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Abstract

We derive the asymptotic distribution of the domination number of a new family of random digraph
called proximity catch digraph (PCD), which has application to statistical testing of spatial point patterns
and to pattern recognition. The PCD we use is a parametrized digraph based on two sets of points on
the plane, where sample size and locations of the elements of one is held fixed, while the sample size of
the other whose elements are randomly distributed over a region of interest goes to infinity. PCDs are
constructed based on the relative allocation of the random set of points with respect to the Delaunay
triangulation of the other set whose size and locations are fixed. We introduce various auxiliary tools
and concepts for the derivation of the asymptotic distribution. We investigate these concepts in one
Delaunay triangle on the plane, and then extend them to the multiple triangle case. The methods are
illustrated for planar data, but are applicable in higher dimensions also.
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∗Department of Mathematics, Koç University, Sarıyer, 34450, Istanbul, Turkey
†Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD, 21218, USA

1



1 Introduction

The proximity catch digraphs (PCDs) are a special type of proximity graphs which were introduced by
Toussaint (1980). A digraph is a directed graph with vertices V and arcs (directed edges) each of which is
from one vertex to another based on a binary relation. Then the pair (p, q) ∈ V ×V is an ordered pair which
stands for an arc (directed edge) from vertex p to vertex q. For example, the nearest neighbor (di)graph of
Paterson and Yao (1992) is a proximity digraph. The nearest neighbor digraph has the vertex set V and
(p, q) as an arc iff q is a nearest neighbor of p.

Our PCDs are based on the proximity maps which are defined in a fairly general setting. Let (Ω,M) be
a measurable space. The proximity map N(·) is defined as N : Ω → 2Ω, where 2Ω is the power set of Ω.
The proximity region of x ∈ Ω, denoted N(x), is the image of x ∈ Ω under N(·). The points in N(x) are
thought of as being “closer” to x ∈ Ω than are the points in Ω \ N(x). Hence the term “proximity” in the
name proximity catch digraph. Proximity maps are the building blocks of the proximity graphs of Toussaint
(1980); an extensive survey on proximity maps and graphs is available in Jaromczyk and Toussaint (1992).

The proximity catch digraph D has the vertex set V =
{
p1, . . . , pn

}
; and the arc set A is defined by

(pi, pj) ∈ A iff pj ∈ N(pi) for i 6= j. Notice that the proximity catch digraph D depends on the proximity
map N(·) and if pj ∈ N(pi), then we call N(pi) (and hence point pi) catches pj . Hence the term “catch” in
the name proximity catch digraph. If arcs of the form (pj , pj) (i.e., loops) were allowed, D would have been
called a pseudodigraph according to some authors (see, e.g., Chartrand and Lesniak (1996)).

In a digraph D = (V ,A), a vertex v ∈ V dominates itself and all vertices of the form {u : (v, u) ∈ A}. A
dominating set SD for the digraph D is a subset of V such that each vertex v ∈ V is dominated by a vertex in
SD. A minimum dominating set S∗

D is a dominating set of minimum cardinality and the domination number
γ(D) is defined as γ(D) := |S∗

D| (see, e.g., Lee (1998)) where | · | denotes the set cardinality functional. See
Chartrand and Lesniak (1996) and West (2001) for more on graphs and digraphs. If a minimum dominating
set is of size one, we call it a dominating point.

Note that for |V| = n > 0, 1 ≤ γ(D) ≤ n, since V itself is always a dominating set.
In recent years, a new classification tool based on the relative allocation of points from various classes

has been developed. Priebe et al. (2001) introduced the class cover catch digraphs (CCCDs) and gave
the exact and the asymptotic distribution of the domination number of the CCCD based on two sets,
Xn and Ym, which are of size n and m, from classes, X and Y, respectively, and are sets of iid random
variables from uniform distribution on a compact interval in R. DeVinney and Priebe (2006), DeVinney
et al. (2002), Marchette and Priebe (2003), Priebe et al. (2003a,b) applied the concept in higher dimensions
and demonstrated relatively good performance of CCCD in classification. The methods employed involve data
reduction (condensing) by using approximate minimum dominating sets as prototype sets (since finding the
exact minimum dominating set is an NP-hard problem in general — e.g., for CCCD in multiple dimensions
— (see DeVinney (2003)). DeVinney and Wierman (2003) proved a SLLN result for the domination number
of CCCDs for one-dimensional data. Although intuitively appealing and easy to extend to higher dimensions,
exact and asymptotic distribution of the domination number of the CCCDs are not analytically tractable in
R2 or higher dimensions. As alternatives to CCCD, two new families of PCDs are introduced in Ceyhan and
Priebe (2003, 2005) and are applied in testing spatial point patterns (see, Ceyhan et al. (2005, 2006)). These
new families are both applicable to pattern classification also. They are designed to have better distributional
and mathematical properties. For example, the distribution of the relative density (of arcs) is derived for
one family in Ceyhan et al. (2005) and for the other family in Ceyhan et al. (2006). In this article, we derive
the asymptotic distribution of the domination number of the latter family called r-factor proportional-edge
PCD. During the derivation process, we introduce auxiliary tools, such as, proximity region (which is the
most crucial concept in defining the PCD), Γ1-region, superset region, closest edge extrema, asymptotically
accurate distribution, and so on. We utilize these special regions, extrema, and asymptotic expansion of
the distribution of these extrema. The choice of the change of variables in the asymptotic expansion is also
dependent on the type of the extrema used and crucial in finding the limits of the improper integrals we
encounter. Our methodology is instructive in finding the distribution of the domination number of similar
PCDs in R2 or higher dimensions.

