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Abstract

We employ random geometric digraphs to construct semi-parametric classifiers. These data-random di-
graphs are from parametrized random digraph families called proximity catch digraphs (PCDs). A related
geometric digraph family, class cover catch digraph (CCCD), has been used to solve the class cover prob-
lem by using its approximate minimum dominating set. CCCDs showed relatively good performance
in the classification of imbalanced data sets, and although CCCDs have a convenient construction in
Rd, finding minimum dominating sets is NP-hard and its probabilistic behaviour is not mathematically
tractable except for d = 1. On the other hand, a particular family of PCDs, called proportional-edge PCDs
(PE-PCDs), has mathematical tractable minimum dominating sets in Rd; however their construction in
higher dimensions may be computationally demanding. More specifically, we show that the classifiers
based on PE-PCDs are prototype-based classifiers such that the exact minimum number of prototypes
(equivalent to minimum dominating sets) are found in polynomial time on the number of observations.
We construct two types of classifiers based on PE-PCDs. One is a family of hybrid classifiers depend on
the location of the points of the training data set, and another type is a family of classifiers solely based
on class covers. We assess the classification performance of our PE-PCD based classifiers by extensive
Monte Carlo simulations, and compare them with that of other commonly used classifiers. We also show
that, similar to CCCD classifiers, our classifiers are relatively better in classification in the presence of
class imbalance.
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1 Introduction

Classification methods based on set covering algorithms received considerable attention because of their use
in prototype selection (Angiulli, 2012; Bien and Tibshirani, 2011; Cannon and Cowen, 2004). Prototypes are
selected members of a data set so as to attain various tasks including reducing, condensing or summarizing
a data set. Many learning methods aim to carry out more than one of these tasks, thereby building efficient
learning algorithms (Bien and Tibshirani, 2011; Pȩkalska et al., 2006). A desirable prototype set reduces the
data set in order to decrease running time, condenses the data set to preserve information, and summarizes
the data set for better exploration and understanding. The methods we discuss in this work are considered
as decision boundary generators where decisions are made based on class conditional regions, or class covers,
that are composed of a collection of convex sets, each associated with a prototype (Toussaint, 2002). The
union of such convex sets constitute a region for the class of interest, estimating the support of this class
(Schölkopf et al., 2001). Support estimates have uses in both supervised and unsupervised learning schemes
offering solutions to many problems of machine learning literature (Marchette, 2004). We propose supervised
learning methods, or classifiers, based on these estimates of the supports constructed with a random geometric
digraph family called proximity catch digraphs.

Proximity Catch Digraphs (PCDs) are closely related to Class Cover Catch Digraphs (CCCDs) intro-
duced by Priebe et al. (2001), and are vertex-random digraphs defined by the relationship between class-
labeled observations. They introduced CCCDs to find graph theoretic solutions to the Class Cover Problem
(CCP), and provided some results on the minimum dominating sets and the distribution of the domination
number of such digraphs for one dimensional data. The goal of CCP is to find a set of hyperballs (usually
Euclidean balls) such that their union encapsulates, or covers, a subset of the training data set associated
with a particular class, called the target class (Cannon and Cowen, 2004). In addition, Priebe et al. (2003a)
showed that approximate dominating sets of CCCDs, which were obtained by a greedy algorithm, can be
used to establish efficient semi-parametric classifiers. Moreover, DeVinney et al. (2002) defined random walk
CCCDs (RW-CCCD) where balls of class covers are defined in a relaxed manner compared to the previously
introduced CCCDs. These digraphs have been used, e.g. in face detection (Eveland et al., 2005) and in latent
class discovery for gene expression data (Priebe et al., 2003b). CCCDs also show robustness to data sets with
imbalanced class priors (Manukyan and Ceyhan, 2016). This phenomenon often occurs in real data sets; that
is, some classes of the data sets have a large number of members whereas the remaining classes only have
few, resulting a bias towards the majority class (the class with more members) which drastically decreases
the classification performance.

Class covers with Euclidean balls have been extended to allow the use of different type of regions to
cover a class of interest. Serafini (2014) uses sets of boxes to find a cover of classes, and also defines the
maximum redundancy problem. This is an optimization problem of covering as many points as possible by
each box where the total number of boxes are kept to a (approximately) minimum. Hammer et al. (2004)
investigates CCP using boxes with applications to the logical data analysis. Moreover, Bereg et al. (2012)
extend covering boxes to rectilinear polygons to cover classes, and they report on the complexity of the CCP
algorithms using such polygonal covering regions. Takigawa et al. (2009) incorporate balls and establish
classifiers similar to the ones based on CCCDs, and they also use sets of convex hulls. Ceyhan (2005) uses
sets of triangles relative to the tessellation of the opposite class to analytically compute the minimum number
of triangles required to establish a class cover. In this work, we study class covers with particular triangular
regions (simplical regions in higher dimensions).

CCCDs can be generalized using proximity maps (Jaromczyk and Toussaint, 1992). Ceyhan (2005)
defined PCDs and introduced three families of PCDs to analytically compute the distribution of the domina-
tion number of such digraphs in a two class setting. Domination number and, another graph invariant, the
arc density (the ratio of number of arcs in a digraph to the total number of arcs possible) of these PCDs have
been used for testing spatial patterns of segregation and association (Ceyhan and Priebe, 2005; Ceyhan et al.,
2007, 2006). In this article, we employ PCDs in statistical classification and investigate their performance.
The PCDs of concern in this work are based on a particular family of proximity maps called proportional-
edge (PE) proximity maps. The corresponding PCDs are called PE-PCDs, and are defined for target class
(i.e. the class of interest) points inside the convex hull of non-target points (Ceyhan, 2005). However, this
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construction ignores the target class points outside the convex hull of the non-target class. We mitigate
this shortcoming by partitioning the region outside of the convex hull into unbounded regions, called outer
simplices, which may be viewed as extensions of outer intervals in R (e.g. intervals with infinite endpoints) to
higher dimensions. We attain proximity regions in these outer simplices by extending PE proximity maps to
outer simplices. We establish two types of classifiers based on PE-PCDs, namely hybrid and cover classifiers.
The first type incorporates the PE-PCD covers of only points in the convex hull and use other classifiers for
points outside the convex hull of the non-target class, hence we have some kind of a hybrid classifier; the
second type is further based on two class cover models where the first is a hybrid of PE-PCDs and CCCDs
(composite covers) whereas the second is purely based on PE-PCDs (standard covers).

One common property of most class covering (or set covering) methods is that none of the algorithms
find the exact minimum number of covering sets in polynomial time, and solutions are mostly provided by
approximation algorithms (Vazirani, 2001). However, for PE-PCDs, the exact minimum number of covering
sets (equivalent to prototype sets) can be found much faster; that is, the exact minimum solution is found
in a running time polynomial in size of the data set but exponential in dimensionality. PE-PCDs have com-
putationally tractable (exact) minimum dominating sets in Rd (Ceyhan, 2010). Although the complexity of
class covers based on this family of proximity maps exponentially increases with dimensionality, we apply
dimension reduction methods (e.g. principal components analysis) to substantially reduce the number of fea-
tures and to reduce the dimensionality. Hence, based on the transformed data sets in the reduced dimensions,
the PE-PCD based hybrid and, in particular, cover classifiers become more appealing in terms of both pro-
totype selection and classification performance (in the reduced dimension). We use simulated and real data
sets to show that these two types of classifiers based on PE-PCDs have either comparable or slightly better
classification performance than other classifiers when the data sets exhibit the class imbalance problem.

The article is organized as follows: in Section 2, we introduce some auxiliary tools for the defining
PCDs, and in particular Section 3, we describe the PE-PCDs. In Section 4, we introduce two types of
class cover models that are called composite and standard covers. In Section 5, we introduce two types
statistical classifiers based on PE-PCDs which are called hybrid and cover PE-PCD classifiers. The latter
type is defined for both class cover models described in Section 4. In Section 6, we assess the performance of
PE-PCD classifiers and compare them with existing methods (such as k-nearest neighbors and support vector
machine classifiers) on simulated data sets. Finally, in Section 7, we assess our classifiers on real data sets,
and in Section 8, we present discussion and conclusions as well as future research directions.

2 Tessellations in Rd and the Auxiliary Tools

In this section, we introduce tools for constructing PE-PCD classifiers. Let (Ω,M) be a measurable space,
and let the training data set be composed of two non-empty sets, X0 and X1, that are sets of Ω-valued random
variables with class conditional distributions F0 and F1, with supports s(F0) and s(F1), and with sample sizes
n0 := |X0| and n1 := |X1|, respectively. We develop rules to define proximity maps and regions for the class of
interest, i.e. target class, Xj , for j = 0, 1, with respect to the Delaunay tessellation of the class of non-interest,
i.e. non-target class X1−j .

A tessellation in Rd is a collection of non-intersecting (actually intersecting possibly only on boundaries)
convex d-polytopes such that their union covers a region. We partition Rd into non-intersecting d-simplices
and d-polytopes to construct PE-PCDs that tend to have multiple disconnected components. We show that
such a partitioning of the domain provides digraphs with computationally tractable minimum dominating
sets. In addition, we use the barycentric coordinate system to characterize the points of the target class
with respect to the Delaunay tessellation of the non-target class. Such a coordinate system simplifies the
definitions of many tools associated with PE-PCD classifiers in Rd, including minimum dominating sets of
PE-PCDs and convex distance functions.
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2.1 Delaunay Tessellation of Rd

The convex hull of the non-target class CH(X1−j) can be partitioned into Delaunay cells through the Delaunay
tessellation of X1−j ⊂ R2. The Delaunay tessellation becomes a triangulation which partitions CH(X1−j) into
non intersecting triangles. For the points in the general position, the triangles in the Delaunay triangulation
satisfy the property that the circumcircle of a triangle contain no points from X1−j except for the vertices of
the triangle. In higher dimensions, Delaunay cells are d-simplices (for example, a tetrahedron in R3). Hence,
the CH(X1−j) is the union of a set of disjoint d-simplices {Sk}Kk=1 where K is the number of d-simplices, or
Delaunay cells. Each d-simplex has d + 1 non-coplanar vertices where none of the remaining points of X1−j
are in the interior of the circumsphere of the simplex (except for the vertices of the simplex which are points
from X1−j). Hence, simplices of the Delaunay tessellations are more likely to be acute (simplices with no
substantially small inner angles). Note that Delaunay tesselation is the dual of the Voronoi diagram of the
set X1−j . A Voronoi diagram is a partitioning of Rd into convex polytopes such that the points inside each
polytope is closer to the point associated with the polytope than any other point in X1−j . Hence, a polytope
V(y) associated with a point y ∈ X1−j is defined as

V(y) = {v ∈ Rd : ‖v − y‖ ≤ ‖v − z‖ for all z ∈ X1−j \ {y}}.

Here, ‖·‖ stands for the usual Euclidean norm. Observe that the Voronoi diagram is unique for a fixed set
of points X1−j . A Delaunay graph is constructed by joining the pairs of points in X1−j whose boundaries of
voronoi polytopes are intersecting. The edges of the Delaunay graph constitute a partitioning of CH(X1−j),
hence the Delaunay tessellation. By the uniqueness of the Voronoi diagram, the Delaunay tesselation is also
unique (except for cases where d+ 1 or more points lie on the same circle of hypersphere). An illustration of
the Voronoi diagram and the corresponding Delaunay triangulation in R2 are given in Figure 1(a) and (b).

A Delaunay tessellation partitions only CH(X1−j) and do not offer a partitioning of the complement
Rd \ CH(X1−j) unlike the Voronoi diagrams. As we will see in the following sections, this drawback makes
the definition of our semi-parametric classifiers more difficult. Let facets of CH(X1−j) be the simplices on
the boundary of CH(X1−j). To partition Rd \ CH(X1−j), we define unbounded regions associated with each
facet of CH(X1−j), namely outer simplices in Rd or outer triangles in R2. Each outer simplex is constructed
by a single facet of CH(X1−j), denoted by Fl for l = 1, · · · , L. Here, L is the number of boundary facets and,
note that, each facet is a (d− 1)-simplex. Let {p1, p2, · · · , pN} ⊆ X1−j be the set of points on the boundary

of CH(X1−j), and let CM :=
∑N
i=1 pi/N be the center of mass of CH(X1−j). We use the bisector rays of

Deng and Zhu (1999) as frameworks for constructing outer simplices, however such rays are not well defined

for convex hulls in Rd for d > 2. Let the ray emanating from CM through pi be denoted as
−−−→
CMpi. Hence,

we define the outer simplices by rays emanating from each boundary points pi to outside of CH(X1−j) in the

direction of
−−−→
CMpi. Each facet Fl has d boundary points adjacent to it, and the rays associated with these

boundary points establish an unbounded region together with the facet Fl. Such a region can be viewed as an
infinite “drinking glass” with Fl being the bottom while top of the glass reaching infinity, similar to intervals
in R with infinite endpoints. Let Fl denote the outer simplex associated with the facet Fl. An illustration of
outer triangles in R2 has been given in Figure 1(c) where the CH(X1−j) has six facets, hence R2 \CH(X1−j)
is partitioned into six disjoint unbounded regions.

2.2 Barycentric Coordinate System

The barycentric coordinate system was introduced by A.F. Möbius in his book “The Barycentric Calculus”
in 1837. The idea is to define weights w1, w2 and w3 associated with points y1, y2 and y3 which constitute a
triangle T in R2, respectively (Ungar, 2010). Hence the center of mass, or the barycenter, for w1 +w2 +w3 6= 0
is given by

P =
w1y1 + w2y2 + w3y3

w1 + w2 + w3
. (1)
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(a) (b) (c)

Figure 1: (a) A Voronoi diagram of points X1−j ⊂ R2 and (b) the associated the Delaunay triangulation, partitioning

CH(X1−j). (c) The Delaunay tessellation of X1−j with rays
−−−→
CMpi for i = 1, . . . , 6 that yield a partitioning of R2 \

CH(X1−j). The dashed lines illustrate the direction of these rays where they meet at the point CM , center of mass of
CH(X1−j).

Similarly, let S = S(Y) be a d-simplex defined by the non-coplanar points Y = {y1, y2, · · · , yd+1} ⊂ Rd with
weights (w1, w2, · · · , wd+1). Thus, the barycenter W ∈ Rd is given by

W =

∑d+1
i=1 wiyi∑d+1
i=1 wi

with

d+1∑
i=1

wi 6= 0. (2)

The (d + 1)-tuple w = (w1, w2, · · · , wd+1) can also be viewed as a set of coordinates of W with respect
to the set Y = {y1, y2, · · · , yd+1} for d > 0. Hence, the name barycentric coordinates. Observe that W
in Equation (1) is scale invariant (i.e. invariant under scaling of the weights of W ). Therefore, the set of
barycentric coordinates, also denoted as (w1 : w2 : . . . : wd+1), are homogeneous, i.e., for any λ ∈ R+,

(w1 : w2 : . . . : wd+1) = (λw1 : λw2 : . . . : λwd+1). (3)

This gives rise to special barycentric coordinates w′ = (w′1, w
′
2, · · · , w′d+1) of a point x ∈ Rd with respect to

the set Y as follows:
d+1∑
i=1

w′i =

d+1∑
i=1

wi
wtot

= 1, (4)

where wtot :=
∑d+1
j=1 wj . For the sake of simplicity, we refer to the special (or normalized) barycentric

coordinates just as “barycentric coordinates” throughout this work, and use w to denote the set of this
coordinates of x. Hence, the vector w is the solution to the linear systems of equations

Aw =
[
y2 − y1 y3 − y1 · · · yd+1 − y1

]

w1

w2

...
wd

 = x− y1 (5)

where A ∈ Rd×d is a matrix whose columns are vectors defined by yk − y1 in Rd for k = 2, · · · , d + 1. Note
that wd+1 = 1−∑d

i=1 wi. The set w is unique since vectors yk − y1 are linearly independent but wi are not
necessarily in (0, 1). Barycentric coordinates define whether the point x is in S(Y) or not, as follows:

• x ∈ S(Y)o if wi ∈ (0, 1) for all i = 0, 1, · · · , d + 1: the point x is inside of the d-simplex S(Y) where
S(Y)o denotes the interior of S(Y),

• x ∈ ∂(S(Y)), the point x is on the boundary of S(Y), if wi = 0 and wj = (0, 1] for some I such that
i ∈ I ⊂ {0, 1, · · · , d+ 1} and j ∈ {0, 1, · · · , d+ 1} \ I,
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• x = yi if wi = 1 and wj = 0 for any i = 0, 1, · · · , d+ 1 and j 6= i: the point x is at the a corner of S(Y),

• x 6∈ S(Y) if wi 6∈ [0, 1] for some i ∈ {0, 1, · · · , d+ 1}: the point x is outside of S(Y).

