the clustering in data sets, we slightly change the

definition so that x[i] corresponds to the minimum w
(i)
S (x) with the condition that

the points inside the associated proximity region, NPE(x[i], r), does not reject the

hypothesis of being CSR in NPE(x[i], r).

Let Te = Te(y1, y2, y3) ⊂ R2 denote a equilateral triangle whose vertices are y1 =

(0, 0), y2 = (0, 1) and y3 = (0.5,
√

3). Now, let N (x) ⊂ T be an arbitrary triangle and
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let G be a group of affine transformations on R2, hence, there exist a transformation

g ∈ G such that Te = g(N (x)). Note that N (x) is a simplical proximity region

and constitutes a triangle in R2. By Theorem 2.3.0.1, the barycentric coordinates of

a point z is equal to the coordinates of its image under g, i.e. z′ = g(z); that is,

wN (x)(z) = wTe(z
′). Therefore, for all proximity regions of arbitrary shape, we know

the image of all points of XT ∩N (x) on Te. We test whether points g(XT ∩N (x)) :=

{g(x) : x ∈ XT ∩N (x)} in the transformed triangle Te significantly deviate from CSR.

The digraph, induced by a single triangle, is independent from all other triangles.

Hence, we investigate the clustering of points XT ∩T by both PE-PCDs and CS-PCDs

for an arbitrary triangle T . The results of a single triangle are given in Figure 7.1. We

demonstrate the proximity regions of both PE-PCDs and CS-PCDs in three different

cases. These are when XT ∩ T are uniformly distributed in T , when XT ∩ T clustered

around vertices, and when XT ∩ T clustered around a single edge. In the first case,

a single proximity region of both PE-PCD and CS-PCD catch all points in T . Such

a triangle T is presumably inside the support of an hidden class. In the second case,

sizes of the MDSs, i.e. the number of proximity regions, are either two or three. These

triangles are most likely from corners of support of hidden classes and has less domain

influence. In particular, the test rejects the hypothesis that any proximity region in

one corner of the triangle is CSR, hence no local extremum point is provided on one

corner of the triangle for PE-PCDs. Finally, in the third case, either 1 or 2 proximity

regions are given, covering most of the dense areas those regions closer to the edge

of the triangle. Observe that both proximity maps provide similar proximity regions,

but CS proximity do not rely on spatial tests.

7.2.2 Random labelling and Clustering

We either use the PE-PCD or CS-PCD covers to find lower complexity covers of the

data. Let CH(X ) be the convex hull of the data set, and let XB := X ∩ ∂(CH(X )) be

the boundary points of CH(X ). We select a random sample of points from X \XB to

constitute a Delaunay tessellation of CH(X ). Let XS be this set of random samples,
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(a) (b) (c)

Figure 7.1: Clustering of a point set in a single triangle T . (a) Uniformly distributed
points in T , (b) points clustered around vertices of T , and (c) points clustered around
a single edge of T . (top) Proximity regions of PE-PCDs and (bottom) regions of
CS-PCDs.

hence we denote the non-target class as XNT = XS ∪ XB and the target class as

XT = X \ XNT . Observe that CH(XNT ) = CH(X ). Then, we establish either the

PE-PCD or CS-PCD cover of XT with respect to the Delaunay tesselation of XNT . In

Figure 7.2, we illustrate the Delaunay tesselation, PE-PCD and CS-PCD covers to a

data set with two uniformly distributed clusters.

7.2.3 Ensemble Clustering with PCDs

By randomly labelling points of the data set as non-target and target class, we con-

stitute the PCD covers. However, by doing this several times, we let the ensemble

of PCDs to vote for the true number of clusters. Each PCD cover partition the data

set into different clusters. Hence, the majority decision of several partitionings of the

data set constitute the final decision on the number of clusters. If a majority of ran-
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(a)

(b) (c)

Figure 7.2: (a) The Delaunay tesselation of XNT ⊂ R2. The cover of (b) PE-PCD with
proximity map NPE(·, r = 1.5) and (c) CS-PCD with proximity map NCS(·, τ = 1).

dom runs suggests that partition the data set into K̂ clusters, then we conclude that

there are K̂ clusters. Later, we choose the best partitioning among those conclude in

K̂ cluster to choose the best clustering of the data set. We use an ensemble clustering

approach to choose the clustering that resembles all the remaining clustering solutions

the most.