In addition to the mathematical tractability and applicability to testing spatial patterns and classification,
this new family of PCDs is more flexible as it allows choosing an optimal parameter for best performance in
hypothesis testing or pattern classification.
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The domination number of PCDs is first investigated for data in one Delaunay triangle (in R2) and the
analysis is generalized to data in multiple Delaunay triangles. Some trivial proofs are omitted, shorter proofs
are given in the main body of the article; while longer proofs are deferred to the Appendix.

2 Proximity Maps and the Associated PCDs

We construct the proximity regions using two data sets Xn and Ym from two classes X and Y, respectively.
Given Ym ⊆ Ω, the proximity map NY(·) : Ω → 2Ω associates a proximity region NY(x) ⊆ Ω with each
point x ∈ Ω. The region NY(x) is defined in terms of the distance between x and Ym. More specifically,
our r-factor proximity maps will be based on the relative position of points from Xn with respect to the
Delaunay tessellation of Ym. In this article, a triangle refers to the closed region bounded by its edges. See
Figure 1 for an example with n = 200 X points iid U

(
(0, 1) × (0, 1)

)
, the uniform distribution on the unit

square and the Delaunay triangulation is based on m = 10 Y which are points also iid U
(
(0, 1) × (0, 1)

)
.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

 

Figure 1: A realization of 200 X points (crosses) and the Delaunay triangulation based on 10 Y points
(circles).

If Xn =
{
X1, . . . , Xn

}
is a set of Ω-valued random variables then NY(Xi) are random sets. If Xi are iid

then so are the random sets NY(Xi). We define the data-random proximity catch digraph D — associated
with NY(·) — with vertex set Xn = {X1, · · · , Xn} and arc set A by

(Xi, Xj) ∈ A ⇐⇒ Xj ∈ NY(Xi).

Since this relationship is not symmetric, a digraph is used rather than a graph. The random digraph D
depends on the (joint) distribution of Xi and on the map NY(·). For Xn =

{
X1, · · · , Xn

}
, a set of iid random

variables from F , the domination number of the associated data-random proximity catch digraph based on
the proximity map N(·), denoted γ(Xn, N), is the minimum number of point(s) that dominate all points in
Xn.

The random variable γ(Xn, N) depends explicitly on Xn and N(·) and implicitly on F . Furthermore, in
general, the distribution, hence the expectation E [γ(Xn, N)], depends on n, F , and N ; 1 ≤ E [γ(Xn, N)] ≤ n.
In general, the variance of γ(Xn, N) satisfies, 1 ≤ Var [γ(Xn, N)] ≤ n2/4.

For example, the CCCD of Priebe et al. (2001) can be viewed as an example of PCDs and is briefly
discussed in the next section. We use many of the properties of CCCD in R as guidelines in defining PCDs
in higher dimensions.
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2.1 Spherical Proximity Maps

Let Ym = {y1, . . . , ym} ⊂ R. Then the proximity map associated with CCCD is defined as the open ball
NS(x) := B(x, r(x)) for all x ∈ R, where r(x) := miny∈Ym

d(x, y) (see Priebe et al. (2001)) with d(x, y)
being the Euclidean distance between x and y. That is, there is an arc from Xi to Xj iff there exists an
open ball centered at Xi which is “pure” (or contains no elements) of Ym in its interior, and simultaneously
contains (or “catches”) point Xj . We consider the closed ball, B(x, r(x)) for NS(x) in this article. Then
for x ∈ Ym, we have NS(x) = {x}. Notice that a ball is a sphere in higher dimensions, hence the notation
NS . Furthermore, dependence on Ym is through r(x). Note that in R this proximity map is based on the
intervals Ij =

(
y(j−1):m, yj:m

)
for j = 0, . . . , m + 1 with y0:m = −∞ and y(m+1):m = ∞, where yj:m is the

jth order statistic in Ym. This interval partitioning can be viewed as the Delaunay tessellation of R based
on Ym. So in higher dimensions, we use the Delaunay triangulation based on Ym to partition the support.