Barycentric coordinates of a point x ∈ S(Y) can also be viewed as the convex combination of the points of
Y, the vertices on the boundary of S(Y).

2.3 Vertex Regions in R2

We first define vertex regions in R2, and later, we generalize them to vertex regions in Rd for d > 2. Let
Y = {y1, y2, y3} ⊂ R2 be three non-collinear points, and let T = T (Y) be the triangle formed by these points.
Also, let ei be the edge of T opposite to the vertex yi for i = 1, 2, 3. We partition the triangle T into regions,
called vertex regions. These regions are constructed based on a point, preferably a triangle center M ∈ T o.
Vertex regions partition T into disjoint regions (only intersecting on the boundary) such that each vertex
region has only one of vertices {y1, y2, y3} associated with it. In particular, M -vertex regions are classes of
vertex regions, which are constructed by the lines from each vertex yi to M . These lines cross the edge ei at
point Mi. By connecting M with each Mi, we attain regions associated with vertices {y1, y2, y3}. M -vertex
region of yi is denoted by RM (yi) for i = 1, 2, 3. For the sake of simplicity, we will refer M -vertex regions as
vertex regions. Figure 2 illustrates the vertex regions of an acute triangle in R2.

Ceyhan and Priebe (2005) introduced the vertex regions as auxiliary tools to define proximity regions.
They also gave the explicit functional forms of these regions as a function of the coordinates of vertices
{y1, y2, y3}. However, we characterize these regions based on barycentric coordinates as given in Proposi-
tions 2.3.1, as this coordinate system will be more convenient for computation in higher dimensions.

M

M1

M2

M3
y1 y2

y3

M

M1

M2

M3
y1 y2

y3

RM(y1) RM(y2)

RM(y3)

Figure 2: M -vertex regions of an acute triangle T (Y) = T (y1, y2, y3) with a center M ∈ T (Y)o. (a) The dashed lines
constitute the vertex regions. (b) Each M -vertex region is associated with a vertex yi for i = 1, 2, 3.

Proposition 2.3.1. Let Y = {y1, y2, y3} ⊂ R2 be a set of three non-collinear points, and let the set of vertex
regions {RM (yi)}i=1,2,3 partitions T (Y). Hence for x,M ∈ T (Y)o, we have x ∈ RM (yi) if and only if

w
(i)
T (x) > max

j=1,2,3
j 6=i

miw
(j)
T (x)

mj

for i = 1, 2, 3 where wT (x) =
(
w

(1)
T (x), w

(2)
T (x), w

(3)
T (x)

)
and m = (m1,m2,m3) are barycentric coordinates

of x and M with respect to T (Y), respectively.

Proof: It is sufficient to show the result for i = 1 (as others follow by symmetry). Hence we show that, for
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x ∈ RM (y1), we have

w
(1)
T (x) > max

{
m1w

(2)
T (x)

m2
,
m1w

(3)
T (x)

m3

}
.

Let T2(Y) and T3(Y) be the interiors of two triangles given by sets of points {y1, y2,M2} and {y1, y3,M3},
respectively. Let z ∈ T2(Y) and let wT2

(z) = (α1, α2, α3) be the barycentric coordinates of z with respect to
T2(Y). Then

z = α1y1 + α2y2 + α3M2

= α1y1 + α2y2 + α3(by1 + (1− b)y3)

= (α1 + α3b)y1 + α2y2 + α3(1− b)y3,

since M2 lies on edge e2, we can write it as M2 = by1 + (1 − b)y3 for some b ∈ (0, 1). By the uniqueness of

wT (z), we have w
(1)
T (z) = α1 + α3b and w

(3)
T (z) = α3(1− b). Hence,

w
(1)
T (z)

w
(3)
T (z)

=
α1 + α3b

α3(1− b) >
b

(1− b) =
m1

m3

since αi > 0 for i = 1, 2, 3. Also, since M2 and M are on the same line which crosses the edge e2, for some
c ∈ (0, 1):

M = cy2 + (1− c)M2

= cy2 + (1− c)(by1 + (1− b)y3)

= b(1− c)y1 + cy2 + (1− b)(1− c)y3,

Hence, b(1 − c) = m1 and (1 − b)(1 − c) = m3, and observe that m1/m3 = b/(1 − b). Then, T2(Y) = {x ∈
T (Y)o : w

(1)
T (x) > (m1/m3)w

(3)
T (x)}, and similarly, T3(Y) = {x ∈ T (Y)o : w

(1)
T (x) > (m1/m2)w

(2)
T (x)}. Thus,

RM (y1) = T2(Y) ∩ T3(Y) =

{
x ∈ T (Y)o : w

(1)
T (x) > max

{
m1w

(2)
T (x)

m2
,
m1w

(3)
T (x)

m3

}}
. �

Note that, when M := MC the median (or the center of mass) of the triangle T (Y), we can simplify
the result of Proposition 2.3.1; that is, for any point x ∈ T (Y)o, we have x ∈ RMC

(yi) if and only if

w
(i)
T (x) = maxj=1,2,3 w

(j)
T (x) since the set of (special) barycentric coordinates of MC is mC = (1/3, 1/3, 1/3).

2.4 M-Vertex Regions in Rd with d > 2

The definitions of vertex regions in R2 can be extended to the ones in Rd for d > 2. A d-simplex is the
smallest convex polytope in Rd constructed by a set of non-coplanar vertices Y = {y1, y2, · · · , yd+1}. The
boundary of a d-simplex consists of k-simplices called k-faces for 0 ≤ k < d. Each k-face is a simplex defined
by a subset of Y with k elements, hence there are

(
d+1
k+1

)
k-faces in a d-simplex. Let S(Y) be the simplex

defined by the set of points Y. Given a simplex center M ∈ S(Y)o (e.g. a triangle center in R2), there are
d+ 1 M -vertex regions constructed by the set Y. The M -vertex region of the vertex yi is denoted by RM (yi)
for i = 1, 2, · · · , d+ 1.

For i = 1, . . . , d + 1, let fi denote the (d − 1)-face opposite to the vertex yi. Observe that the lines
through the points yi and M cross the face fi, a (d−1)-face, at the points Mi. Similarly, since the face fi is a
(d−1)-simplex with a center Mi for any i = 1, . . . , d+1, we can find the centers of (d−2)-faces of this (d−1)-
simplex. Note that both Mi and M are of same type of centers of their respective simplices fi and S(Y). The
vertex region RM (yi) is the convex hull of the points yi, {Mj}d+1

j=1;j 6=i, and centers of all k-faces (which are
also k-simplices) adjacent to yi for k = 1, . . . , d− 2. Illustration of the vertex regions RM (y1) and RM (y3) of
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a 3-simplex (tetrahedron) are given in Figure 3. Each 2-face of this 3-simplex is a 2-simplex (a triangle). For
example, in Figure 3(a), the points M2, M3 and M4 are centers of f2, f3 and f4, respectively. Moreover, these
2-simplices also have faces (1-faces or edges of the 3-simplex), and the centers of these faces are {Mij}4i,j=1;i 6=j .
Hence, the vertex region RM (y1) is a convex polytope of points {y1,M,M2,M3,M4,M32,M42,M43} and
RM (y3) is a convex polytope of points {y3,M,M2,M4,M1,M42,M41,M21}. The following theorem is an
extension of the Proposition 2.3.1 to higher dimensions.
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Figure 3: (a) M -vertex region RM (y1) of vertex y1 and (b) RM (y3) of vertex y3 of a 3-simplex, or a tetrahedron.
M -vertex regions are shaded.

Theorem 2.4.1. Let Y = {y1, y2, · · · , yd+1} ⊂ Rd be a set of non-coplanar points for d > 0, and let the set
of vertex regions {RM (yi)}d+1

i=1 partitions S(Y). Hence, for x,M ∈ S(Y)o, we have x ∈ RM (yi) if and only if

w
(i)
S (x) > max

j=1,··· ,d+1
j 6=i

miw
(j)
S (x)

mj
(6)

where wS(x) =
(
w

(1)
S (x), · · · , w(d+1)

S (x)
)

and m = (m1, . . . ,md+1) are the barycentric coordinates of x and

M with respect to S(Y), respectively.

See Appendix for the proof.

For M = MC and for any point x ∈ S(Y)o, we have x ∈ RMC
(yi) if and only if w

(i)
T (x) = maxj w

(j)
T (x)

since the set of barycentric coordinates of MC is mC = (1/(d+ 1), 1/(d+ 1), . . . , 1/(d+ 1)). The MC-vertex
regions are particularly appealing for our proportional-edge proximity regions.

3 Proximity Regions and Proximity Catch Digraphs

We consider proximity regions for the (supervised) two-class classification problem, then perform complexity
reduction via minimum dominating sets of the associated proximity catch digraphs. For j = 0, 1, the proximity
map N (·) : Ω → 2Ω associates with each point x ∈ Xj , a proximity region N (x) ⊂ Ω. Consider the data-
random (or vertex-random) proximity catch digraph Dj = (Vj ,Aj) with vertex set Vj = Xj and arc set Aj
defined by (u, v) ∈ Aj ⇐⇒ {u, v} ⊂ Xj and v ∈ N (u), for j = 0, 1. The digraph Dj depends on the
(joint) distribution of the sets of points X0 and X1, and on the map N (·). The adjective proximity — for the
digraph Dj and for the map N (·) — comes from thinking of the region N (x) as representing those points in
Ω “close” to x (Jaromczyk and Toussaint, 1992; Toussaint, 1980). Our proximity catch digraphs (PCDs) for
Xj against X1−j are defined by specifying Xj as the target class and X1−j as the non-target class. Hence, in
the definitions of our PCDs, the only difference is switching the roles of X0 and X1. For j = 0, X0 becomes
the target class, and for j = 1, X1 becomes the target class.
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The proximity regions associated with PCDs introduced by Ceyhan and Priebe (2005) are simplicial
proximity regions (regions that constitute simplices in Rd) defined for the points of the target class Xj in the
convex hull of the non-target class, CH(X1−j). However, by introducing the outer simplices associated with
the facets of CH(X1−j), we extend the definition of the simplical proximity regions to Rd \ CH(X1−j). Such
simplical regions are d-simplices in CH(X1−j) (triangles in R2 and tetrahedrons in R3) and d-polytopes for
Rd \ CH(X1−j). After partitioning Rd into disjoint regions, we further partition each simplex Sk (only the
ones inside CH(X1−j)) into vertex regions, and define the simplical proximity regions N (x) for x ∈ Sk. Here,
we define the regions N (x) as open sets in Rd.

3.1 Class Cover Catch Digraphs

Class Cover Catch Digraphs (CCCDs) are graph theoretic representations of the CCP (Priebe et al., 2001,
2003a). In a CCCD, for x, y ∈ Xj ; let x be the center of a ball B = B(x, ε) with radius ε = ε(x). A CCCD
is a digraph Dj = (Vj ,Aj) with vertex set Vj = Xj and the arc set Aj where (x, y) ∈ Aj iff y ∈ B. One
particular family of CCCDs are called pure-CCCDs wherein, for all x ∈ Xj , no non-target class point lies in
B. Hence, for some θ ∈ (0, 1] and for all x ∈ Xj , the open ball B is denoted by Bθ(x, εθ(x)) with the radius
εθ(x) given by

εθ(x) := (1− θ)d(x, l(x)) + θd(x, u(x)), (7)

where
u(x) := argmin

y∈X1−j

d(x, y)

and
l(x) := argmax

z∈Xj

{d(x, z) : d(x, z) < d(x, u(x))}.

Here, d(., .) can be any dissimilarity measure but we use the Euclidean distance henceforth. For all x ∈ Xj ,
the definition of the radius εθ(x) keeps any non-target class point v ∈ X1−j out of the ball B; that is,
X1−j ∩ B = ∅. We say the CCCD Dj is “pure” since the balls include only the target class points and
none of the non-target class points. The CCCD Dj is invariant to the choice of θ, but this parameter affects
the classification performance. This parameter potentially establishes classifiers with increased performance
(Priebe et al., 2003a). An illustration of the effect of parameter θ on the radius of Bθ(x, εθ(x)) is given
in Figure 4 (DeVinney, 2003). In fact, CCCDs can also be viewed as a family of PCDs using spherical
proximity maps, letting N (x) := B(x, ε(x)). We denote the proximity regions associated with pure-CCCDs
as NS(x, θ) = Bθ(x, εθ(x)). For simplicity, we refer to pure-CCCDs as CCCDs throughout this article.
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Figure 4: The radius εθ(x) of a single target class point x in a two-class setting. Grey and black points represent
the points of the target class Xj and the non-target class X1−j , respectively. The solid circle is constructed with the
radius εθ(x) given by θ = 1, dashed one by θ = 0.5 and the dotted one by θ = ε, where ε is the machine epsilon.
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3.2 Proportional-Edge Proximity Maps

We use a type of proximity map with expansion parameter r, namely proportional-edge (PE) proximity map,
denoted by NPE(·, r). The PE proximity map and the associated digraphs, PE-PCDs, are defined in Ceyhan
and Priebe (2005). Currently, PE-PCDs are only defined for the points in Xj ∩ CH(X1−j). Hence, for the
remaining points of the target class Xj , i.e. Xj \ CH(X1−j), we extend the definition of PE proximity maps
to the outer simplices. Hence, we will be able to show later that the resulting PCDs have computationally
tractable minimum dominating sets which are equivalent to the exact minimum prototype sets of PE-PCD
classifiers for the entire data set.

3.2.1 Proximity Maps of d-Simplices

For r ∈ [1,∞), we define NPE(·, r) to be the PE proximity map associated with a triangle T = T (Y)
formed by the set of non-collinear points Y = {y1, y2, y3} ⊂ R2. Let RMC

(y1), RMC
(y2) and RMC

(y3) be
the vertex regions associated with vertices y1,y2 and y3. Note that the barycentric coordinates of MC are
(1/3 : 1/3 : 1/3). For x ∈ T o, let v(x) ∈ Y be the vertex whose region contains x; hence x ∈ RMC

(v(x)).
If x falls on the boundary of two vertex regions, or on MC , we assign v(x) arbitrarily. Let e(x) be the edge
of T opposite to v(x). Let `(v(x), x) be the line parallel to e(x) through x. Let d(v(x), `(v(x), x)) be the
Euclidean (perpendicular) distance from v(x) to `(v(x), x). For r ∈ [1,∞), let `r(v(x), x) be the line parallel
to e(x) such that d(v(x), `r(v(x), x)) = rd(v(x), `(v(x), x)). Let Tr(x) be the triangle similar to and with the
same orientation as T where Tr(x) has v(x) as a vertex and `r(v(x), x) as edge opposite of v(x). Then the
proportional-edge proximity region NPE(x, r) is defined to be Tr(x) ∩ T . Figure 5 illustrates a PE proximity
region NPE(x, r) of a point x in an acute triangle.

y1 = v(x) y2

x

y3

MC

ℓ
2 (v(x), x)

e(x)

d(
v(
x)
, ℓ 2
(v
(x
),
x)
) =

2 d
(v
(x
),
ℓ(
v(
x)
, x
))

d(
v(
x)
, ℓ
(v
(x
),
x)
)

ℓ(v(x), x)

Figure 5: The PE proximity region (shaded), NPE(x, r = 2), in a triangle T ⊆ R2.