Let Ne be the number of trials, i.e. the number of constituents, each associated

with a different clustering solutions. We use the mutual information index introduced

in Strehl and Ghosh (2002) to find an optimum partitioning of the data set amongst all

partitionings in the ensemble. Now, Pi be the partitioning of the data set X associated

with the i’th trial, and let P = {P1,P2, · · · ,PNm}. Thus, let (normalized) mutual

information (NMI) between partitionings i and j be defined as

ΨP(i, j) =

∑K̂i
mi=1

∑K̂j
mj=1 nmi,mj log

n·nmi,mj
nminmj√(∑K̂i

mi=1 nmi log
nmi
n

)(∑K̂j
mj=1 nmj log

nmj
n

) (7.1)

Here, K̂i is the estimated number of clusters in i’th trial, nmi is the number of
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K = 2 c1 = (0, 0) c2 = (4, 0)

K = 3
c1 = (0, 0) c2 = (4, 0)

c3 = (2, 4)

K = 5

c1 = (0, 0) c2 = (3, 0)

c3 = (0, 3) c4 = (3, 3)

c5 = (1.5, 6)

Table 7.1: Centers of the cluster used in Monte Carlo simulations for demonstrating
the performance of (normalized) mutual information (NMI).

observations in the mi’th cluster of Pi, and nmi,mj is the number of observations both

in mi’th and mj’th clusters in Pi and Pj, respectively. Let Ψi =
∑Nm

j=1 ΨP(i, j) be the

average NMI of the partitioning Pi. This strategy suggests that the partitioning who

gives the maximum Ψi is the most similar to all other partitionings. We illustrate the

PCD based clustering method in Algorithm 11.

In Figure 7.3, we illustrate the number of found true clusters among Ne trials.

For each clustered data settings, we consider K = 2, 3, 5 as the number of clusters,

n = 30, 50, 100, 200 as the number of observations from each cluster, and d = 2 as the

dimensionality of the data set. The centers of these clusters are given in Table 7.1.

Each cluster constitutes uniformly distributed points drawn from a unit box. In

general, both PE-PCD and CS-PCD ensembles successfully vote for the true number

of clusters. However, as the number of clusters K increases, it gets harder to conclude

to a majority decision on the true number. Moreover, when n = 30, 50, both PCD

families fail to find the true number, since the intensity of clusters are low due to the

low number of observations in each cluster.

7.3 Monte Carlo Simulations and Experiments

In this section, we conduct series of Monte Carlo experiments to assess the perfor-

mance of ensemble-based PCD clustering algorithms. We assess the performance of
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Figure 7.3: Estimated number of clusters in Ne = 100 trials. (a) PE-PCD and (b)
CS-PCD covers

two PCD based clustering algorithms, PE-PCDs with proximity maps NPE(·, r = 1.5)

and CS-PCDs with proximity maps NCS(·, τ = 1), and we use Ne = 100 number of

ensembles for our clustering algorithms. In each trial, we record the relative frequency

of finding the correct number of the clusters, and if the correct number was found,

we also record the AUC measure. We report on the number of successes each method

achieves in 100 trials, and also report the average AUC of successful trials (hence,

we ignore the AUC of unsuccessful trials, which have AUC measure of 0 and thus no

contribution to overall AUC). We aim to only measure the AUC of successful trails

in order to assess in what degree the true clusters have been found. We investi-

gate the performance of clustering methods on clustered data sets with fixed centers.