A natural extension of the proximity region NS(x) to Rd with d > 1 is obtained as NS(x) := B(x, r(x))
where r(x) := miny∈Ym

d(x, y) which is called the spherical proximity map. The spherical proximity map
NS(x) is well-defined for all x ∈ Rd provided that Ym 6= ∅. Extensions to R2 and higher dimensions with the
spherical proximity map — with applications in classification — are investigated by DeVinney and Priebe
(2006), DeVinney et al. (2002), Marchette and Priebe (2003), Priebe et al. (2003a,b). However, finding the
minimum dominating set of CCCD (i.e., the PCD associated with NS(·)) is an NP-hard problem and the
distribution of the domination number is not analytically tractable for d > 1. This drawback has motivated
us to define new types of proximity maps. Ceyhan and Priebe (2005) introduced r-factor proportional-edge
PCD, where the distribution of the domination number of r-factor PCD with r = 3/2 is used in testing spatial
patterns of segregation or association. Ceyhan et al. (2006) computed the asymptotic distribution of the
relative density of the r-factor PCD and used it for the same purpose. Ceyhan and Priebe (2003) introduced
the central similarity proximity maps and the associated PCDs, and Ceyhan et al. (2005) computed the
asymptotic distribution of the relative density of the parametrized version of the central similarity PCDs
and applied the method to testing spatial patterns. An extensive treatment of the PCDs based on Delaunay
tessellations is available in Ceyhan (2004).

The following property (which is referred to as Property (1)) of CCCDs in R plays an important role
in defining proximity maps in higher dimensions.

Property (1) For x ∈ Ij , NS(x) is a proper subset of Ij for almost all x ∈ Ij . (1)

In fact, Property (1) holds for all x ∈ Ij \{(y(j−1):m +yj:m)/2} for CCCDs in R. For x ∈ Ij , NS(x) = Ij iff

x =
(
y(j−1):m + yj:m

)
/2. We define an associated region for such points in the general context. The superset

region for any proximity map N(·) in Ω is defined to be

RS(N) :=
{
x ∈ Ω : N(x) = Ω

}
.

For example, for Ω = Ij ( R, RS(NS) := {x ∈ Ij : NS(x) = Ij} =
{(

y(j−1):m + yj:m

)
/2

}
and for

Ω = Tj ( Rd, RS(NS) := {x ∈ Tj : NS(x) = Tj}, where Tj is the jth Delaunay cell in the Delaunay
tessellation. Note that for x ∈ Ij , λ(NS(x)) ≤ λ(Ij) and λ(NS(x)) = λ(Ij) iff x ∈ RS(NS) where λ(·) is the
Lebesgue measure on R. So the proximity region of a point in RS(NS) has the largest Lebesgue measure.
Note also that given Ym, RS(NS) is not a random set, but I(X ∈ RS(NS)) is a random variable, where I(·)
stands for the indicator function. Property (1) also implies that RS(NS) has zero R-Lebesgue measure.

Furthermore, given a set B of size n in [y1:m, ym:m] \ Ym, the number of disconnected components in the
PCD based on NS(·) is at least the cardinality of the set {j ∈ {1, 2, . . . , m} : B ∩ Ij 6= ∅}, which is the set
of indices of the intervals that contain some point(s) from B.

Since the distribution of the domination number of spherical PCD (or CCCD) is tractable in R, but not
in Rd with d > 1, we try to mimic its properties in R while defining new PCDs in higher dimensions.

3 The r-Factor Proportional-Edge Proximity Maps

First, we describe the construction of the r-factor proximity maps and regions, then state some of its basic
properties and introduce some auxiliary tools.
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3.1 Construction of the Proximity Map

Let Ym = {y1, . . . , ym} be m points in general position in Rd and Tj be the jth Delaunay cell for j = 1, . . . , Jm,
where Jm is the number of Delaunay cells. Let Xn be a set of iid random variables from distribution F in
Rd with support S(F ) ⊆ CH(Ym).

In particular, for illustrative purposes, we focus on R2 where a Delaunay tessellation is a triangulation,
provided that no more than three points in Ym are cocircular (i.e., lie in the same circle). Furthermore,
for simplicity, let Y3 = {y1, y2, y3} be three non-collinear points in R2 and T (Y3) = T (y1, y2, y3) be the
triangle with vertices Y3. Let Xn be a set of iid random variables from F with support S(F ) ⊆ T (Y3). If
F = U(T (Y3)), a composition of translation, rotation, reflections, and scaling will take any given triangle
T (Y3) to the basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)) with 0 < c1 ≤ 1/2, c2 > 0, and (1 − c1)

2 + c2
2 ≤ 1,

preserving uniformity. That is, if X ∼ U(T (Y3)) is transformed in the same manner to, say X ′, then we
have X ′ ∼ U(Tb).