The extension of NPE(·, r) to Rd for d > 2 is straightforward. Now, let Y = {y1, y2, · · · , yd+1} be a set
of d+ 1 non-coplanar points, and represent the simplex formed by the these points as S = S(Y). We define
the PE proximity map as follows. Given a point x ∈ So, let v(x) be the vertex in whose region x falls (if x falls
on the boundary of two vertex regions or on MC , we assign v(x) arbitrarily.) Let ϕ(x) be the face opposite to
vertex v(x), and η(v(x), x) be the hyperplane parallel to ϕ(x) which contains x. Let d(v(x), η(v(x), x)) be the
(perpendicular) Euclidean distance from v(x) to η(v(x), x). For r ∈ [1,∞), let ηr(v(x), x) be the hyperplane
parallel to ϕ(x) such that d(v(x), ηr(v(x), x)) = r d(v(x), η(v(x), x)). Let Sr(x) be the polytope similar to
and with the same orientation as S having v(x) as a vertex and ηr(v(x), x) as the opposite face. Then the
proportional-edge proximity region is given by NPE(x, r) := Sr(x) ∩S.

Notice that, so far, we assumed a single d-simplex for simplicity. For n1−j = d+ 1, the convex hull of
the non-target class CH(X1−j) is a d-simplex. If n1−j > d + 1, then we consider the Delaunay tessellation

(assumed to exist) of X1−j where S(1)
1−j = {S1, . . . ,SK} denotes the set of all Delaunay cells (which are
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d-simplices). We construct the proximity region NPE(x, r) of a point x ∈ Xj depending on which d-simplex
Sk this point reside in. Observe that, this construction pertains to points in Xj ∩ CH(X1−j) only.

3.2.2 Proximity Maps of outer simplices

For points of the target class Xj outside of the convex hull of the non-target class X1−j , i.e. Xj \ CH(X1−j),
we define the PE proximity maps similar to the ones defined for d-simplices. Let F ⊂ R2 be an outer triangle

defined by the adjacent boundary points {y1, y2} ⊂ R2 of CH(X1−j) and by rays
−−−→
CMy1 and

−−−→
CMy2 for CM

being the median of the boundary points of CH(X1−j). Also, let e = F be the edge (or facet) of CH(X1−j)
adjacent to vertices {y1, y2}. Note that there is no center in an outer triangle, and hence no vertex regions.
For r ∈ [1,∞), we define NPE(·, r) to be the PE proximity map of the outer triangle. For x ∈ F o, let
`(x, e) be the line parallel to e through x, and let d(e, `(x, e)) be the Euclidean distance from e to `(x, e). For
r ∈ [1,∞), let `r(x, e) be the line parallel to e such that d(e, `r(x, e)) = rd(e, `(x, e)). Let Fr(x) be a polygon
similar to the outer triangle F such that Fr(x) has e and er(x) = `r(x, e) ∩F as its two edges, however
Fr(x) is a bounded region whereas F is not. Then, the proximity region NPE(x, r) is defined to be Fr(x).
Figure 6 illustrates a PE proximity region NPE(x, r) of a point x in an outer triangle.

��

x

ℓ(x
, e)

ℓ
2 (x

, e)

e
=
F

y1

y2

d(e,
ℓ(x,

e))

d(e,
ℓ2(x

, e))
= 2d(e

, ℓ(x
, e))

−−−→
CM

y1

−−−→
CMy2

Figure 6: The proportional-edge proximity region, NPE(x, r = 2) (shaded), in an outer triangle F ⊆ R2.

The extension of NPE(·, r) of outer triangles to Rd for d > 2 is straightforward. Let F ⊂ Rd be
an outer simplex defined by the adjacent boundary points {y1, . . . , yd} ⊂ Rd of CH(X1−j) and by rays

{−−−→CMy1, . . . ,
−−−→
CMyd}. Also, let F be the facet of CH(X1−j) adjacent to vertices {y1, . . . , yd}. We define the

PE proximity map as follows. Given a point x ∈ F o, let η(x,F) be the hyperplane parallel to F through
x and let d(F , η(x,F)) be the Euclidean distance from F to η(x,F). For r ∈ [1,∞), let ηr(x,F) be the
hyperplane parallel to F such that d(F , ηr(x,F)) = rd(F , η(x,F)). Let Fr(x) be the polytope similar to the
outer simplex F such that Fr(x) has F and Fr(x) = ηr(x)∩F as its two faces. Then, the proximity region
NPE(x, r) is defined to be Fr(x).

The convex hull CH(X1−j) has at least d+1 facets (exactly d+1 when n1−j = d+1), and since each outer

simplex is associated with a facet, the number of outer simplices is at least d+ 1. Let S(2)
1−j = {F1, . . . ,FL}

denotes the set of all outer simplices. This construction handles the points in Xj \ CH(X1−j) only. Together
with the points inside CH(X1−j), the PE-PCD Dj , whose vertex set is Vj = Xj , has at least

K∑
k=1

I(Xj ∩Sk 6= ∅) +

L∑
l=1

I(Xj ∩Fl 6= ∅)

many components.
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3.3 Minimum Dominating Sets

Our main contribution is the development of prototype-based classifiers with computationally tractable exact
minimum prototype sets. We model the target class with a digraph D such that prototype sets of the target
class are equivalent to dominating sets of D. Ceyhan (2010) determined the appealing properties of minimum
dominating set of CCCDs in R as a guideline in defining new parametric digraphs relative to the Delaunay
tessellation of the non-target class. In R, CCCDs have computationally tractable minimum dominating
sets, and the exact distribution of domination number is known for target class points which are uniformly
distributed within each cell. However, there is no polynomial time algorithm providing the exact minimum
dominating sets of CCCDs in Rd for d > 1. In this section, we provide a characterization of minimum
dominating sets of PE-PCDs with barycentric coordinate systems and use them to introduce algorithms for
finding these sets in polynomial time.

We model the support of the class conditional distribution, i.e. s(Fj), by a mixture of proximity regions.
Our estimate for the support of the class Xj is Qj := ∪x∈Xj

N (x) such that Xj ⊂ Qj . Nevertheless, the support
of the target class Xj can be estimated by a cover with lower complexity (fewer proximity regions). For that
purpose, we wish to reduce the model complexity by selecting an appropriate subset of proximity regions that
still gives approximately the same estimate as Qj ; that is, let this cover be defined as Cj := ∪x∈SjNPE(x, r),
where Sj is a prototype set of points Xj such that Xj ⊂ Cj . A reasonable choice of prototype sets for our
class covers are the minimum dominating sets of PE-PCDs, whose elements are often more “central” than
the arbitrary sets of the same size. Dominating sets of minimum size are appealing since the size of the
prototype sets determine the complexity of the model; that is, the smaller the set in cardinality (i.e. the
model is lower in complexity), the higher the expected classification performance (Gao et al., 2013; Mehta
et al., 1995; Rissanen, 1989).

In general, a digraph D = (V,A) of order n = |V|, a vertex v dominates itself and all vertices of the
form {u : (v, u) ∈ A}. A dominating set, SD, for the digraph D is a subset of V such that each vertex v ∈ V
is dominated by a vertex in SD. A minimum dominating set (MDS), SMD, is a dominating set of minimum
cardinality, and the domination number, γ(D), is defined as γ(D) := |SMD|. If a minimum dominating set
is of size one, we call it a dominating point. Finding a minimum dominating set is, in general, an NP-hard
optimization problem (Arora and Lund, 1996; Karr, 1992). However, an approximately minimum dominating
set can be obtained in O(n2) using a well-known greedy algorithm as in Algorithm 1 (Chvatal, 1979; Parekh,
1991). PCDs using NS(·, θ) (or CCCDs with parameter θ) are examples of such digraphs. But, (exact) MDS
of PCDs of maps NPE(·, r) are computationally tractable unlike PCDs with maps NS(·, θ). Many attributes
of these PE proximity maps and the proof of the existence of an algorithm to find a set SMD are conveniently
implemented through the barycentric coordinate system. Before proving the results on the MDS, we give the
following proposition.

Algorithm 1: The greedy algorithm for finding an approximate minimum dominating set of a digraph D.
Here, D[H] is the digraph induced by the set of vertices H ⊆ V (see West, 2000).

Input: A digraph D = (V,A)
Output: An approximate minimum dominating set, S

set H = V and S = ∅
while H 6= ∅ do
v∗ ← argmaxv∈V(D) |{u ∈ V(D) : (v, u) ∈ A(D)}|
S ← S ∪ {v∗}
H ← V(D) \ {u ∈ V(D) : (v∗, u) ∈ A(D)}
D ← D[H]

end while

Proposition 3.3.1. Let Y = {y1, y2, . . . , yd+1} ⊂ Rd be a set of non-coplanar points for d > 0. For x, x∗ ∈
S = S(Y)o, we have d(x, fi) < d(x∗, fi) if and only if w

(i)
S (x) < w

(i)
S (x∗) for all i = 1, . . . , d + 1, where

d(x, fi) is the distance between point x and the face fi.

Proof: For i = 1, . . . , d+ 1, note that fi is the face of the simplex S opposite to the vertex yi. Let L(yi, x)
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be the line through points x and yi, and let z ∈ fi be the point that L(yi, x) and fi cross at. Also, recall that
η(yi, x) denotes the hyperplane through the point x, and parallel to fi. Hence, for α ∈ (0, 1),

x = αyi + (1− α)z,

and since z is a convex combination of the set {yk}k 6=i,

x = αyi +

 d+1∑
k=1;k 6=i

(1− α)βkyk

 ,

for βk ∈ (0, 1). Thus, w
(i)
S (x) = α by the uniqueness of wS(x). Observe that α = d(x, z)/d(yi, z) =

d(x, fi)/d(yi, fi) since distances d(x, z) and d(x, fi) = d(η(yi, x), fi) are directly proportional. In fact, points

that are on the same line parallel to fi have the same i’th barycentric coordinate w
(i)
S (x) = α corresponding

to the vertex yi. Also, recall that with decreasing α, the point x gets closer to fi (x ∈ fi if α = 0,

and x = yi if α = 1). Then, for any two points x, x∗ ∈ So, we have w
(i)
S (x) < w

(i)
S (x∗) if and only if

d(η(yi, x), fi) < d(η(yi, x
∗), fi) if and only if d(x, fi) < d(x∗, fi). �

Barycentric coordinates of a set of points in S(X1−j) help one characterize the set of local extremum
points, where a subset of local extremum points constitute the minimum dominating set SMD. We use the
Proposition 3.3.1 to prove the following theorem on SMD of a PE-PCD D.

Theorem 3.3.1. Let Z = {z1, z2, . . . , zn} ⊂ Rd and Y = {y1, y2, . . . , yd+1} ⊂ Rd for d > 0, and let S = S(Y )
be the d-simplex given by the set Y such that Z ⊂ So. Hence, given the map NPE(·, r), we have γ(D) ≤ d+ 1
for PE-PCD D with vertex set V = Z.

Proof: Let x, x∗,M ∈ So. For i = 1, . . . , d + 1, we show that there exists a point x[i] ∈ Z ∩ RM (yi)
such that Z ∩ RM (yi) ⊂ NPE(x[i], r) for all r ∈ (1,∞). It is easy to see that d(x∗, fi) < d(x, fi) if and
only if NPE(x∗, r) ⊂ NPE(x, r). Hence, d(x[i], fi) = minz∈Z d(z, fi) if and only if NPE(z, r) ⊂ NPE(x[i], r)
for all z ∈ Z ∩ RM (yi). Also, by Proposition 3.3.1, note that d(x[i], fi) ≤ minz∈Z d(z, fi) if and only if

w
(i)
S (x[i]) ≤ minz∈Z w

(i)
S (z). Thus, the local extremum point x(i) is given by

x[i] := argmin
x∈Z∩RM (yi)

w
(i)
S (x).

Finally, observe that Z ⊂ ∪d+1
i=1NPE(x[i], r). Hence, the set of all local extremum points {x[1], . . . , x[d+1]} is a

dominating set of the points Z ⊂ So, so γ(D) ≤ d+ 1. �

MDSs of PE-PCDs are found by locating the local extremum point x[i] of the vertex region RMC
(yi)

for all i = 1, . . . , d+ 1. By Theorem 3.3.1, in RMC
(yi), the point x[i] is the closest points to the face fi. For

a set of d-simplices given by the Delaunay tesselation of X1−j , Algorithm 2 identifies all the local extremum
points of each d-simplex in order to find the (exact) minimum dominating set Sj = SMD.

Let Dj = (Vj ,Aj) be a PE-PCD with vertex V = Xj . In Algorithm 2, we partition Xj into such subsets
that each subset falls into a single d-simplex of the Delaunay tesselation of the set X1−j . Let S1−j be the set
of all d-simplices associated with X1−j . Moreover, for each S ∈ S1−j , we further partition the subset Xj ∩S
into subsets that each subset falls into a single vertex region of S. In each vertex region RMC

(yi), we find the
local extremum point x[i]. Let S(D) denote the minimum dominating set and γ(D) denote the domination
number of a digraph D. Also, let Dj [S] be the digraph induced by points of Xj inside the d-simplex S, i.e.
Xj ∩S. Recall that, as a result of Theorem 3.3.1, γ(Dj [S]) ≤ d+ 1 since Xj ∩S ⊂ ∪d+1

i=1NPE(x[i], r). To find
S(Dj [S]), we check all subsets of the set of local extremum points, from smallest cardinality to highest, and
check if Xj ∩S is in the union of proximity regions of these subsets of local extremum points. For example,
S(Dj [S]) = {x[l]} and γ(Dj [S]) = 1 if Xj ∩ RMC

(yi) ⊂ NPE(x[l], r) for some l = 1, 2, 3; else S(Dj [S]) =

{x[l1], x[l2]} and γ(Dj [S]) = 2 if Xj ∩ RMC
(yi) ⊂ NPE(x[l1], r) ∪ NPE(x[l2], r) for some {l1, l2} ∈

({1,2,3}
2

)
;

or else S(Dj [S]) = {x[1], x[2], x[3]} and γ(Dj [S]) = 3 if Xj ∩ RMC
(yi) ⊂ ∪l=1,2,3NPE(x[l], r). The resulting

minimum dominating set of Dj for Xj ∩CH(X1−j) is the union of these sets, i.e., Sj = ∪S∈S1−j
S(Dj [S]) and
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Algorithm 2: The algorithm for finding the (exact) minimum dominating set Sj of a PE-PCD Dj induced
by Xj ∩ CH(X1−j).

Input: The target class Xj , a set of d-simplices of the non-target class S1−j , and the PE proximity map
NPE(·, r).

Output: The minimum dominating set, Sj
1: Sj = ∅
2: for all S ∈ S1−j where Xj ∩S 6= ∅ do
3: X ∗j ← Xj ∩S and let {y1, . . . , yd+1} be the vertices of S.
4: for i = 1, . . . , d+ 1 do

5: Let x[i] ← argmin
x∈X∗

j ∩RMC
(yi)

w
(i)
S (x).