For each clustered data settings, we consider K = 2, 3, 5 as the number of clusters,

n = 30, 50, 100, 200 as the number of observations from each cluster, and d = 2 as the

dimensionality of the data set.

The cluster centers corresponding to each simulation setting are given in Table 7.2.

We conduct two separate experiments where in first, points of each cluster are drawn
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Algorithm 11 The PCD clustering algorithm

Input: The data set X , the number of ensembling iterations Ne.

Output: The set of centers S and their corresponding proximity regions

1: S ← ∅
2: for all i = 1, · · · , Ne do

3: Let XB = X ∩ ∂(CH(X ))

4: Let XS be a random subset of X \ XB
5: Let XNT = XS ∪ XB
6: Let XT = X \ XNT
7: Find SMD with Algorithm 4 for PE-PCD or with Algorithm 1 for CS-PCD

8: Find S(GMD) with Algorithm 3 given sc(v) = |N(v)|
9: SI ← ∅

10: for all s ∈ S(GMD) do

11: SI ← SI ∪ {s}
12: Let P be the partitioning provided by SI

13: if sil(P) decrease then

14: break

15: end if

16: end for

17: S ← S ∪ {SI}
18: end for

19: Set S ∈ S as the prototype set associated with Pi s.t. Ψi = argmaxj Ψj

uniformly from a unit box in R2, and in second, points of each cluster are normally

distributed in R2 with variance I2 which is an identity matrix of dimension d = 2.

We have two settings in which centers of one setting are slightly further away from

the centers in the other setting.

In Table 7.3, we provide the relative frequency of success and the average AUC

measures of PE-PCD and CS-PCD clustering methods on simulated data sets with
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Table 7.2: Centers of the cluster used in Monte Carlo simulations

Setting 1 Setting 2

Uniform Normal Uniform Normal

K = 2
c1 = (0, 0) c1 = (0, 0) c1 = (0, 0) c1 = (0, 0)

c2 = (3, 0) c2 = (5, 0) c2 = (4, 0) c2 = (6, 0)

K = 3

c1 = (0, 0) c1 = (0, 0) c1 = (0, 0) c1 = (0, 0)

c2 = (3, 0) c2 = (5, 0) c2 = (4, 0) c2 = (6, 0)

c3 = (1.5, 2) c3 = (2, 4) c3 = (2, 4) c3 = (3, 6)

K = 5

c1 = (0, 0) c1 = (0, 0) c1 = (0, 0) c1 = (0, 0)

c2 = (3, 0) c2 = (5, 0) c2 = (4, 0) c2 = (6, 0)

c3 = (0, 3) c3 = (0, 5) c3 = (0, 4) c3 = (0, 6)

c4 = (3, 3) c4 = (5, 5) c4 = (4, 4) c4 = (6, 6)

c5 = (1.5, 6) c5 = (2.5, 10) c5 = (2, 8) c5 = (3, 12)

centers of clusters given in Table 7.2. For both normally and uniformly distributed

clusters and for K = 2, the PE-PCD and CS-PCDs achieve extremely high perfor-

mance with the case (K, n) = (2, 30) being an exception. When n = 30, the density

around each point is low, and hence clusters are hardly recognized. The low number of

observations in each cluster establishes data sets with low spatial intensity. Therefore,

the average inter-cluster distances are closer to intra-cluster distances which makes it

harder to distinguish the existing clusters. However, the performance of both PCD

methods are extremely low for K > 2, and in particular, when K = 5. Although high

AUC values suggest found members of the MDS are approximately equal the cluster

centers, both PE-PCD and CS-PCDs perform bad in finding the actual cluster cen-

ters. The intra-cluster distances are higher in the second simulation settings, hence we

expect an increase in the clustering performance. PE-PCDs show good performance

for K = 3 in Setting 2, but its performance extremely deteriorates when K = 5.
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7.4 Conclusions and Discussion