For r ∈ [1,∞], define N r
PE(·, M) := N(·, M ; r,Y3) to be the r-factor proportional-edge proximity map

with M -vertex regions as follows (see also Figure 2 with M = MC and r = 2). For x ∈ T (Y3) \ Y3, let
v(x) ∈ Y3 be the vertex whose region contains x; i.e., x ∈ RM (v(x)). In this article M -vertex regions are
constructed by the lines joining any point M ∈ R2 \Y3 to a point on each of the edges of T (Y3). Preferably,
M is selected to be in the interior of the triangle T (Y3)

o. For such an M , the corresponding vertex regions
can be defined using the line segment joining M to ej , which lies on the line joining yj to M ; e.g. see Figure
3 (left) for vertex regions based on center of mass MC , and (right) incenter MI . With MC , the lines joining
M and Y3 are the median lines, that cross edges at Mj for j = 1, 2, 3. M -vertex regions, among many
possibilities, can also be defined by the orthogonal projections from M to the edges. See Ceyhan (2004) for
a more general definition. The vertex regions in Figure 2 are center of mass vertex regions or CM -vertex
regions. If x falls on the boundary of two M -vertex regions, we assign v(x) arbitrarily. Let e(x) be the edge
of T (Y3) opposite of v(x). Let ℓ(v(x), x) be the line parallel to e(x) through x. Let d(v(x), ℓ(v(x), x)) be the
Euclidean (perpendicular) distance from v(x) to ℓ(v(x), x). For r ∈ [1,∞), let ℓr(v(x), x) be the line parallel
to e(x) such that

d(v(x), ℓr(v(x), x)) = r d(v(x), ℓ(v(x), x)) and d(ℓ(v(x), x), ℓr(v(x), x)) < d(v(x), ℓr(v(x), x)).

Let Tr(x) be the triangle similar to and with the same orientation as T (Y3) having v(x) as a vertex and
ℓr(v(x), x) as the opposite edge. Then the r -factor proportional-edge proximity region N r

PE(x, M) is defined
to be Tr(x)∩T (Y3). Notice that ℓ(v(x), x) divides the edges of Tr(x) (other than the one lies on ℓr(v(x), x))
proportionally with the factor r. Hence the name r-factor proportional edge proximity region.

y1 = v(x)

x

MC

ℓ(v(x), x)

ℓ
2 (v(x), x)

y3

e(x)

y2

d(
v(
x)
, ℓ 2

(v
(x

),
x)

) =
2 d

(v
(x

),
ℓ(
v(
x)
, x

))

d(
v(
x)
, ℓ
(v

(x
),
x)

)

Figure 2: Construction of r-factor proximity region, N r=2
PE (x) (shaded region).

Notice that r ≥ 1 implies x ∈ N r
PE(x, M) for all x ∈ T (Y3). Furthermore, limr→∞ N r

PE(x, M) = T (Y3)
for all x ∈ T (Y3)\Y3, so we define N∞

PE(x, M) = T (Y3) for all such x. For x ∈ Y3, we define N r
PE(x, M) = {x}

for all r ∈ [1,∞].
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Figure 3: The vertex regions constructed with center of mass MC (left) and incenter MI (right) using the
line segments on the line joining M to Y3.

 

 

 

 

 

 

Figure 4: A realization of 7 X points generated iid U(T (Y3)) (left) and the corresponding arcs of r-factor
proportional edge PCD with r = 3/2 and M = MC .

Hence, r-factor proportional edge PCD has vertices Xn and arcs (xi, xj) iff xj ∈ N r
PE(xi, M). See Figure

4 for a realization of Xn with n = 7 and m = 3. The number of arcs is 12 and γn(r = 2, MC) = 1.
By construction, note that as x gets closer to M (or equivalently further away from the vertices in vertex
regions), N r

PE(x, M) increases in area, hence it is more likely for the outdegree of x to increase. So if more
X points are around the center M , then it is more likely for γn to decrease, on the other hand, if more X
points are around the vertices Y3, then the regions get smaller, hence it is more likely for the outdegree for
such points to be smaller, thereby implying γn to increase. This probabilistic behaviour is utilized in Ceyhan
and Priebe (2005) for testing spatial patterns.

Note also that, N r
PE(x, M) is a homothetic transformation (enlargement) with r ≥ 1 applied on the

region N r=1
PE (x, M). Furthermore, this transformation is also an affine similarity transformation.