6: end for
7: for t = 1, . . . , d+ 1 do

8: if there exists a set {l1, . . . , lt} ∈
({1, . . . , d+ 1}

t

)
s.t. X ∗j ⊂ ∪ta=1NPE(x[la], r) then

9: Sj ← Sj ∪ {x[l1], . . . , x[lt]}
10: break
11: end if
12: end for
13: end for

γ(Dj) = |Sj |. Observe that S(Dj [S]) = ∅ if Xj ∩S = ∅. This algorithm is guaranteed to terminate, as long
as n0 and n1 are both finite.

The level of reduction depends also on the magnitude of the expansion parameter r. In fact, the larger
the magnitude of r, the more likely the S(Dj [S]) have smaller cardinality, i.e. the more the reduction in the
data set. Thus, we have a stochastic ordering as follows:

Theorem 3.3.2. Let γ(Dj [S], r) be the domination number the PE-PCD Dj(S) with expansion parameter
r. Then for r1 < r2, we have γ(Dj [S], r2) ≤ST γ(Dj [S], r1) where ≤ST stands for “stochastically smaller
than”.

Proof: Suppose r1 < r2. Then in a given simplex Sk for k = 1, . . . ,K, let γk(r) := γ(Sk, r) be the
domination number of the component of the PE-PCD Dj whose vertices are restricted to the interior of Sk.
Let Z = {Z1, Z2, . . . , Zn} be a set of i.i.d. random variables drawn from a continuous distribution F whose
support is Sk, and let Z[i] be the local extremum point of Z ∩RMC

(yi) where yi being the i’th vertex of Sk.
Also, let Vol(NPE(x, r)) be the volume of the NPE(x, r) of a point x ∈ So

k. Note that,

Vol(NPE(x, r1)) < Vol(NPE(x, r2)).

Hence, since NPE(x, r1) ⊂ NPE(x, r2),

Vol(NPE(Z[i], r1)) ≤ST Vol(NPE(Z[i], r2)).

Now, let {l1, . . . , lt} ∈
({1, . . . , d+ 1}

t

)
be any set of indices associated with a subset of all local extremum

points t = 1, . . . , d+ 1. Thus,

Vol
(
∪tb=1NPE(Z[lb], r1)

)
≤ST Vol

(
∪tb=1NPE(Z[lb], r2)

)
.

Hence, given that the event Z ⊂
(
∪tb=1NPE(Z[lb], r)

)
implies γk(r) ≤ t, we can show that

P
(
Z ⊂

(
∪tb=1NPE(Z[lb], r2)

))
≤ P

(
Z ⊂

(
∪tb=1NPE(Z[lb], r1)

))
,

and
P (γk(r2) ≤ t) ≤ P (γk(r1) ≤ t)
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for t = 1, . . . , d+ 1. �

Algorithm 2 ignores the target class points outside the convex hull of the non-target class. This is
not the case with Algorithm 1, since the map NS(·, θ) is defined over all points Xj whereas the original PE
proximity map NPE(·, r) is not. Hence, the prototype set Sj only yields a reduction in the set Xj ∩CH(X1−j).
Solving this issue requires different approaches. One solution is to define covering methods with two proximity
maps that are the PE proximity map and the other which does not require the target class points to be inside
the convex hull of the non-target class points, e.g. spherical proximity regions (proximity maps NS(·, θ)).

Algorithm 3 uses both maps NPE(·, r) and NS(·, θ) to generate a prototype Sj for the target class Xj .
There are two separate MDSs, S

(1)
j which is exactly minimum, and S

(2)
j which is approximately minimum.

Each of the two maps is associated with two distinct digraphs such that Xj ∩ CH(X1−j) constitutes the
vertex set of one digraph and Xj \ CH(X1−j) constitute the vertex of another, where the non-target class is

always X1−j . Algorithm 2 finds a prototype set S
(1)
j for Xj ∩ CH(X1−j), and then the prototype set S

(2)
j for

Xj \CH(X1−j) is appended to the overall prototype set Sj = S
(1)
j ∪S

(2)
j as in Algorithm 3. Note that the set

Sj is an approximate minimum dominating set since S
(2)
j is approximately minimum.

Algorithm 3: The algorithm for finding the minimum dominating set Sj of PCD Dj defined by the proximity
maps NPE(·, r) and NS(·, θ).
Input: The target class Xj , a set of d-simplices of the non-target class S1−j , and the proximity mapsNPE(·, r)

and NS(·, θ).
Output: The approximate minimum dominating set, Sj

1: S
(1)
j = ∅ and S

(2)
j = ∅

2: Find the minimum dominating set of Xj ∩ CH(X1−j) in Algorithm 2 and assign it to S
(1)
j

3: X ′j = Xj \ CH(X1−j).
4: Find the approximate minimum dominating set as in Algorithm 1 where the target class is X ′j and the

non-target class is X1−j , and assign it to S
(2)
j

5: Sj = S
(1)
j ∪ S

(2)
j

Algorithm 4 uses only the PE proximity map NPE(·, r) with the original version inside CH(X1−j) and
extended version outside CH(X1−j). The cover is a mixture of d-simplices and d-polytopes. Given a set

of d-simplices S(1)
1−j and a set of outer simplices S(2)

1−j , we find the respective local extremum points of each
d-simplex and outer simplex. Local extremum points of d-simplices are found as in Algorithm 2, and then we
find the local extremum points of the remaining points to get the prototype set of the entire target class Xj .
The following theorem provides a result on the local extremum points in an outer simplex F . Note that, in

Algorithm 4, the set Sj is the exact minimum dominating set since both S
(1)
j and S

(2)
j are exact MDSs for

the PE-PCDs induced by Xj ∩ CH(X1−j) and Xj \ CH(X1−j), respectively.

Theorem 3.3.3. Let Z = {z1, z2, . . . , zn} ⊂ Rd, let F be a facet of the CH(X1−j) and let F be the associated
outer simplex such that Z ⊂ F o. Hence, the local extremum point and the SMD of the PE-PCD D restricted
to F o is found in linear time and is equal to 1.

Proof: We show that there is a point s ∈ Z such that X ⊂ NPE(s, r) for all r ∈ (1,∞). As a remark,
note that η(x,F) denotes the hyperplane through x, and is parallel to F . Thus, for x, x∗ ∈ Fo, observe that
d(x,F) < d(x∗,F) if and only if d(η(x,F),F) < d(η(x∗,F),F) if and only if NPE(x, r) ⊂ NPE(x∗, r). Thus,
the local extremum point s is given by

s := argmax
x∈Z

d(x,F).

Therefore, SMD = {s} yields the result. �

Given Theorems 3.3.1 and 3.3.3, Algorithm 4 may be the most appealing algorithm since it gives the
exact minimum dominating set for the complete target class Xj . However, the following theorem show that the
cardinality of such sets increase exponentially on dimensionality of the data set, even though it is polynomial
on the number of observations.
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Algorithm 4: The algorithm for finding the (exact) minimum dominating set Sj of PE-PCD Dj with vertex
set Xj .
Input: The target class Xj , the set S(1)

1−j , the set S(2)
1−j .

Output: The minimum dominating set, Sj

1: S
(1)
j = ∅ and S

(2)
j = ∅

2: Find the minimum dominating set in Algorithm 2 and assign it to S
(1)
j

3: X ′j = Xj \ CH(X1−j).

4: for all F ∈ S(2)
1−j where X ′j ∩F 6= ∅ do

5: X ∗j ← X ′j ∩F
6: Let s ∈ X ∗j be the local extremum point in F

7: S
(2)
j ← S

(2)
j ∪ {s}

8: end for
9: Sj = S

(1)
j ∪ S

(2)
j

Theorem 3.3.4. Algorithm 4 finds an exact minimum dominating set Sj of the target class Xj in O(dkn2
1−j+

2dn
dd/2e
1−j ) time for k > 1 where |Sj | = O(dn

dd/2e
1−j ).

Proof: A Delaunay tesselation of the non-target class X1−j ⊂ Rd is found inO(dkn2
1−j) time with the Bowyer-

Watson algorithm for some k > 1, depending on the complexity of the algorithm that finds the circumcenter

of a d-simplex (Watson, 1981). The resulting tesselation with n1−j vertices has at most O(n
dd/2e
1−j ) simplices

and at most O(n
bd/2c
1−j ) facets (Seidel, 1995). Hence the union of sets of d-simplices S(1)

j and outer simplices

S(2)
1−j is of cardinality at most O(n

dd/2e
1−j ). Now, for each simplex S ∈ S(1)

j or each outer simplex F ∈ S(2)
j , the

local extremum points are found in linear time. Each simplex is divided into d + 1 vertex regions with each
having their own set of local extremum points. A minimum cardinality subset of the set of local extremum
points is of cardinality at most d + 1 and found in a brute force fashion. For outer simplices, however, the
local extremum point is the farthest point to the associated facet of the Delaunay tesselation. Thus, it takes
at most O(2d) and O(1) time to find the exact minimum subsets of local extremum points for each simplex
and outer simplex, respectively. Then the result follows. �

Theorem 3.3.4 shows the exponential increase of the number of prototypes as dimensionality increases.
Thus, the complexity of the class cover model also increases exponentially, which might lead to overfitting.
We will investigate this issue further in Sections 6 and 7.

4 PCD covers

We establish class covers with the PE proximity map NPE(·, r) and spherical proximity map NS(·). We define
two types of class covers: one type is called composite covers where we cover the points in Xj ∩ CH(X1−j)
with PE proximity maps and the points in Xj \ CH(X1−j) with spherical proximity maps, and the other is
called standard cover incorporating the PE proximity maps for all points in Xj . We use these two types of
covers to establish a specific type of classifier that is more appealing in the sense of prototype selection.

Our composite covers are mixtures of simplical and spherical proximity regions. Specifically, given a set
of simplices and a set of spheres, the composite cover is the union of both these sets which constitute proximity
regions of two separate PCD families, hence the name composite cover. The Qj is partitioned into two: the

cover Q
(1)
j of points inside the convex hull of non-target class points, i.e., Xj ∩CH(X1−j), and the cover Q

(2)
j

of points outside, i.e., Xj \ CH(X1−j). Let Q
(1)
j := ∪x∈Xj∩CH(X1−j)NI(x) and Q

(2)
j := ∪x∈Xj\CH(X1−j)NO(x)

such that Qj := Q
(1)
j ∪Q

(2)
j . Here, NI(·) and NO(·) are proximity maps associated with sets Xj ∩ CH(X1−j)

and Xj \CH(X1−j), respectively. Hence, in composite covers, target class points inside CH(X1−j) are covered
with PE proximity map NI(·) = NPE(·, r), and the remaining points are covered with spherical proximity
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map NO(·) = NS(·, θ). Given the covers Q
(1)
j and Q

(2)
j , let C

(1)
j and C

(2)
j be the class covers with lower

complexity associated with the dominating sets S
(1)
j and S

(2)
j . Hence the composite cover is given by

Cj := C
(1)
j ∪ C

(2)
j =

{ ⋃
s∈S(1)

j

NI(s)

}⋃{ ⋃
s∈S(2)

j

NO(s)

}
.

An illustration of the class covers C0 and C1 with NI(·) = NPE(·, r = 2) and NO(·) = NS(·, θ = 1) is given
in Figure 7(b).

By definition, the spherical proximity map NS(·, θ) yields class covers for all points in Xj . Figure 7(a)
illustrates the class covers of the map NS(·, θ = 1). We call such covers, that only constitute a single type
of proximity map, as standard covers. Hence the standard cover of the PE-PCD Dj is a union of d-simplices
and d-polytopes:

Cj :=
⋃
s∈Sj

NPE(s, r).

Here, NI(·) = NO(·) = NPE(·, r). An illustration is given in Figure 7(c).

(a) (b) (c)

Figure 7: Class covers of a data set with two-class setting in R2 where grey and black points represent points of
two separate classes. The training data set is composed of two classes X0 and X1 wherein 100 and 20 samples are
drawn from multivariate uniform distributions U([0, 1]2) and U([0.5, 1.5]2), respectively. Cover of one class is given by
solid circle and solid line segments, and the cover of the other is given by dashed circle and dashed line segments. (a)
Standard class covers with NI(·) = NO(·) = NS(·, θ = 1) (b) Composite class cover with NI(·) = NPE(·, r = 2) and
NO(·) = NS(·, θ = 1) (c) Standard class covers with NI(·) = NO(·) = NPE(·, r = 2).

PCD covers can easily be generalized to the multi-class case with J classes. To establish the set of
covers C = {C1, C2, . . . , CJ}, the set of PCDs D = {D1, . . . , DJ}, and the set of MDSs S = {S1, S2 . . . , SJ}
associated with a set of classes X = {X1, X2, . . . ,XJ}, we gather the classes into two classes as XT = Xj and
XNT = ∪t6=jXt for t, j = 1, . . . , J . We refer to classes XT and XNT as target and non-target class, respectively.
More specifically, target class is the class we want to find the cover of, and the non-target class is the union
of the remaining classes. We transform the multi-class case into the two-class setting and find the cover of
j’th class, Cj .

5 Classification with PCDs

The elements of Sj are prototypes, for the problem of modelling the class conditional discriminant regions
via a collection of proximity regions (balls, simplices, polytopes, etc.). The sizes of these regions represent
an estimate of the domain of influence, which is the region in which a given prototype should influence the
class labelling. Our semi-parametric classifiers depends on the class covers given by these proximity regions.
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We define various classifiers based on the class covers (composite or standard) and some other classification
methods. We approach classification of points in Rd in two ways:

Hybrid classifiers: Given the class covers C
(1)
0 and C

(1)
1 associated with classes X0 and X1, we classify a

given point z ∈ Rd with gP if z ∈ C(1)
0 ∪C(1)

1 , and with gA otherwise. Here, gP is the pre-classifier and
gA is an alternative classifier.

Cover classifiers: These classifiers are constructed by class covers only; that is, a given point z ∈ Rd is
classified as gC(z) = j if z ∈ Cj \C1−j or if ρ(z, Cj) < ρ(z, C1−j), hence class of the point z is estimated
as j if z is only in cover Cj , or closer to Cj than C1−j . Here, ρ(z, Cj) is a dissimilarity measure between
point z and the cover Cj . Cover classifiers depend on the types of covers which are either composite or
standard covers.

We incorporate PE-PCDs for establishing both of these types of classifiers. Hence, we will refer to them
as hybrid PE-PCD and cover PE-PCD classifiers. Since the PE proximity maps were originally defined for
points Xj ∩CH(X1−j), we develop hybrid PE-PCD classifiers to account for points outside of the convex hull
of the non-target class in a convenient fashion. However, as we shall see later, cover PE-PCD classifiers have
much more appealing properties than hybrid PE-PCD classifiers in terms of both efficiency and classification
performance. Nevertheless, we consider and compare both types of classifiers, but first we define the PE-PCD
pre-classifier.

5.1 PE-PCD Pre-classifier

Let ρ(z, C) be the dissimilarity measure between z and the class cover C. The PE-PCD pre-classifier is given
by

gP (z) :=


j if z ∈ C(1)

j \ C
(1)
1−j for j = 0, 1

I(ρ(z, C
(1)
1 ) < ρ(z, C

(1)
0 )) if z ∈ C(1)

0 ∩ C(1)
1

−1 otherwise.