We offer a bagging mechanism to boost the performance of clustering methods based

on PCDs. We use PCDs to find lower complexity covers of data sets. Then, we use

these covers to estimate the support of the distribution, presumably a mixed distri-

bution with a finite number of components, or clusters. The PE-PCDs and CS-PCDs

are defined for the target class (a subset of the data set) on the Delaunay tessella-

tion of the non-target class (i.e. the class not of interest). However, in unsupervised

learning schemes such as clustering, we don’t know if classes exist. Hence, we choose

random subsets of the data sets, and appoint them as non-target class to construct

PCDs. Finally, to boost the clustering performance and to mitigate the bias resulted

by randomly dividing the data set into target and non-target classes, we repeat this

procedure for a substantial amount of time until a majority of constituents of a clus-

ter ensemble vote for a final decision. We show that, if it is repeated considerably

high amount of time, cluster ensembles of PCDs successfully find the true number of

clusters.

We conduct two extensive Monte Carlo simulations wherein simulated data sets

have spherical shaped clusters. We assess the performance of both PE-PCD and CS-

PCD based clustering methods on these simulated data sets, whose centers are fixed.

On both simulation settings, around each cluster center, we either simulate clusters

of uniformly distributed points of unit box or normally distributed points with some

covariance matrix. The results show that our PE-PCDs perform better than CS-

PCDs in locating the true clusters. However, the performance of both PCD families

degrade when there are high number of clusters. In these cases, average inter-cluster

and intra-cluster distances gets closer, and hence the clustering performance naturally

decreases. But more importantly, the performance of both PCD based clustering

methods is much worse than the performance in CCD reported in Chapter 6. We

use two sets of fixed centers. In second set of centers, each cluster is much further

away from each other compared to the first set of centers. Hence, the performance is

considerably increased.
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Both PE-PCDs and CS-PCDs are ill-defined for unlabelled data sets, where we

slightly boost the performance by bagging. Although PCD based clustering methods

perform far worse than CCD based clustering methods, we are able to show that bag-

ging can establish good performing clustering methods in collaboration with PCDs.

However, bagging alone is not enough to compensate for the high complexity of the

minimum dominating sets of PCDs. We have investigated the complexity of PE-

PCDs and reported the bias resulted by the construction of PCDs with respect to

the Delaunay tesselations. It has been mentioned that partitioning schemes with less

complexity would mitigate the high bias of classifiers. Hence, as a future direction,

our goal is to define appropriate proximity maps for new PCD families that would be

appealing for clustering.
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Table 7.3: Success rates and AUC of PE-PCD and CS-PCD clustering methods where
centers of clusters listed as in Table 7.2. The AUC of those settings are omitted if
they were to have no success in finding the true number of clusters, hence denoted as
“-”.