3.2 Some Basic Properties and Auxiliary Concepts

First, notice that Xi
iid∼ F , with the additional assumption that the non-degenerate two-dimensional proba-

bility density function f exists with support S(F ) ⊆ T (Y3), imply that the special case in the construction
of N r

PE — X falls on the boundary of two vertex regions — occurs with probability zero. Note that for such
an F , N r

PE(X) is a triangle a.s.

The similarity ratio of N r
PE(x, M) to T (Y3) is given by

min

(
d
(
v(x), e(x)

)
,r d

(
v(x), ℓ(v(x),x)

))

d(v(x), e(x)) , that is, N r
PE(x, M)

is similar to T (Y3) with the above ratio. Property (1) holds depending on the pair M and r. That is,
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2 (the hatched region).

there exists an r0 and a corresponding point M(r0) ∈ T (Y3)
o so that N r0

PE(x, M) satisfies Property (1) for
all r ≤ r0, but fails to satisfy it otherwise. Property (1) fails for all M when r = ∞. With CM -vertex
regions, for all r ∈ [1,∞], the area A (N r

PE(x, MC)) is a continuous function of d(ℓr(v(x), x), v(x)) which is
a continuous function of d(ℓ(v(x), x), v(x)) which is a continuous function of x.

Note that if x is close enough to M , we might have N r
PE(x, M) = T (Y3) for r =

√
2 also.

In T (Y3), drawing the lines qj(r, x) such that d(yj , ej) = r d(yj , qj(r, x)) for j ∈ {1, 2, 3} yields a triangle,
denoted Tr, for r < 3/2 . See Figure 5 for Tr with r =

√
2.

The functional form of Tr in the basic triangle Tb is given by

Tr = T (t1(r), t2(r), t3(r)) =

�
(x, y) ∈ Tb : y ≥ c2 (r − 1)

r
; y ≤ c2 (1 − r x)

r (1 − c1)
; y ≤ c2 (r (x − 1) + 1)

r c1

�
(2)

= T

 �
(r − 1) (1 + c1)

r
,
c2 (r − 1)

r

�
,

�
2 − r + c1 (r − 1)

r
,
c2 (r − 1)

r

�
,

�
c1 (2 − r) + r − 1

r
,
c2 (r − 2)

r

�!
.

There is a crucial difference between the triangles Tr and T (M1, M2, M3). More specifically T (M1, M2, M3) ⊆
RS(r, M) for all M and r ≥ 2, but (Tr)

o and RS(r, M) are disjoint for all M and r. So if M ∈ (Tr)
o, then

RS(r, M) = ∅; if M ∈ ∂(Tr), then RS(r, M) = {M}; and if M 6∈ Tr, then RS(r, M) has positive area.
Thus N r

PE(·, M) fails to satisfy Property (1) if M 6∈ Tr. See Figure 6 for two examples of superset regions
with M that corresponds to circumcenter MCC in this triangle and the vertex regions are constructed using
orthogonal projections. For r = 2, note that Tr = ∅ and the superset region is T (M1, M2, M3) (see Figure
6 (left)), while for r =

√
2, T o

r and RS(r =
√

2, M)o are disjoint (see Figure 6 (right))
The triangle Tr given in Equation (2) and the superset region RS(r, M) play a crucial role in computing

the distribution of the domination number of the r-factor PCD.

3.3 Main Result

Next, we present the main result of this article. Let γn(r, M) := γ (Xn, N r
PE , M) be the domination number

of the PCD based on N r
PE with Xn, a set of iid random variables from U(T (Y3)), with M -vertex regions.

The domination number γn(r, M) of the PCD has the following asymptotic distribution. As n → ∞,

γn(r, M) ∼






2 + BER(1 − pr), for r ∈ [1, 3/2] and M ∈ {t1(r), t2(r), t3(r)},
1, for r > 3/2,
3, for r ∈ [1, 3/2) and M ∈ Tr \ {t1(r), t2(r), t3(r)},

(3)

where BER(p) stands for Bernoulli distribution with probability of success p, Tr and tj(r) are defined in
Equation (2), and for r ∈ [1, 3/2) and M ∈ {t1(r), t2(r), t3(r)},

pr =

∫ ∞

0

∫ ∞

0

64 r2

9 (r − 1)2
w1 w3 exp

(
4 r

3 (r − 1)
(w2

1 + w2
3 + 2 r (r − 1)w1 w3)

)
dw3w1; (4)
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for example for r = 3/2 and M = MC , pr ≈ .7413.
In Equation (3), the first line is referred as the non-degenerate case, the second and third lines are referred

as degenerate cases with a.s. limits 1 and 3, respectively.
In the following sections, we define a region associated with γ = 1 case in general. Then we give finite

sample and asymptotic upper bounds for γn(r, M). Then we derive the asymptotic distribution of γn(r, M).