(8)

Here, I(·) is the indicator functional and gP (z) = −1 denotes a “no decision” case. Given that class covers

C
(1)
0 and C

(1)
1 are the unions of PE proximity regions NPE(x, r) of points in dominating sets S

(1)
0 and S

(1)
1 ,

the closest cover is found by, first, checking the proximity region of a cover closest to the point z:

ρ(z, C
(1)
j ) = min

s∈S(1)
j

ρ(z,N(s))

which is expressed based on a dissimilarity measure between a point z and the regionN (s). For such measures,
we employ convex distance functions. Let H be a convex set in Rd with center x ∈ H. The point x may be
viewed as the center of the set H. Thus, let the dissimilarity between z and H be defined by

ρ(z,H) :=
d(z, x)

d(t, x)
,

where d(·, ·) is the Euclidean distance and t is a point on the line L(x, z) := {x+ α(z − x) : α ∈ [0,∞)} such
that t ∈ ∂(H), the boundary of the H. An illustration is given in Figure 8 for several convex sets, including
balls and simplices in R2.

For spherical proximity map NS(·, θ), the dissimilarity function is defined by the radius of that ball
which is a spherical proximity region: d(x, t) = εθ(x) (Priebe et al., 2003a). However, for d-simplices,
we characterize the dissimilarity measure in terms of barycentric coordinates of z with respect to S(x) =
NPE(x, r).

Proposition 5.1.1. Let {t1, t2, . . . , td+1} ⊂ Rd be a set of non-collinear points that are the vertices of simplex
S(x) = NPE(x, r) with the median MC(x) ∈ S(x)o. Then, for z ∈ Rd and t ∈ ∂(S(x)),

ρ(z,S(x)) =
d(MC(x), z)

d(MC(x), t)
= 1− (d+ 1)w

(k)
S(x)(z),
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Figure 8: Illustration of a convex distance between a a point z and an arbitrary (a) convex set H, (b) ball and (c)
2-simplex in R2.

where w
(k)
S(x)(z) being the k’th barycentric coordinate of z with respect to S(x). Moreover, ρ(z,S(x)) < 1 if

z ∈ S(x)o and ρ(z,S(x)) ≥ 1 if z 6∈ S(x)o.

Proof: Let the line segment L(MC(x), z) and ∂(S(x)) cross at the point t ∈ fk for fk being the face of S(x)
opposite to tk. Thus, for αi ∈ (0, 1) and β ∈ (0, 1),

z = (1− β)MC(x) + βt = (1− β)MC(x) + β

 d+1∑
i=1;i6=k

αiti

 .

Here, note that β = d(MC(x), z)/d(MC(x), t) = ρ(z,S(x)). Also, since MC(x) is the median,

z = (1− β)

∑d+1
i=1 ti
d+ 1

+ β

 d+1∑
i=1;i 6=k

αiti

 =
1− β
d+ 1

tk +

d+1∑
i=1;i 6=k

(
1− β
d+ 1

+ βαi

)
ti.

Hence (1− β)/(d+ 1) = w
(k)
S(x)(z) which implies β = 1− (d+ 1)w

(k)
S(x)(z). Therefore, z ∈ S(x)o if and only if

β = 1− (d+ 1)w
(k)
S(x)(z) < 1. �

For a (convex) proximity region NPE(x, r), the dissimilarity measure ρ(z,S(x)) = ρ(z,NPE(x, r))
indicates whether or not the point z is in proximity region NPE(x, r), since ρ(z,S(x)) < 1 if z ∈ NPE(x, r)
and ≥ 1 otherwise. Hence, the PE-PCD pre-classifier gP may simply be defined by

gP (z) :=

{
I(ρ(z, C

(1)
1 ) < ρ(z, C

(1)
0 )) if z ∈ C(1)

0 ∪ C(1)
1

−1 otherwise
(9)

since z ∈ C(1)
0 \ C(1)

1 if and only if ρ(z, C
(1)
0 ) < 1. Let ρ(z, x) := ρ(z,S(x)) be the dissimilarity between x

and z, then the dissimilarity measure ρ(·, ·) violates the symmetry axiom of the metric since ρ(x, z) 6= ρ(z, x)
whenever d(x, t(x)) 6= d(z, t(z)) where proximity regions NPE(x, r) and NPE(z, r) intersect with the lines
L(MC(x), z) and L(MC(z), x) at points t(x) and t(z), respectively.

5.2 Classification Methods

Hybrid PE-PCD classifiers depend on both the PE-PCD pre-classifier gP and the alternative classifier gC .
Therefore, we use some of the well known classification methods in the literature to incorporate them as
alternative classifiers. All these classifiers are well defined for all points in Rd, so we use them when the
PE-PCD pre-classifier fails to make a decision, i.e. gP (z) = −1. In addition to considering these classifiers as
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alternative classifiers, we apply them to the entire training data set in our simulated and real data studies to
compare them with our hybrid classifiers as well. We provide definitions to these classifiers for data sets with
two classes, X0 and X1.

One such classifier is k-nearest neighbor classifier which is perhaps one of the oldest. The deci-
sion/classification rule is simple: among the k closest points to point z, classify z as the class of the majority
class of the points among k neighbors:

gknn(z) := I

(∑k
i=1 I(x(i) ∈ X1)

k
> 0.5

)
. (10)

Here, the points x(1), x(2), . . . , x(k) ∈ X0 ∪ X1 are the k closest points to the z. The accuracy of the method
has shown to converge to the Bayes optimal as k → ∞ and k/n → 0 (Fix and Hodges Jr, 1989). Moreover,
when k = 1, it can be shown that error of k-NN classifier (i.e. the nearest neighbor classifier) becomes less
then or equal to the 2 times of Bayes optimal error (Cover and Hart, 1967).

For many classification tasks, linear classifiers are often preferred over others. Support vector machines
(SVM) are one of the most commonly used linear classifiers in the machine learning community due to their
well understood theory and high accuracy (Vapnik, 1995). Let X0 and X1 be two sets in Rd such that there
exists a hyperplane with the normal vector a, namely a separating hyperplane, where aTx < 0 if x ∈ X1 and
aTx > 0 if x ∈ X0. Thus, a linear classifier is constructed of the form

gL(z) := I(aT z < 0) (11)

However, there are infinitely many such separating hyperplanes, and most importantly, not all pairs of classes
in Rd are linearly seperable. Here, linear separability implies the existence of a separating hyperplane. SVM
classifiers incorporate kernel functions φ(·) that map points in Rd to higher dimensions where separating hy-
perplanes exist. Among such hyperplanes, there exists one with the normal vector a such that this hyperplane
has the maximum margin (the minimum distance between the training data X0 ∪ X1 and the hyperplane)
among all possible hyperplanes, and the support vectors x(1), x(2), . . . , x(m) ∈ X0 ∪ X1 are the points closest
to this hyperplane. Thus, a SVM classifier is of the form

gsvm(z) := I

(
m∑
i=1

a(i)φ(z, x(i)))− b < 0

)
. (12)

Here, a(i) is the element of the normal vector a corresponding to the support vector x(i).

CCCD classifiers are also well defined for all points in Rd. Elements of the dominating set Sj are the
selected prototypes of the target class Xj . The prototype set Sj is provided by Algorithm 1 using CCCD Dj .
Hence, given the sets S0 and S1, the classifier is defined as

gcccd(z) := I

(
min
s∈S1

d(z, s)

εθ(s)
< min
s∈S0

d(z, s)

εθ(s)

)
. (13)

Here, εθ(s) is the radii of the ball NS(s, θ) = B(s, εθ(s)) associated with the point s ∈ Sj .
Multi-class adaptation of these classifiers is straightforward. In k-NN classifier, the point z is labeled

as the label of majority class among k neighbors given the class labels j = 1, 2, . . . , J . For SVM and CCCD
classifiers, either “one-against-all” or “one-against-one” schemes can be adapted; that is, in first, one class
remains the same where the remaining are gathered into one (the scheme used in PCD and CCCD classifiers).
In the latter, however, the classifier is trained J(J − 1)/2 times for each pair of classes (Hsu and Lin, 2002).

5.3 Hybrid PE-PCD Classifiers

Constructing hybrid classifiers has many purposes. Some classifiers are designed to solve harder classification
problems by gathering many weak learning methods (often known as ensemble classifiers) while some others
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have advantages only when combined with another single classifier (Woźniak et al., 2014). Our hybrid
classifiers are of the latter type. The PE-PCD pre-classifier gP is able to classify points in the overlapping
region of the class supports, i.e. s(F0) ∩ s(F1), however classifying the remaining points in Rd requires
incorporating an alternative classifier, often one that works for all points Rd. We use the PE-PCD pre-
classifier gP (·) to classify all points of the test data, and if no decision are made for some of these points, we
classify them with the alternative classifier gA. Hence, let gH be the hybrid PE-PCD classifier such that

gH(z) :=

{
gP (z) if z ∈ C(1)

0 ∪ C(1)
1

gA(z) otherwise.
(14)

For “no decision” cases where gP (z) = −1, we rely on the alternative classifier gA; we will use the k-nearest
neighbor, SVM and CCCD classifiers as alternative classifiers. The parameters are k, the number of closest
neighbors to make a majority vote in the k-NN classifier; γ, the scaling parameter of the radial basis function
(RBF) kernel of the SVM classifier; and θ, the parameter of the CCCD classifier that regulates the size of
each ball as described in Section 3.1. In Figure 9, we illustrate the discriminant regions of three hybrid
PE-PCD classifiers with expansion parameter r = 2 where alternative classifiers are gA ∈ {gknn, gsvm, gcccd}.
The training data set is composed of two classes X0 and X1 where in 100 and 20 samples are drawn from
multivariate uniform distributions U([0, 1]2) and U([0.5, 1.5]2), respectively.

(a) (b) (c)

Figure 9: The discriminant regions of hybrid PE-PCD classifiers with r = 2 in a two-class setting with alternative
classifier (a) gA = gknn for k = 3, (b) gA = gsvm for γ = 1 (c) and gA = gcccd for θ = 0.5. The grey region
represents the regions where points classified as 1, i.e. gH(x) = 1. The training data set is composed of two classes X0

and X1 where in 100 and 20 samples are drawn from multivariate uniform distributions U([0, 1]2) and U([0.5, 1.5]2),
respectively.

5.4 Composite and Standard Cover PE-PCD Classifers

We propose PE-PCD classifiers gC based on composite and standard covers. The classifier gC is defined as

gC(z) := I(ρ(z, C1) < ρ(z, C0)). (15)

The cover is based on either composite covers or standard covers wherein both Xj ⊂ Cj , hence a decision can
be made without an alternative classifier. Note that composite cover PE-PCD classifiers are, in fact, different
types of hybrid classifiers where the classifiers are only modelled by class covers but with multiple types of
PCDs. Compared to hybrid PE-PCD classifiers, cover PE-PCD classifiers have many appealing properties.
Since a reduction is done over all target class points Xj , depending on the percentage of reduction, classifying
a new point z ∈ Rd is computationally faster and more efficient, whereas an alternative classifier might not
provide such a reduction. We provide the discriminant regions of cover PE-PCD classifiers with standard
covers of maps NPE(·, r) and NS(·, θ) used separately, and with composite covers with maps NPE(·, r) and
NS(·, θ) used jointly in Figure 10.
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Note that, given the multi-class prototype sets, Sj , the two-class cover PE-PCD classifier gC can be
modified for the multi-class case as

g(z) = argmin
j∈J

(
min
s∈Sj

ρ(z,N(s))

)
. (16)

Figure 10: The discriminant regions of cover PE-PCD classifiers. The grey region represents the regions where points
classified as 1, i.e. gC(x) = 1. The training data set is composed of two classes X0 and X1 where in 100 and 20 samples
are drawn from uniform distributions U([0, 1]2) and U([0.5, 1.5]2), respectively (a) The discriminant region of standard
cover PE-PCD classifiers with the maps NI(·) = NO(·) = NS(·, θ = 1) (b) The discriminant region of the composite
cover PE-PCD classifiers with maps NI(·) = NPE(·, r = 2) and NO(·) = NS(·, θ = 1) (c) The discriminant region the
standard cover PE-PCD classifiers with maps NI(·) = NO(·) = NPE(·, r = 2)

5.5 Consistency Analysis

In this section, we prove some results on the consistency of both hybrid PE-PCD classifiers and cover PE-
PCD classifiers when two class conditional distributions are strictly δ-seperable. For δ ∈ [0,∞), the regions
A,B ⊂ Rd are δ-separable if and only if

inf
x∈A,y∈B

d(x, y) ≥ δ.

Moreover, let δ-separable regions A and B be the supports of continuous distributions FA and FB , respectively.
Hence, FA and FB are called δ-separable distributions, and if δ > 0, strictly δ-separable (Devroye et al., 1996).

We first show the consistency of cover PE-PCD classifiers, and then, we show that the hybrid PE-PCDs
classifiers are also consistent. Cover classifiers are characterized by the PCDs associated with proximity regions
N (x) for x ∈ Rd, and thus, the consistency of such PCD classifiers depend on the map N (·). We require the
following properties for a proximity map N (·) to satisfy:

P1 For all x ∈ Rd, the proximity region N (x) is an open set, and x is in the interior of N (x).

P2 Given data sets from two classes X0 and X1 with distributions F0 and F1, and supports s(F0) and s(F1),
and given that x ∈ s(Fj) for j = 0, 1, the proximity map N (·) associated with the target class Xj is a
function on the non-target class points such that N (x) ∩ X1−j = ∅.

Note that both NS(·, θ) for θ ∈ (0, 1] and NPE(·, r) for r ∈ (1,∞) satisfy P1 and P2. These will be
useful in showing that classifiers based on our class covers attain Bayes-optimal classification performance for
δ-separable classes. Thus, first, we have to show that the support of a class is almost surely a subset of the
class cover for sufficiently large data sets. Note that all points of the target class reside inside the class cover
Cj , i.e. Xj ⊂ Cj . Hence, we have the following proposition.

22



Proposition 5.5.1. Let Zn = {Z1, Z2, . . . , Zn} be a set of i.i.d. random variables drawn from a continuous
distribution F whose support is s(F ) ⊆ Rd. Let the proximity map N (·) satisfy P1, let the corresponding
class cover of Zn be denoted as C(Zn) such that Zn ⊂ C(Zn), and let C∗ := lim infn→∞ C(Zn). Hence, we
have s(F ) ⊂ C∗ w.p. 1 in the sense that λ(s(F ) \ C∗)→ 0 almost surely where λ(·) is the Lebesgue measure
functional.

Proof: Suppose, for a contradiction, s(F ) 6⊂ C∗ w.p. 1. Hence, s(F ) \ C∗ 6= ∅ w.p. 1 in such a way that
λ(s(F ) \ C∗) > 0 w.p. 1 since λ(N (Z)) > 0 for all Z ∈ s(F ) by P1. Hence, Zn ∩ (s(F ) \ C∗) 6= ∅ w.p. 1 as
n→∞, but then some Z ∈ Zn ∩ (s(F ) \C∗) will not be in C∗, which contradicts the fact that C∗ covers Zn
including Z. �

Proposition 5.5.1 shows that a class cover almost surely covers the support of its associated class.
However, to show consistency of classifiers based on PCD class covers, we have to investigate the class covers
under the assumption of separability of class supports.

Let X0 and X1 be two classes of a data set with strictly δ-separable distributions, the property P2
of the map N (·) establishes pure class covers that include none of the points of the non-target class, i.e.
Cj ∩ X1−j = ∅. In this case, we have the following proposition showing that the intersection of the cover of
the target class and the support of the non-target class is almost surely empty as n1−j →∞.