PE-PCD CS-PCD

Setting 1 Setting 2 Setting 1 Setting 2

K n Success AUC Success AUC Success AUC Success AUC

Uniform

2 30 32 0,957 32 0,967 100 0,992 100 0,997

2 50 100 0,990 100 0,998 100 0,997 100 0,999

2 100 100 0,999 100 1,000 100 0,997 100 0,999

2 200 100 0,998 100 1,000 100 0,999 100 1,000

3 30 0 - 0 - 8 0,992 13 0,993

3 50 6 0,989 35 0,994 3 0,987 22 0,997

3 100 48 0,983 93 0,996 16 0,981 29 0,997

3 200 74 0,986 90 0,998 22 0,984 39 0,995

5 30 0 - 7 0,991 0 - 8 0,955

5 50 0 - 76 0,973 0 - 12 0,965

5 100 0 - 74 0,972 0 - 14 0,958

5 200 1 0,938 44 0,968 2 0,945 18 0,966

K n Success AUC Success AUC Success AUC Success AUC

Normal

2 30 24 0,969 38 0,972 100 0,986 100 0,995

2 50 100 0,989 100 0,997 100 0.989 100 0,997

2 100 100 0.991 100 0.997 100 0.991 100 0.997

2 200 100 0.992 100 0.998 100 0.992 100 0.997

3 30 0 - 0 - 4 0.975 19 0.995

3 50 10 0.973 27 0.993 17 0.978 34 0.991

3 100 50 0.977 84 0.989 24 0.975 39 0.992

3 200 39 0.974 87 0.989 21 0.976 38 0.987

5 30 0 - 0 - 0 - 3 0.951

5 50 0 - 24 0.985 1 0.900 5 0.963

5 100 0 - 36 0.959 0 - 3 0.934

5 200 0 - 13 0.951 0 - 1 0.963
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Chapter 8

SUMMARY AND DISCUSSION

In this thesis, we approach many popular challenges in machine learning literature

with recently developed geometric digraph (or directed graph) families. Priebe et al.

(2001) characterized the class cover problem with class cover catch digraphs (CCCDs)

that pioneered an intriguing line of research that could be applicable to many aspects

of the statistical learning. Later, Ceyhan (2005) generalized CCCDs by defining

proximity catch digraphs (PCDs), introducing a new framework for arbitrarily defined

proximity regions around the nodes of vertex-random directed graphs. One advantage

of PCDs is that a proximity map can be defined to suit the needs of any learning

practice. In this work, we offer tools and algorithms to apply PCDs in classification

and clustering tasks.

We specifically investigated two PCD families associated with simplicial proximity

maps (those maps that constitute simplices in the domain), namely proportional-edge

and central-similarity proximity maps, that are defined for the class-labeled data sets

with two classes. These are the target class (i.e. the class of interest) and the non-

target class (i.e. the class of non-interest). A Delaunay tessellation in Rd is a collection

of non-intersecting convex d-polytopes such that their union covers a region. Although

this tessellation is likely to generate acute simplices in the domain, it does not partition

(or applicable to) outside of the convex hull of the non-target class. An important

contribution of this thesis is the extension of intervals in R with infinite boundaries to

the higher dimensions, namely outer simplices, by using a similar framework defined

by Deng and Zhu (1999). Each facet of the Delaunay tesselation is associated with an

outer simplex. Such a region can be viewed as an infinite “drinking glass” with the

facet being the bottom while top of the glass reaching infinity, similar to intervals in R
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with infinite endpoints. By introducing new proximity maps for the outer simplices,

we successfully applied PCDs to classification whose proximity regions and minimum

dominating sets have appealing properties in building discriminant regions.

We also characterized vertex and face regions of PCDs, which are auxiliary tools

for defining the associated proximity regions, based on barycentric coordinates as this

coordinate system is more convenient for computation in higher dimensions. The co-

ordinate system is an important building block for PCDs; that is, we characterize the

position of target class points inside simplices, define convex distance functions, and

offer clustering algorithms with the invariant property of the barycentric coordinates

under affine transformations.

Class imbalance problem is observed in many real life practices, especially in areas

such as medicine and fraud detection. In a class-labeled data set, when the majority

class (the class with an abundant number of observation) dwarfs the minority class

(the class with few number of observations), a bias occurs towards the majority class,

hindering the classification performance of many known learning methods, such as k

nearest neighbor (k-NN) and support vector machines (SVM) classifiers. In Part II, we

show that CCCDs and, in particular, PCDs are robust to the class imbalance problem.