4 The Γ1-Regions for N r
PE

First, we define Γ1-regions in general, and describe the construction of Γ1-region of N r
PE for one point and

multiple point data sets, and provide some results concerning Γ1-regions.

4.1 Definition of Γ1-Regions

Let (Ω,M) be a measurable space and consider the proximity map N : Ω → 2Ω. For any set B ⊆ Ω, the
Γ1-region of B associated with N(·), is defined to be the region ΓN

1 (B) := {z ∈ Ω : B ⊆ N(z)}. For x ∈ Ω,
we denote ΓN

1

(
{x}

)
as ΓN

1 (x).

If Xn =
{
X1, X2, · · · , Xn

}
is a set of Ω-valued random variables, then ΓN

1 (Xi), i = 1, · · · , n, and ΓN
1 (Xn)

are random sets. If the Xi are iid, then so are the random sets ΓN
1 (Xi).

Note that γ(Xn, N) = 1 iff Xn ∩ ΓN
1 (Xn) 6= ∅. Hence the name Γ1-region.
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It is trivial to see the following.

Proposition 4.1. For any proximity map N and set B ⊆ Ω, RS(N) ⊆ ΓN
1 (B).

Lemma 4.2. For any proximity map N and B ⊆ Ω, ΓN
1 (B) = ∩x∈BΓN

1 (x).

Proof: Given a particular type of proximity map N and subset B ⊆ Ω, y ∈ ΓN
1 (B) iff B ⊆ N(y) iff

x ∈ N(y) for all x ∈ B iff y ∈ ΓN
1 (x) for all x ∈ B iff y ∈ ∩x∈BΓN

1 (x). Hence the result follows. �

A problem of interest is finding, if possible, a (proper) subset of B, say G ( B, such that ΓN
1 (B) =

∩x∈GΓN
1 (x). This implies that only the points in G will be active in determining ΓN

1 (B).
For example, in R with Y2 = {0, 1}, and Xn a set of iid random variables of size n > 1 from F in (0, 1),

ΓNS

1 (Xn) =
(
Xn:n/2, (1 + X1:n)/2

)
. So the extrema (minimum and maximum) of the set Xn are sufficient

to determine the Γ1-region; i.e., G = {X1:n, Xn:n} for Xn a set of iid random variables from a continuous
distribution on (0, 1). Unfortunately, in the multi-dimensional case, there is no natural ordering that yields
natural extrema such as minimum or maximum.

4.2 Construction of Γ1-Region of a Point for N r
PE

For N r
PE(·, M), the Γ1-region, denoted as Γr

1(·, M) := Γ
Nr

PE

1 (·, M), is constructed as follows; see also Figure
8. Let ξj(r, x) be the line parallel to ej such that ξj(r, x) ∩ T (Y3) 6= ∅ and r d(yj , ξj(r, x)) = d(yj , ℓ(yj , x))
for j ∈ {1, 2, 3}. Then

Γr
1(x, M) = ∪3

j=1

[
Γr

1(x, M) ∩ RM (yj)
]

where Γr
1(x, M) ∩ RM (yj) = {z ∈ RM (yj) : d(yj , ℓ(yj , z)) ≥ d(yj , ξj(r, x)} for j ∈ {1, 2, 3}.

Notice that r ≥ 1 implies that x ∈ Γr
1(x, M). Furthermore, limr→∞ Γr

1(x, M) = T (Y3) for all x ∈
T (Y3) \ Y3 and so we define Γr=∞

1 (x, M) = T (Y3) for all such x. For x ∈ Y3, Γr
1(x, M) = {x} for all

r ∈ [1,∞].

y1

y3

ℓ(y
1 , x)

x

ξ3(2, x)

ξ 2
(2

, x
)

d(
y 1
, ℓ

(y 1
, x

))
=

r d
(y 1

, ξ
1
(2
, x

))

d(
y 1
, ξ

1
(2
, x

))

ξ
1 (2, x)

y2

MC

Figure 8: Construction of the Γ1-region, Γr=2
1 (x, MC) (shaded region).

Notice that Γr
1(x, MC) is a convex hexagon for all r ≥ 2 and x ∈ T (Y3) \ Y3, (since for such an x,

Γr
1(x, MC) is bounded by ξj(r, x) and ej for all j ∈ {1, 2, 3}, see also Figure 8,) else it is either a convex

hexagon or a non-convex but star-shaped polygon depending on the location of x and the value of r.