Proposition 5.5.2. Let X0 = {X1, X2, . . . , Xn0
} and X1 = {Y1, Y2, . . . , Yn1

} be two sets of i.i.d. random
variables with strictly δ-separable continuous distributions F0 and F1. For j = 0, 1, let the proximity map N (·)
satisfy P1 and P2 such that the map N (·) of the target class is a function on the non-target class X1−j. Then,
for j = 0, 1, we have C(Xj)∩s(F1−j) = ∅ almost surely as n1−j →∞ in the sense that λ(C(Xj)\s(F1−j))→ 0
as n1−j →∞.

Proof: For j = 0, 1, note C(Xj) = ∪X∈Sj
N (X) for Sj ⊂ Xj being the minimum prototype set of Xj . We

prove the proposition for j = 0 (as the proof of case j = 1 follow by symmetry). Hence, it is sufficient to
show that (given N (·) is a function on X1) N (x) ∩ s(F1) = ∅ w.p. 1 as n1 = |X1| → ∞ for all x ∈ s(F0).
Suppose for a contradiction, λ(C(X0) \ s(F1)) > 0 w.p. 1 as n1 →∞. Then, there exists x ∈ s(F0) such that
N (x) ∩ s(F1) 6= ∅ almost surely as n1 →∞. Then, the region N (x) ∩ s(F1) has positive measure. Therefore,
some Y ∈ X1 will fall in to this region w.p. 1 as n1 →∞. This contradicts P2 since Y ∈ N (x)∩s(F1) implies
N (x) ∩ X1 6= ∅. �

Now, we would like to show that cover PE-PCD classifiers are consistent when class supports are
strictly δ-separable; that is, the error rate of the cover classifier L(gC) converges to the Bayes optimal error
rate L∗, which is 0 for classes with δ-separable supports, as n0, n1 → ∞ (Devroye et al., 1996). Then, we
have the following theorem.

Theorem 5.5.1. Suppose that the samples of the data set X0 ∪ X1 are i.i.d. with distribution F = π0 F0 +
(1−π0)F1 for π0 ∈ [0, 1], and let class conditional distributions F0 and F1 are continuous with supports s(F0)
and s(F1), being finite dimensional and strictly δ-separable. Then the cover classifier gC is consistent; that
is, L(gc)→ L∗ = 0 as n0, n1 →∞.

Proof: Let Zj be a random variable with distribution Fj for j = 0, 1. Then by Propositions 5.5.1 and 5.5.2,
we have P (Zj ∈ C(Xj))→ 1 as nj →∞ and P (Zj 6∈ C(X1−j))→ 1 as n1−j →∞. Hence,

P (Zj 6∈ C(Xj) and Zj ∈ C(X1−j))→ 0

as n0, n1 →∞. Then, for Cj = C(Xj),

L(gC) = P (gC(Z0) 6= 0)π0 + P (gC(Z1) 6= 1)π1

= P (Z0 6∈ C0 and Z0 ∈ C1)π0 + P (Z1 6∈ C1 and Z1 ∈ C0)π1.

Hence, L(gC)→ 0 as n0, n1 →∞. �
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As a corollary to Theorem 5.5.1, we have that classifier gC of standard and composite covers with
maps NS(·, θ) and NPE(·, r) for r > 1 are consistent. A special case occurs when r = 1; that is, observe that
x ∈ ∂(N (x)), and hence N (·) does not satisfy P1.

We showed that a cover PE-PCD classifier is consistent provided that, as n0, n1 → ∞, support of
the target class is a subset of the class cover, and the PE-PCD cover excludes all points of the non-target
class almost surely. However, to show that the hybrid PE-PCD classifiers are consistent, we need alternative
classifiers which are consistent as well.

Theorem 5.5.2. Suppose that the samples of data set X0 ∪ X1 are i.i.d. with distribution F = π0 F0 + (1−
π0)F1 for π0 ∈ [0, 1], and let class conditional distributions F0 and F1 are continuous with supports s(F0) and
s(F1), being finite dimensional and strictly δ-separable. Then the hybrid classifier gH is consistent provided
that alternative classifier gA is also consistent.

Proof: Note that Cj = C
(1)
j ∪ C(2)

j and C
(1)
j ⊂ CH(X1−j). For j = 0, 1, let Zj ∼ Fj . Also, let Υj be the

event that Zj ∈ C(1)
0 ∪ C(1)

1 and let υj := P (Υj). Note that

L(gH) = P (gH(Z0) 6= 0)π0 + P (gH(Z1) 6= 1)π1.

Hence, for j = 0, 1;

P (gH(Zj) 6= j) = P (gH(Zj) 6= j|Υj)υj + P (gH(Zj) 6= j|Υc
j)(1− υj)

= P (gP (Zj) 6= j|Υj)υj + P (gA(Zj) 6= j|Υc
j)(1− υj).

As n0, n1 → ∞, P (gP (Zj) 6= j|Υj) → 0 by Theorem 5.5.1, and P (gA(Zj) 6= j) → 0 since the classifier gA is
consistent. Then the result follows. �

6 Monte Carlo Simulations and Experiments

In this section, we assess the classification performance of hybrid and cover PE-PCD classifiers. We perform
simulation studies wherein observations of two classes are drawn from separate distributions where X0 is a
random sample from a multivariate uniform distribution U([0, 1]d) and X1 is from U([ν, 1 +ν]d) for d = 2, 3, 5
with the overlapping parameter ν ∈ [0, 1]. Here, ν determines the level of overlap between the two class
supports. We regulate ν in such a way that the overlapping ratio ζ is fixed for all dimensions, i.e. ζ =
Vol(s(F0) ∩ s(F1))/Vol(s(F0) ∪ s(F1)). When ζ = 0, the supports are well separated, and when ζ = 1, the
supports are identical: i.e. s(F0) = s(F1). Hence, the closer the ζ to 1, the more the supports overlap.
Observe that ν ∈ [0, 1] can be expressed in terms of the overlapping ratio ζ and dimensionality d:

ζ =
Vol(s(F0) ∩ s(F1))

Vol(s(F0) ∪ s(F1))
=

(1− ν)d

2− (1− ν)d
⇐⇒ ν = 1−

(
2ζ

1 + ζ

)1/d

. (17)

In this simulation study, we train the classifiers with n0 = 400 and n1 = qn0 with the imbalance level
q = |X1|/|X0| = {0.1, 0.5, 1.0} and overlapping ratio ζ = 0.5. For values of q closer to zero, classes of the data
set are more imbalanced. On each replication, we form a test data with 100 random samples drawn from
each of F0 and F1, resulting a test data set of size 200. This setting is similar to a setting used by Manukyan
and Ceyhan (2016), who showed that CCCD classifiers are robust to imbalance in data sets. We intend to
show that the same robustness extends to PE-PCD classifiers. Using all classifiers, at each replication, we
record the area under curve (AUC) measures for the test data, and also, we record the correct classification
rates (CCRs) of each class of the test data separately. We perform these replications until the standard errors
of AUCs of all classifiers are below 0.0005. We refer to the CCRs of two classes as “CCR0” and “CCR1”,
respectively. We consider the expansion parameters r = 1, 1.2, . . . , 2.9, 3, 5, 7, 9 for the PE-PCD classifiers.
Our hybrid PE-PCD classifiers are referred as PE-SVM, PE-kNN and PE-CCCD classifiers with alternative
classifiers SVM, k-NN and CCCD, respectively.
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Before the main Monte Carlo simulation, we perform a preliminary (pilot) Monte Carlo simulation
study to determine the values of optimum parameters of SVM, CCCD and k-NN classifiers. The same values
will be used for alternative classifiers as well. We train the gsvm, gcccd and gknn classifiers, and classify the
test data sets for each classifier to find the optimum parameters. We perform Monte Carlo replications until
the standard error of all AUCs are below 0.0005 and record which parameter produced the maximum AUC
among the set of all parameters in a trial. Specifically, on each replication, we (i) classify the test data set
with each θ value (ii) record the θ values with maximum AUC and (iii) update the count of the recorded
θ values. Finally, given a set of counts associated with each θ value, we appoint the θ with the maximum
count as the θ∗, the optimum θ (or the best performing θ). Later, we use θ∗ as the parameter of alternative
classifier gcccd in our main simulations. Optimal parameter selection process is similar for classifiers gknn and
gsvm associated with the parameters k and γ.

The optimum parameters of each simulation setting is listed in Table 1. We consider parameters of
SVM γ = 0.1, 0.2, . . . , 4.0, of CCCD θ = 0, 0.1, . . . , 1 (here, θ = 0 is actually equivalent to θ = ε, the machine
epsilon), and of k-NN k = 1, 2, . . . , 30. In Table 1, as q and d increases, optimal parameters γ and θ decrease
whereas k increases. Manukyan and Ceyhan (2016) showed that dimensionality d may affect the imbalance
between classes when the supports overlap. Observe that in Table 1, with increasing d, optimal parameters
are more sensitive to the changes in imbalance level q. For the CCCD classifier, θ = 1 is usually preferred
when the data set is imbalanced, i.e. q = 0.1 or q = 0.5. Bigger values of θ are better for the classification of
imbalanced data sets, since with θ = 1, the cover of the minority class is substantially bigger which increases
the domain influence of the points of the minority class. For θ closer to 0, the class cover of the minority class
is much smaller compared the class cover of the majority class, and hence, the CCR1 is much smaller. Bigger
values of parameter k is also detrimental for imbalanced data sets, the bigger the parameter k, the more
likely a new point is classified as class of the majority class since the points tend to be labelled as the class of
the majority of k neighboring points. As for the parameter γ, support vectors have more influence over the
domain as γ decreases (Wang et al., 2003). Note that γ = 1/(2σ2) in the radial basis function (RBF) kernel.
The smaller the γ, the bigger the σ. Hence more points are classified as the majority class with decreasing γ
since the majority class has more influence. Thus, bigger values of γ is better for the imbalanced data sets.

Table 1: Optimum parameters for SVM, CCCD and k-NN classifiers used in the hybrid PE-PCD classifiers.

d q θ (CCCD) k (k-NN) γ (SVM)

2
0.1 1 1 3.8
0.5 1 1 4.0
1.0 0 3 0.1

3
0.1 1 1 2.3
0.5 1 1 0.4
1.0 0 4 0.2

5
0.1 1 1 0.9
0.5 1 4 0.3
1.0 1 10 0.1

Average of AUCs and CCRs of three hybrid PE-PCD classifiers are presented in Figure 11. For q = 0.1,
the classifier PE-kNN, for q = 0.5, the classifier PE-CCCD and, for q = 1.0, the classifier PE-SVM performs
better than others. Especially, when the data set is imbalanced, the CCR1 determines the performance
of a classifier; that is, generally, the better a method classifies the minority class, the better the method
performs overall. When the data is balanced (i.e. q = 1), PE-SVM is expected to perform well, however it
is known that SVM classifiers are confounded by the imbalanced data sets (Akbani et al., 2004). Moreover,
when q = 0.1, PE-kNN performs better than PE-CCCD. This result contradicts the results of Manukyan and
Ceyhan (2016). The reason for this is hybrid PE-PCD classifiers incorporate alternative classifiers for points
outside of the convex hull and kNN might perform better for these points. The kNN classifier is prone to
missclassify points closer to the decision boundary when the data is imbalanced, and we expect points outside
the convex hull to be far away from the decision boundary in our simulation setting.

In Figure 11, CCR1 increases while CCR0 decreases for some settings of q and d, and vice versa for

25



some other settings. Recall that Theorem 3.3.2 shows a stochastic ordering of the expansion parameter r;
that is, with increasing r, there is an increase in the probability of exact MDS being less than or equal to some
κ = 1, . . . , d+ 1. Hence with increasing r, the proximity region NPE(x, r) gets bigger and the cardinality of
the prototype set Sj gets lower. Therefore, we achieve a bigger cover of the minority class and more reduction
in the majority class. The bigger the cover, the higher the CCR1 is in the imbalanced data sets. However,
the decrease in the performance, when r increases, may suggest that alternative classifiers perform better for
these settings. For example, the CCR1 of PE-SVM increases as r increases for q = 0.1, 0.5 and d = 2, 3, but
CCR1 of PE-CCCD and PE-kNN decreases for r ≥ 1.6. The higher the r, the more the reduction in data set.
However, higher values of r may confound the classification performance. Hence, we choose an optimum value
of r. Observe that for d = 5, the AUCs of all hybrid PE-PCD classifiers are equal for all r. With increasing
dimensionality, the probability that a point of the target class falling in the convex hull of the non-target
class decreases, hence most points remain outside of the convex hull.

In Figure 12, we compare the composite cover PE-PCD classifier and the standard cover PE-PCD
classifier. The standard cover is slightly better in classifying the minority class, especially when there is
imbalance between classes. In general, the standard cover PE-PCD classifier appear to have more CCR1 than
the composite cover PE-PCD classifiers. However, the composite covers are better when d = 5. The PE-PCD
class covers are surely influenced by the increasing dimensionality. Moreover, for q = 0.1, 0.5, we see that
the CCR1 of standard cover PE-PCD classifier slightly decreases with r, even though the data set is more
reduced with increasing r. Hence, we should choose an optimum value of r that can still be incorporated to
both substantially reduce the data set and to achieve a good classification performance.

In Figure 13, we compare all five classifiers, three hybrid and two cover PE-PCD classifiers. We consider
the expansion parameter r = 3 since, in both Figures 11 and 12, class covers with r = 3 perform well and,
at the same time, substantially reduce the data set. For all d = 2, 3, 5, it appears that all classifiers show
comparable performance when q = 1, but PE-SVM and SVM give slightly better results. However, when
there is imbalance in the data sets, the performances of PE-SVM and SVM degrade, and hybrid and cover PE-
PCD classifiers and CCCD classifiers have more AUC values than others. Compared to all other classifiers,
on the other hand, the standard cover PE-PCD classifier is clearly the best performing one for d = 2, 3
and q = 0.1, 0.5. Observe that the standard cover PE-PCD classifier achieves the highest CCR1 among all
classifiers. Apparently, the standard cover constitutes the most robust (to class imbalance) classifier. The
performance of standard cover PE-PCD classifier is usually comparable to the composite cover PE-PCD
classifier, but slightly better. However, for d = 5, the performance of standard cover PE-PCD classifier
degrades and composite cover PE-PCD classifiers usually perform better. These results show that cover PE-
PCD classifiers are more appealing than hybrid PE-PCD classifiers. The reason for this is that the cover
PE-PCD classifiers have both good classification performance and reduce the data considerably more since
hybrid PE-PCD classifiers provide a data reduction for only Xj ∩CH(X1−j) whereas cover PE-PCD classifiers
reduce the entire data set. The level of reduction, however, may decrease as the dimensionality of the data
set increases.