The minimum dominating sets (MDS) of these digraph families are equivalent to the

prototype sets which are subsets of the data sets. Hence, we balance the number of

observations from both classes by pruning the majority class. Two distinct families of

CCCDs, namely pure CCCDs (P-CCCDs) and random walk CCCDs (RW-CCCDs)

are robust to the imbalances between classes. However, MDSs of CCCDs (found by

greedy algorithms) are computationally intractable. We use the property of MDSs

of PCDs with proportional-edge proximity maps (PE-PCDs) being computationally

tractable to build consistent classifiers based on PE-PCDs that are also robust to

the class imbalances. We focus on both the class imbalance problem and the class

overlapping problem. We found that the effects of class imbalance problem are more

severe when it co-occurs with the class overlapping problem. We also define local

class imbalance which usually occurs in the overlapping regions of both class supports.
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In the literature, it is usually the practice to characterize the class imbalance with

the ratio of number of observations from both classes. However, we investigate a

case where local class imbalance exist despite of this ratio shows that there exist

no imbalance. We show that both CCCDs and PCDs are robust to the local class

imbalances.

Finally in Part III, we focus on the clustering of unlabeled data sets with PCDs.

We investigate an unsupervised adaptation of the CCCDs, called cluster catch di-

graphs (CCDs). Spherical proximity regions of CCCDs are defined by the distance

to the closest non-target class point. However, in a clustering task, we have to rely

on spatial clustering tests to determine the radius of a covering ball (or a spheri-

cal proximity region) since classes do not exist. CCDs employ Kolmogorov-Smirnov

based statistics to establish covers of the data set which also makes them members

of density-based clustering methods. However, these statistics require a parameter

that is proportional to the spatial intensity of a homogeneous Poisson process. We

use a spatial data analysis test based on Ripley’s K function that estimates the local

spatial intensity. Hence, we build novel CCD algorithms, also called R-CCDs, that

partition data sets with no assumptions on the value of any parameter. We assess the

performance of R-CCDs against Kolmogorov-Smirnov based CCDs, i.e. KS-CCDs,

a kernel-based clustering algorithm, pdfCluster, a fuzzy clustering alternative of the

k-means algorithm, i.e. fuzzy c-means, and a density-based clustering methods, DB-

SCAN. R-CCDs successfully locate the true clusters of data sets with either spherical

or arbitrarily shaped clusters, are robust to noise, and show comparable performance

to those others methods we have listed, despite not requiring any parameter.

We also offer a bagging mechanism to boost the performance of PCD clustering

methods. Both PE-PCDs and CS-PCDs are defined for the target class (a subset of

the data set) on the Delaunay tessellation of the non-target class (i.e. the class not of

interest). However, we don’t know if classes exist, hence we choose random subsets

of the data sets, and appoint them as non-target class to construct PCDs. Finally,

to boost the clustering performance and to mitigate the bias resulted by randomly
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dividing the data set into target and non-target classes, we repeat this procedure for

a substantial amount of time until a majority of constituents of a cluster ensemble

vote for a final decision. We show that if this procedure is repeated sufficiently many

times, PCD based clustering methods locate the actual clusters. On the other hand,

the clustering performance drastically decrease with increasing dimensionality and

with increasing number of clusters.

In this thesis, we showed that PCDs can be used to build efficient and consistent

classifiers that also exhibit appealing properties like being robust to class imbalances

or possessing computational tractable prototype sets. However, two PCD families

with simplicial proximity maps, namely proportional-edge and central-similarity prox-

imity maps, are constructed with respect to the non-target class whose complexity

increases exponentially with dimensionality of the data set. Indeed, this leads to an

overfitting of the data set in classification tasks and it also drastically decreases the

clustering performance. However, we believe an alternative to the Delaunay tessel-

lation, say for example a rectangular partitioning scheme, that produces less parti-

tioning than a Delaunay tessellation would be more appealing for PCD covers. Such

schemes could also have computationally tractable MDSs. Such classifiers and clus-

tering methods are topics of ongoing research.

There is also the case that CCD and PCD based clustering algorithms are compu-

tationally intensive. Especially, Ripley’s K function based CCDs, i.e. R-CCDs, are

quartic time algorithms which makes them extremely slow compared to some other

density-based methods. The observed K̂(t) value of the data set should be computed

for each point of the data set which makes the computation much slower. In that

case, alternative spatial data analysis tools could be incorporated to decrease the

computation time.
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