4.3 The Γ1-Region of a Multiple Point Data Set for N r
PE

So far, we have described the Γ1-region for a point in x ∈ T (Y3). For a set Xn of size n in T (Y3), the region
Γr

1(Xn, M) can be specified by the edge extrema only. The (closest) edge extrema of a set B in T (Y3) are
the points closest to the edges of T (Y3), denoted xej

for j ∈ {1, 2, 3}; that is, xej
∈ arginfx∈B d(x, ej). Note

that if B = Xn is a set of iid random variables of size n from F then the edge extrema, denoted Xej
(n), are

random variables. Below, we show that the edge extrema are the active points in defining Γr
1(Xn, M).
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Figure 9: The Γ1-regions (the hatched regions) for r = 2 with seven X points iid U(T (Y3)) where vertex
regions constructed with incenter MI (left) and circumcenter MCC (right) with orthogonal projection.

Proposition 4.3. Let B be any set of n distinct points in T (Y3). For r-factor proportional-edge proximity
maps with M -vertex regions, Γr

1 (B, M) = ∩3
k=1 Γr

1 (xek
, M).

Proof: Given B = {x1, . . . , xn} in T (Y3). Note that

Γr
1(B, M) ∩ RM (yj) =

[
∩n

i=1 Γr
1(xi, M)

]
∩ RM (yj),

but by definition xej
∈ argmaxx∈B d(yj , ξj(r, x)), so

Γr
1(B, M) ∩ RM (yj) = Γr

1(xej
, M) ∩ RM (yj) for j ∈ {1, 2, 3}. (5)

Furthermore, Γr
1(B, M) = ∪3

j=1

[
Γr

1(xej
, M) ∩ RM (yj)

]
, and

Γr
1(xej

, M) ∩ RM (yj) = ∩3
k=1

[
Γr

1(xek
, M) ∩ RM (yj)

]
for j ∈ {1, 2, 3}. (6)

Combining these two results in Equations (5) and (6), we obtain Γr
1(B, M) = ∩3

k=1 Γr
1(xek

, M). �

From the above proposition, we see that the Γ1-region for B as in proposition can also be written as the
union of three regions of the form

Γr
1(B, M) ∩ RM (yj) = {z ∈ RM (yj) : d(yj , ℓ(yj , z)) ≥ d(yj , ξj(r, xej

))} for j ∈ {1, 2, 3}.

See Figure 9 for Γ1-region for r = 2 with seven X points iid U(T (Y3)). In the left figure, vertex regions
are based on incenter, while in the right figure, on circumcenter with orthogonal projections to the edges.
In either case Xn ∩ Γr=2

1 (Xn, M) is nonempty, hence γn(2, M) = 1.
Below, we demonstrate that edge extrema are distinct with probability 1 as n → ∞. Hence in the limit

three distinct points suffice to determine the Γ1-region.

Theorem 4.4. Let Xn be a set of iid random variables from U(T (Y3)) and let Ec,3(n) be the event that
(closest) edge extrema are distinct. Then P (Ec,3(n)) → 1 as n → ∞.

We can also define the regions associated with γ(Xn, N) = k for k ≤ n called Γk-region for proximity
map NY3

(·) and set B ⊆ Ω for k = 1, . . . , n (see Ceyhan (2004)).

5 The Asymptotic Distribution of γn(r, M)

In this section, we first present a finite sample upper bound for γn(r, M), then present the degenerate cases,
and the nondegenerate case of the asymptotic distribution of γn(r, M) given in Equation (3).
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5.1 An Upper Bound for γn(r, M)

Recall that by definition, γ(Xn, N) ≤ n. We will seek an a.s. least upper bound for γ(Xn, N). Let Xn be
a set of iid random variables from F on T (Y3) and let γ(Xn, N) be the domination number for the PCD
based on a proximity map N . Denote the general a.s. least upper bound for γ(Xn, N) that works for all
n ≥ 1 and is independent of n (which is called κ-value in Ceyhan (2004)) as κ(N) := min{k : γ(Xn, N) ≤
k a.s. for all n ≥ 1}.

In R with Y2 = {0, 1}, for Xn a set of iid random variables from U(0, 1), γ(Xn, NS) ≤ 2 with equality
holding with positive probability. Hence κ(NS) = 2.

Theorem 5.1. Let Xn be a set of iid random variables from U(T (Y3)) and M ∈ R2 \Y3. Then κ (N r
PE) = 3

for N r
PE(·, M).

Proof: For N r
PE(·, M), pick the point closest to edge ej in vertex region RM (yj); that is, pick Uj ∈

argminX∈Xn∩RM (yj) d(X, ej) = argmaxX∈Xn∩RM(yj) d(ℓ(y, X), yj) in the vertex region for which Xn∩RM (yj) 6=
∅ for j ∈ {1, 2, 3} (note that as n → ∞, Uj is unique a.s. for each j, since X is from U(T (Y3))). Then
Xn ∩ RM (yj) ⊂ N r

PE(Uj , M). Hence Xn ⊂ ∪3
j=1N

r
PE(Uj , M). So γn(r, MC) ≤ 3 with equality holding with

positive probability. Thus κ (N r
PE) = 3. �

Below is a general result for the limiting distribution of γ(Xn, N) for Xn from a very broad family of
distributions and for general N(·).