In Figure 14, we compare all five classifiers, three hybrid and two cover PE-PCD classifiers in a
slightly different simulation setting where there exists an inherent class imbalance. We perform simulation
studies wherein equal number of observations n = n0 = n1 are drawn from separate distributions where
X0 is a random sample from a multivariate uniform distribution U([0, 1]d) and X1 is from U([0.3, 0.7]d) for
d = 2, 3, 5 and n = 50, 100, 200, 500. Observe that the support of one class in entirely inside of the other, i.e.
s(F1) ⊂ s(F1). The same simulation setting have been used to highlight the robustness of CCCD classifiers
to imbalanced data sets (Manukyan and Ceyhan, 2016). In Figure 14, the performance of kNN and PE-
kNN classifiers degrade as d increases and n decreases. With sufficiently high d and low n, the minority
class X0 is sparsely distributed around the overlapping region of class supports s(F1) ∩ s(F0) which is the
support of X1. Hence, although the number of observations are equal in both classes, there exists a “local”
imbalance between classses (Manukyan and Ceyhan, 2016). However, CCCD and SVM classifiers, including
the associated hybrid PE-PCD classifiers perform fairly good. Although the cover PE-PCD classifiers have
considerably less CCR1, they perform relatively good compared to other classifiers and generally have more
CCR0 than other classifiers. Similar to other simulation settings, cover PE-PCD classifiers are also affected
by the increasing dimensionality of this data set.
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Although the PE-PCD based standard cover classifiers are competitive in classification performance,
a case should be made on how much they reduce the data sets during the training phase. In Figure 15, we
illustrate the percentage of reduction in the training data set, and separately, in both minority and majority
classes, using PE-PCD for r = 1, 2, 3. The overall reduction increases with r, which is also indicated by
Theorem 3.3.2, and the reduction in the majority class is much more than in minority class when q = 0.1, 0.5
since proximity regions of the majority class catch more points unlike the minority class. The majority class
is reduced over nearly %60 when q = 0.1, and %40 when q = 0.5. Indeed, the more the imbalance between
classes, the more the reduction in the abundantly populated classes. On the other hand, as the dimensionality
increases, composite covers reduce the data set more than the standard covers. The number of the facets
and simplices increases exponentially with d, and hence the cardinality of minimum dominating set (or the
prototype set) also increases exponentially with d (see Theorem 3.3.4). As a result, composite PE-PCD covers
achieve much more reduction than standard PE-PCD covers.
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Figure 11: AUCs and CCRs of the three hybrid PE-PCD classifiers versus expansion parameter r =
1, 1.2, . . . , 2.9, 3, 5, 7, 9 and the alternative classifiers: CCCD, k-NN and SVM. Here, the classes are drawn as
X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 + ν]d) with several simulation settings based on ζ = 0.5 given the Equation 17,
imbalance level q = 0.1, 0.5, 1, and dimensionality d = 2, 3, 5.
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Figure 12: AUCs and CCRs of the two cover PE-PCD classifiers versus expansion parameter r =
1, 1.2, . . . , 2.9, 3, 5, 7, 9 with composite and standard covers. Here, the classes are drawn as X0 ∼ U([0, 1]d) and
X1 ∼ U([ν, 1 + ν]d) with several simulation settings based on ζ = 0.5 given the Equation 17, imbalance level
q = 0.1, 0.5, 1, and dimensionality d = 2, 3, 5.
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Figure 13: AUCs and CCRs of the two cover, three hybrid PE-PCD classifiers with expansion parameter r = 3,
and k-NN, SVM and CCCD classifiers. The composite covers are indicated with “comp.” and standard covers with
“stan.”. Here, the classes are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1 + ν]d) with several simulation settings based
on ζ = 0.5, imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5.
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Figure 14: AUCs and CCRs of the two cover, three hybrid PE-PCD classifiers with expansion parameter r = 2.2,
and k-NN, SVM and CCCD classifiers. The composite covers are indicated with “comp.” and standard covers with
“stan.”. Here, the classes are drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([0.3, 0.7]d) with several simulation settings based
on number of observarions n = 50, 100, 200, 500 and dimensionality d = 2, 3, 5.
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Figure 15: The percentage of reduction of the composite (comp.) and standard (stan.) PE-PCD covers. The
“red.all” indicates the overall reduction in the training data set, 1 − (|S0 + S1|/(n0 + n1)), “red.0” the reduction in
the X0 class, 1 − (|S0|/n0), and “red.1” the reduction in the X1 class, 1 − (|S1|/n1). Here, the classes are drawn as
X0 ∼ U([0, 1]d) and X1 ∼ U([ν, 1+ν]d) with several simulation settings based on ζ = 0.5, imbalance level q = 0.1, 0.5, 1
and dimensionality d = 2, 3, 5.
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7 Real Data Examples

In this section, we apply the hybrid and cover PE-PCD classifiers on UCI and KEEL data sets (Alcalá-Fdez
et al., 2011; Bache and Lichman, 2013). We start with a trivial but a popular data set, iris. This data
set is composed of 150 flowers classified into three types based on their petal and sepal lengths. Hence it
constitutes a nice example for class covers of multi-class data sets. In Figure 16, we illustrate standard and
composite of PE-PCD covers, and CCCD covers of the first and the third variables of iris data set, sepal and
petal lengths. We refer to this data set as iris13. Observe that in composite covers of Figure 16(c), only
a few or no triangles are used to cover the setosa and virginica classes. Points of these classes are almost
all outside of the convex hull of the versicolor class points, and hence covered mostly by spherical proximity
regions. However, the standard cover of Figure 16(d) covers setosa and virginica classes with polygons since
these classes are in the outer triangles of the convex hull of the versicolor class.

setosa
versicolor
virginica

(a) (b)

(c) (d)

Figure 16: Class covers of iris13 data set. (a) The data set with variables sepal and petal length. (b) Standard
covers with NS(·, θ = 1), (c) composite covers with NI(·) = NPE(·, r = 1) and NO(·) = NS(·, θ = 1) and (d) standard
covers with NI(·) = NO(·) = NPE(·, r = 1).

To test the difference between the AUC of classifiers, we employ the 5x2 paired cross validation (CV)
paired t-test and the combined 5x2 CV F -test (see Alpaydın, 1999; Dietterich, 1998). The 5x2 CV test
has been devised by Dietterich (1998) and found to be the most powerful test among those with acceptable
type-I error. However, the test statistics of 5x2 t-tests depend on which one of the ten folds is used. Hence,
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Alpaydın (1999) offered a combined 5x2 CV F -test which works as an omnibus test for all ten possible 5x2
t-tests (for each five repetitions there are two folds, hence ten folds in total). Basically, if a majority of ten 5x2
t-tests suggest that two classifiers are significantly different in terms of performance, the F -test also suggests
a significant difference. Hence, an F -test with high p-value suggests that some of the ten t-tests fail to reject
the null-hypothesis (i.e. they have high p-value).

Recall that the number of prototypes increases exponentially with d as shown by Theorem 3.3.4. Sim-
ulation studies in Section 6 also indicated that the dimensionality of a data set affects the classification
performance. Hence, we apply dimension reduction to mitigate the effects of dimensionality. We use prin-
cipal component analysis (PCA) to extract the principal components with high variance. For iris, let us
incorporate the first two principal components with two highest variance. We refer to this new data set with
two variables as irispc2. The information on the four variables of iris data set has projected onto two
dimensions, and we expect that standard cover PE-PCD classifiers works better than that in iris data set.

We give the AUC measures of all classifiers on iris13, iris and irispc2 data set in Table 2 and the
p-values of the 5x2 CV F -test in Table 3. All classifiers perform well in classifying all three iris data sets.
Although hybrid PE-PCD classifier (PE-kNN, PE-SVM and PE-CCCD) perform comparable to other kNN,
SVM and CCCD classifiers, they seem to perform slightly better than the hybrid PE-PCD classifiers. Since
iris data set and its variants in Table 2 are well separated and the classes are balanced, it is not surprising that
kNN and SVM performs better. In iris13 data set, standard cover PE-PCD classifier produces comparable
AUC to other hybrid and cover PE-PCD classifiers. For example, standard cover PE-PCD classifier has nearly
0.05 AUC less than PE-kNN classifier in CV repetitions 1 and 3; but, on the other hand, 0.05 more AUC
than PE-kNN in repetition 5. However, in iris data set, standard cover PE-PCD classifier has significantly
much less AUC (about 0.1 AUC less) than other classifiers. Observe that d = 2 in iris13 data set, but d = 4
in iris data set. Since the complexity of the class cover increases with dimensionality, the class cover of the
standard cover PE-PCD classifier becomes less appealing. Although the composite cover PE-PCD classifier
has substantially more AUC than standard cover PE-PCD classifier for iris data set, it still performs worse
than the CCCD classifier. However, in irispc2, observe that AUC of the standard cover PE-PCD classifier
has substantially increased compared to that in iris data set. Obviously, the increase in the performance of
standard cover PE-PCD classifiers is a result of the low dimensionality. The lower the dimension, the less the
complexity of the class cover and the fewer the number of prototype sets, and thus better the classification
performance. Moreover, we also report on the optimum parameters of all classifiers in Table 2. It appears that,
in general, θ increases, and k and γ decrease as expansion parameter r increases. As reviewed in Section 6,
the smaller the values of k and γ, the higher the values of θ and r.

Cover PE-PCD classifiers perform better if the data has low dimensionality. Hence, we reduce the
dimensionality of data sets by means of say, PCA, and then classify the data set with the cover PE-PCD
classifiers trained over this data set in the reduced dimension. The Ionosphere data set has 34 variables.
We refer to the Ionosphere data set with two principal components of two highest variance as Ionopc2, and
also, with three principal components as Ionopc3, and with five as Ionopc5. We give the AUC measures
of all classifiers on these dimensionaly reduced Ionosphere data sets in Table 2 and the p-values of the 5x2
CV F -test in Table 3. In all three data sets, SVM classifiers seem to have the highest AUC values. Hybrid
PE-PCD classifiers perform slightly worse compared to their corresponding classifiers which are used as alter-
native classifiers. However, for Ionopc2 data set, both composite and standard cover PE-PCD classifiers have
comparable performance to other classifiers. For Ionopc3 and Ionopc5, on the other hand, the AUC of com-
posite and standard cover PE-PCD classifiers relatively deteriorate compared to other classifiers. Although
PE-PCD classifiers have computationally tractable MDSs and potentially have comparable performance to
those other classifiers, the high dimensionality of the data sets are detrimental for these classifiers based on
PE-PCD class covers.

In Table 4, we reduce the dimensionality and classify eleven KEEL and UCL data sets with all classi-
fiers. All data sets, except Yeast6, achieved maximum AUC when reduced to two dimensions, and for these
dimensionally low data sets, standard cover PE-PCD classifiers perform, in general, comparable to other
classifiers. Observe that low dimensionality mitigates the effects on the complexity of the standard cover, and
hence, a relatively good classification performance is achieved. Hybrid PE-PCD classifiers usually perform
slightly worse then their alternative classifier counterparts. However, the hybrid PE-PCD classifier PE-kNN
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Table 2: AUC measures of the best performing (ones with their respective optimum paramaters) hybrid and cover
PE-PCD classifiers for three variants of both iris and Ionosphere data sets.

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard

Data Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2 Fo. 1 Fo. 2

opt. r = 2.8 k = 10 k = 10 r = 2.8 γ = 3.1 γ = 3.1 r = 2.8 θ = 0.1 θ = 0.1 r = 2.8 θ = 0.1 r = 2.8

iris13

1 0.95 0.97 0.93 0.97 0.95 0.90 0.96 0.90 0.92 0.96 0.92 0.96 0.95 0.92 0.92 0.92
2 0.88 0.96 0.92 0.99 0.88 0.96 0.92 0.99 0.85 0.96 0.89 0.96 0.89 0.97 0.87 0.94
3 0.96 0.86 0.99 0.93 0.96 0.86 1.00 0.95 0.96 0.86 0.99 0.89 0.97 0.88 0.95 0.90
4 0.91 0.96 0.96 0.96 0.92 0.93 0.96 0.93 0.88 0.96 0.93 0.96 0.92 0.96 0.91 0.95
5 0.96 0.88 0.95 0.93 0.91 0.88 0.87 0.92 0.96 0.88 0.92 0.89 0.95 0.88 0.93 0.91

opt. r = 2 k = 8 k = 8 r = 2 γ = 0.1 γ = 0.1 r = 2 θ = 0.6 θ = 0.6 r = 2 θ = 0.6 r = 2

iris

1 0.96 0.97 0.97 0.97 0.93 0.99 0.95 0.99 0.96 0.97 0.97 0.97 0.97 0.92 0.76 0.76
2 0.95 0.97 0.95 0.97 0.95 0.97 0.93 0.97 0.92 0.97 0.92 0.97 0.91 0.97 0.71 0.70
3 0.97 0.92 0.97 0.95 0.97 0.92 0.97 0.94 0.97 0.92 0.97 0.95 0.97 0.85 0.84 0.81
4 0.96 0.96 0.96 0.97 0.95 0.92 0.95 0.92 0.96 0.92 0.96 0.93 0.96 0.96 0.71 0.76
5 0.96 0.93 0.97 0.93 0.95 0.93 0.96 0.93 0.91 0.92 0.91 0.92 0.92 0.95 0.75 0.77

opt. r = 4 k = 3 k = 3 r = 4 γ = 0.8 γ = 0.8 r = 4 θ = 0.8 θ = 0.8 r = 4 θ = 0.8 r = 4

irispc2

1 0.94 0.89 0.97 0.99 0.94 0.86 0.97 0.96 0.94 0.89 0.96 0.97 0.93 0.91 0.87 0.89
2 0.92 0.93 0.95 0.97 0.92 0.92 0.92 0.96 0.92 0.93 0.95 0.97 0.92 0.96 0.93 0.89
3 0.90 0.95 0.96 0.96 0.90 0.95 0.96 0.96 0.90 0.93 0.97 0.96 0.95 0.95 0.91 0.95
4 0.88 0.96 0.94 0.96 0.88 0.93 0.92 0.93 0.88 0.96 0.94 0.97 0.95 0.96 0.95 0.95
5 0.97 0.90 0.97 0.95 0.97 0.90 0.99 0.95 0.95 0.90 0.95 0.95 0.93 0.93 0.91 0.93

opt. r = 1.3 k = 9 k = 9 r = 1.3 γ = 0.9 γ = 0.9 r = 1.3 θ = 0.1 θ = 0.1 r = 1.3 θ = 0.1 r = 1.3

Ionopc2

1 0.75 0.73 0.76 0.75 0.77 0.76 0.78 0.77 0.76 0.74 0.76 0.75 0.72 0.70 0.76 0.72
2 0.72 0.74 0.73 0.78 0.71 0.76 0.73 0.79 0.71 0.76 0.74 0.76 0.71 0.74 0.73 0.76
3 0.80 0.73 0.82 0.72 0.79 0.72 0.82 0.73 0.74 0.72 0.74 0.72 0.75 0.68 0.78 0.70
4 0.74 0.76 0.78 0.77 0.76 0.73 0.79 0.72 0.73 0.75 0.77 0.74 0.71 0.73 0.71 0.72
5 0.75 0.74 0.78 0.75 0.75 0.76 0.78 0.77 0.74 0.72 0.75 0.72 0.74 0.74 0.75 0.72

opt. r = 1.9 k = 6 k = 6 r = 1.9 γ = 2 γ = 2 r = 1.9 θ = 0.4 θ = 0.4 r = 1.9 θ = 0.4 r = 1.9

Ionopc3

1 0.87 0.83 0.88 0.84 0.88 0.82 0.89 0.82 0.86 0.80 0.86 0.80 0.86 0.81 0.88 0.80
2 0.81 0.83 0.81 0.85 0.83 0.82 0.84 0.83 0.81 0.83 0.83 0.83 0.84 0.79 0.81 0.80
3 0.83 0.81 0.84 0.81 0.82 0.86 0.84 0.86 0.81 0.84 0.83 0.83 0.85 0.84 0.83 0.84
4 0.79 0.86 0.80 0.87 0.86 0.86 0.86 0.86 0.83 0.84 0.84 0.84 0.84 0.84 0.80 0.83
5 0.81 0.81 0.84 0.81 0.80 0.80 0.83 0.80 0.82 0.78 0.84 0.79 0.80 0.80 0.81 0.78

opt. r = 1.9 k = 4 k = 4 r = 1.9 γ = 4 γ = 4 r = 1.9 θ = 0 θ = 0 r = 1.9 θ = 0 r = 1.9

Ionopc5

1 0.88 0.84 0.88 0.84 0.94 0.89 0.94 0.90 0.92 0.83 0.92 0.83 0.87 0.81 0.86 0.84
2 0.85 0.85 0.85 0.85 0.91 0.89 0.91 0.89 0.93 0.86 0.93 0.86 0.91 0.83 0.88 0.83
3 0.86 0.86 0.86 0.86 0.87 0.90 0.87 0.90 0.88 0.90 0.88 0.90 0.89 0.87 0.84 0.78
4 0.85 0.88 0.85 0.88 0.91 0.89 0.91 0.89 0.89 0.87 0.89 0.87 0.84 0.88 0.80 0.85
5 0.84 0.86 0.84 0.86 0.91 0.94 0.91 0.95 0.89 0.84 0.89 0.84 0.84 0.84 0.81 0.78

increases the AUC of k-NN 0.01 AUC more.

8 Summary and Discussion

We use proximity catch digraphs (PCDs) to construct semi-parametric classifiers. These families of random
geometric digraphs constitute class covers of a class of interest (i.e. the target class) in order to generate
decision-boundaries for classifiers. PCDs are generalized versions of Class Cover Catch Digraphs (CCCDs).
For imbalanced data sets, CCCDs showed better performance than some other commonly used classifiers
in previous studies (DeVinney et al., 2002; Manukyan and Ceyhan, 2016). CCCDs are actually examples
of PCDs with spherical proximity maps. Our PCDs, however, are based on simplical proximity maps, e.g.
proportional-edge (PE) proximity maps. Our PCD, or PE-PCD, class covers are extended to be unions
of simplical and polygonal regions whereas original PE-PCD class covers were composed of only simplicial
regions. The most important advantage of these family of PE proximity maps is that their respective digraphs,
or namely PE-PCDs, have computationally tractable minimum dominating sets (MDSs). The class covers of
such digraphs are minimum in complexity, offering maximum reduction of the entire data set with comparable
and, potentially, better classification performance.

The PE-PCDs are defined on the Delaunay tessellation of the non-target class (i.e. the class not of
interest). PE-PCDs, and associated proximity maps, were only defined for the points inside of the convex
hull of the non-target class, CH(X1−j), in previous studies. Here, we introduce the outer simplices associated
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Table 3: The p-values of the 5x2 CV F test of AUC values in Figure 2. The p-values below 0.1 are given in boldface.

iris13

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,315 0,442 0,404 0,454 0,690 0,389 0,526
kNN 0,227 0,498 0,251 0,545 0,439 0,506

PE-SVM 0,285 0,367 0,549 0,305 0,270
SVM 0,315 0,420 0,540 0,447

PE-CCCD 0,482 0,384 0,434
CCCD 0,780 0,719

Composite 0,656

iris

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,403 0,627 0,635 0,402 0,708 0,628 0,005
kNN 0,535 0,617 0,227 0,391 0,532 0,003

PE-SVM 0,433 0,350 0,641 0,706 0,020
SVM 0,120 0,309 0,576 0,014

PE-CCCD 0,389 0,756 0,010
CCCD 0,793 0,005

Composite 0,008

irispr2

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,219 0,535 0,307 0,535 0,327 0,628 0,695
kNN 0,184 0,205 0,122 0,386 0,066 0,081

PE-SVM 0,224 0,535 0,279 0,484 0,694
SVM 0,178 0,356 0,038 0,196

PE-CCCD 0,186 0,495 0,676
CCCD 0,133 0,117

Composite 0,535

Ionopr2

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,324 0,528 0,515 0,328 0,438 0,000 0,093
kNN 0,282 0,521 0,294 0,424 0,028 0,038

PE-SVM 0,398 0,439 0,435 0,045 0,343
SVM 0,419 0,434 0,137 0,301

PE-CCCD 0,589 0,130 0,574
CCCD 0,182 0,467

Composite 0,118

Ionopr3

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,430 0,638 0,507 0,727 0,693 0,655 0,656
kNN 0,672 0,620 0,542 0,594 0,631 0,479

PE-SVM 0,434 0,420 0,617 0,610 0,154
SVM 0,074 0,108 0,350 0,014

PE-CCCD 0,578 0,732 0,486
CCCD 0,659 0,282

Composite 0,584

Ionopr5

PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
PE-kNN 0,500 0,022 0,020 0,548 0,548 0,618 0,223
kNN 0,022 0,020 0,548 0,548 0,618 0,223

PE-SVM 0,535 0,324 0,324 0,096 0,062
SVM 0,338 0,338 0,094 0,061

PE-CCCD 0,500 0,452 0,168
CCCD 0,452 0,168

Composite 0,076
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Table 4: Average of ten folds of 5x2 CV F -test AUC values of all classifiers on eleven KEEL and UCL data sets.
The symbol “*” indicate a difference with the AUC of standard cover PE-PCD classifier at significant level of 0.1, and
“**” at level 0.05. “PCd” indicates the number of principal components used.

Data PC d PE-kNN kNN PE-SVM SVM PE-CCCD CCCD Composite Standard
iris 2 0,924 0,962* 0,918 0,952 0,920 0,959 0,939 0,918

Ionosphere 2 0,747* 0,763** 0,752 0,767 0,737 0,746 0,720 0,735
New-Thyroid1 2 0,962 0,965 0,947 0,950 0,960 0,963 0,966 0,963
New-Thyroid2 2 0,977 0,977 0,948 0,948 0,986 0,986 0,986 0,969

Segment0

Shuttle0vs4 2 0,995 0,995 1,000 1,000 0,998 0,998 0,998 0,997
Wine 2 0,974** 0,975** 0,971** 0,972** 0,965 0,965 0,955 0,950

Yeast4 2 0,579 0,588 0,555 0,504** 0,569 0,564 0,562 0,553
Yeast5 2 0,711 0,721 0,675 0,624 0,688 0,683 0,668 0,666
Yeast6 3 0,687* 0,676* 0,621 0,557 0,655 0,641 0,594 0,613

Yeast1289vs7 2 0,559 0,547 0,548 0,503 0,552 0,535 0,546 0,549

Data N d q = m/n k γ θ r
iris 150 4 2,00 3 0,8 0,8 4,0

Ionosphere 351 35 1,78 9 0,9 0,1 1,3
New-Thyroid1 215 5 5,14 5 2,5 1,0 2,5
New-Thyroid2 215 5 5,14 4 3,5 1,0 4,0

Segment0 2308 20 6,02
Shuttle0vs4 1829 10 13,87 1 0,1 0,2 1,1

Wine 178 13 2,00 24 1,0 0,4 1,4
Yeast4 1484 9 28,10 1 0,7 1,0 7,0
Yeast5 1484 9 32,70 6 2,5 1,0 1,0
Yeast6 1484 9 41,40 1 2,3 1,0 9,0

Yeast1289vs7 1484 9 30,70 1 4,0 0,3 4,0

with facets of CH(X1−j) and thus extend the definition of the PE proximity maps to these outer simplices.
Hence, the class covers of PE-PCDs apply for all points of the target class Xj . PE-PCDs are based on the
regions of simplices associated with the vertices of these simplices, called M -vertex regions. We characterize
these vertex regions with barycentric coordinates of target class points with respect to the vertices of the
d-simplices. However, the barycentric coordinates only apply for the target class points inside the CH(X1−j).
For those points outside the convex hull, we may incorporate the generalized barycentric coordinates of,
for example, Warren (1996). Such coordinate systems are convenient for locating points outside CH(X1−j)
since outer simplices are similar to convex d-polytopes even though they are unbounded. However, generalized
barycentric coordinates of the points with respect to these convex polytopes are not unique. Hence, properties
on MDSs and convex distance measures are not well-defined.

PE-PCD class covers are low in complexity; that is, by finding the MDSs of these PE-PCDs, we can
construct class covers with minimum number of proximity regions. The minimum dominating set, or the
prototype set, is viewed as a reduced data set that potentially increases the testing speed of a classifier.
CCCDs have the same properties, but only for data sets in R. By extending outer intervals, i.e. intervals with
infinite end points, to outer simplices in Rd for d > 1, we established classifiers having the same appealing
properties of CCCDs in R. The expansion parameter r of the PE proximity maps substantially decreases
the cardinality of the minimum dominating set, but the classification performance decreases for very large
r. Hence, an optimal choice of r value is in order. On the other hand, the complexity of the prototype
set increases exponentially with d, the dimensionality of the data set. This fact is due to the Delaunay
tessellation of the non-target class since the number of simplices and facets increases exponentially on d (see
Theorem 3.3.4). Therefore, these class covers become inconvenient for modelling the support of the class
for high d. We employ dimensionality reduction, e.g. principal components analysis, to mitigate the effects
of the dimensionality. Hence, the classification performance substantially increases with these dimensionally
reduced data sets as shown in Section 7. The Monte Carlo simulations and experiments in Section 6 also
indicate that PE-PCDs have good reduction percentage in lower dimensions.

We define two types of classifiers based on PE-PCDs, namely hybrid and cover PE-PCD classifiers. In
hybrid PE-PCD classifiers, alternative classifiers are used when PE-PCD pre-classifiers are unable to make a
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decision on a query point. These pre-classifiers are only defined by the simplices provided in the Delaunay
tesselation of the set X1−j , hence only for target class points in CH(X1−j). We considered alternative classifiers
k-NN, SVM and CCCD. The cover PE-PCD classifiers, on the other hand, are based on two types of covers:
composite covers where the target class points inside and outside of the convex hull of the non-target class are
covered with separate proximity regions, and standard covers where all points are covered with regions based
on the same family of proximity maps. For composite covers, we consider a composition of spherical proximity
maps (used in CCCDs) and PE proximity maps. Results on both hybrid and cover PE-PCD classifiers indicate
that when the dimensionality is low and classes are imbalanced, standard cover PE-PCD classifiers achieve
either comparable or slightly better classification performance than others. We show that these classifiers are
better in classifying the minority class in particular. This makes cover PE-PCD classifiers appealing since
they present slightly better performance than other classifiers (including hybrid PE-PCD classifiers) with a
high reduction in the data set.

PE-PCDs offer classifiers of (exact) minimum complexity based on estimation of the class supports.
The MDSs are computationally tractable, and hence, the maximum reduction is achieved in polynomial time
(on the size of the training data set). This property of PE-PCDs, however, achieved by partitioning of Rd by
Delaunay tessellation, and as a result, the number of the simplices and facets of the convex hull of the non-
target class determines the complexity of the model which increases exponentially fast with the dimensionality
of the data set. Indeed, this leads to an overfitting of the data set. We employ PCA to extract the features
with the most variation, and thus reduce the dimensions to mitigate the effects of dimensionality. PCA,
however, is one of the oldest dimensionality reduction method, and there are many dimension reduction
methods in the literature that may potentially increase the classification performance of PCD classifiers.
Moreover, PE-PCDs are one of many family of PCDs using simplicial proximity maps investigated in Ceyhan
(2010). Their construction is also based on the Delaunay tessellations of the non-target class, and similar
to PE-PCDs, they enjoy some other properties of CCCDs in R, and they can also be used to establish
PCD classifiers. However, our work proves the idea that relatively good performing classifiers with minimum
prototype sets can be provided with PCDs based on partitioning schemes (e.g. Delaunay tesselations), but we
believe an alternative partitioning method, say for example a rectangular partitioning scheme, that produces
less partitioning than a Delaunay tessellation would be more appealing for the class cover. Such schemes
could also have computationally tractable MDSs. Such classifiers and their classification performance are
topics of ongoing research.
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9 Appendix

9.1 Proof of Theorem 2.4.1

We prove this theorem by induction on dimension d. The proof of the case d = 1 is trivial. For S(Y) =
(y1, y2) ⊂ R and y1 < y2, the vertex regions RM (y1) and RM (y2) are the intervals (y1,M) and (M, y2),
respectively ({x = M} and {x = yi} have zero R-Lebesgue measure). For α1 ∈ (0, 1) and α2 = 1 − α1, let
α1y1 + α2y2 be the convex (or barycentric) combination of x ∈ S(Y). Hence, x ∈ (y1,M) = RM (y1) if and
only if α1/α2 > m1/m2. The case d = 2 is proved in Proposition 2.3.1. Thus, there only remains the case
d > 2. We suppose the statement is true for all faces of the d-simplices which are d− 1 dimensional, and by
that, we will show that the statement is also true for the d-simplex which is d dimensional.

It is sufficient to show the result for y1 (as the others follow by symmetry). Let x ∈ RM (y1) and
note that the elements of the set of (d − 1)-faces, {fj}d+1

j=2 , are adjacent to y1. Each of these faces are of
d − 1 dimensions. Hence, they are (d − 1)-simplices and they also have their own vertex regions. Thus, let
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RMi(yj , fi) be the vertex region of yj with respect to (d− 1)-simplex fi for j 6= i. Note that Mi is the center
of fi. Now, let wfi(z, yj) = wij be the barycentric coordinate of point z corresponding to yj with respect to
the fi. Observe that wii is not defined since yi is not a vertex of the face fi.

Moreover, let m′ = (m′1, . . . ,m
′
i−1,m

′
i+1, . . . ,m

′
d+1) be the barycentric coordinates of Mi with respect

to fi, and note that Mi is a linear combination of M and yi. Also, observe that m′i is not defined since the
vertex yi is not a vertex of fi. Hence, for β ≥ 1,

Mi = βM + (1− β)yi = β

 d+1∑
t=1;t6=i

mtyt

+ (1− β)yi. (18)

Therefore, by the uniqueness of barycentric coordinates, m′t = βmt for t = 1, . . . , d+ 1 and t 6= i. Note that
(1 − β) = 0 since Mi ∈ fi and also fi ⊂ ∂(S(Y)). Hence, β = 1 which implies m′t = mt for all t 6= i. Then,
m′1/m

′
j = m1/mj for j = 2, 3, . . . , d+ 1 and j 6= i. We use this result on our induction hypothesis.

Now, for i = 2, . . . , d+1, let the face fi and line defined by x and yi cross at the point zi. Observe that
zi ∈ fi, and since fi is a (d− 1)-simplex and x ∈ RM (y1), see that zi ∈ RMi

(y1, fi). By induction hypothesis
and (18), we observe that zi ∈ RMi

(y1, fi) if and only if wi1 > (m′1/m
′
j)wij if and only if wi1 > (m1/mj)wij

for j = 2, 3, . . . , d + 1 and j 6= i. Since the point x is the convex (and linear) combination of zi and yi, for
α ∈ (0, 1), we have

x = (1− α)yi + αzi = (1− α)yi + α

 d+1∑
k=1;k 6=i

wik

 .

By the uniqueness property of barycentric coordinates, it follows that w
(1)
S (x) = αwi1 and w

(j)
S (x) = αwij .

Hence,

w
(1)
S (x)

w
(j)
S (x)

=
wi1
wij

>
m1

mj
. (19)

Since (19) is true for all i = 2, . . . , d + 1, we see that x ∈ RM (y1) if and only if w
(1)
S (x) > (m1/mi)w

(i)
S (x).

Hence, the result follows. �

10 Acronyms and Abbreviations

PCD Proximity catch digraph
CCCD Class cover catch digraph
PE Proportional edge
PE-PCD Proportional edge PCD
CCP Class cover problem
MDS Minimum dominating set
SVM Support vector machine
RBF Radial basis function
AUC Area under curve
CCR Correct Classification Rate
k-NN k nearest neighbor
CV Cross validation
PCA Principal Components Analysis
PE-kNN Hybrid PE-PCD classifier with alternative classifier k-NN
PE-SVM Hybrid PE-PCD classifier with alternative classifier SVM
PE-CCCD Hybrid PE-PCD classifier with alternative classifier CCCD
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