Lemma 5.2. Let RS(N) be the superset region for the proximity map N(·) and Xn be a set of iid random
variables from F with PF (X ∈ RS(N)) > 0. Then limn→∞ PF (γ(Xn, N) = 1) = 1.

Proof: Suppose PF (X ∈ RS(N)) > 0. Recall that for any x ∈ RS(N), we have N(x) = Ω, so
Xn ⊆ N(x), hence if Xn ∩ RS(N) 6= ∅ then γ(Xn, N) = 1. Then P (Xn ∩ RS(N) 6= ∅) ≤ P (γ(Xn, N) = 1).
But P

(
Xn ∩ RS(N) 6= ∅

)
= 1 − P

(
Xn ∩ RS(N) = ∅

)
= 1 −

[
1 − PF

(
X ∈ RS(N)

)]n → 1 as n → ∞, since

PF

(
X ∈ RS(N)

)
> 0. Hence limn→∞ P (γ(Xn, N) = 1) = 1. �

Remark 5.3. In particular, for F = U(T (Y3)), the inequality PF (X ∈ RS(N)) > 0 holds iff A(RS(N)) > 0,
then P (Xn ∩ RS(N) 6= ∅) → 1. �

For Y2 = {0, 1} ⊂ R, RS(NS) = {1/2}, so Lemma 5.2 does not apply to NS in R.
Recall that κ (N r

PE) = 3, then

1 ≤ E [γn(r, M)] ≤ 3 and 0 ≤ Var [γn(r, M)] ≤ 9/4.

Furthermore, there is a stochastic ordering for γn(r, M).

Theorem 5.4. Suppose Xn is a set of iid random variables from a continuous distribution F on T (Y3).
Then for r1 < r2, we have γn(r2, M) ≤ST γ (Xn, N r1

PE , M).

Proof: Suppose r1 < r2. Then P (γn(r2, M) ≤ 1) > P (γn(r1, M) ≤ 1) since Γr1

1 (Xn, M) ( Γr2

1 (Xn, M)
for any realization of Xn and by a similar argument P

(
γn(r2, M) ≤ 2

)
> P (γn(r1, M) ≤ 2) so P (γn(r2, M) ≤ 3) =

P (γn(r1, M) ≤ 3) . Hence the desired result follows. �

5.2 Geometry Invariance

We present a “geometry invariance” result for N r
PE(·, M) where M -vertex regions are constructed using

the lines joining Y3 to M , rather than the orthogonal projections from M to the edges. This invariance
property will simplify the notation in our subsequent analysis by allowing us to consider the special case of
the equilateral triangle.

Theorem 5.5. (Geometry Invariance Property) Suppose Xn is a set of iid random variables from U(T (Y3)).
Then for any r ∈ [1,∞] the distribution of γn(r, M) is independent of Y3 and hence the geometry of T (Y3).

Proof: Suppose X ∼ U(T (Y)). A composition of translation, rotation, reflections, and scaling will take
any given triangle T (Y) = T (y1, y2, y3) to the basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)) with 0 < c1 ≤ 1/2,
c2 > 0, and (1 − c1)

2 + c2
2 ≤ 1. Furthermore, when X is also transformed in the same manner, say to
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X ′, then X ′ is uniform on Tb, i.e., X ′ ∼ U(Tb). The transformation φe : R2 → R2 given by φe(u, v) =(
u + 1−2 c1√

3
v,

√
3

2 c2

v
)

takes Tb to the equilateral triangle Te =
(
(0, 0), (1, 0), (1/2,

√
3/2)

)
. Investigation of the

Jacobian shows that φe also preserves uniformity. That is, φe(X
′) ∼ U(Te). Furthermore, the composition

of φe, with the scaling and rigid body transformations, maps the boundary of the original triangle, To, to
the boundary of the equilateral triangle, Te, the lines joining M to yj in Tb to the lines joining φe(M) to
φe(yj) in Te, and lines parallel to the edges of To to lines parallel to the edges of Te. Since the distribution of
γn(r, M) involves only probability content of unions and intersections of regions bounded by precisely such
lines and the probability content of such regions is preserved since uniformity is preserved; the desired result
follows. �

Note that geometry invariance of γ (Xn, N r=∞
PE , M) also follows trivially, since for r = ∞, we have

γn(r = ∞, M) = 1 a.s. for all Xn from any F with support in T (Y3) \ Y3.
Based on Theorem 5.5 we may assume that T (Y3) is a standard equilateral triangle with

Y3 =
{
(0, 0), (1, 0),

(
1/2,

√
3/2

)}
for N r

PE(·, M) with M -vertex regions.
Notice that, we proved the geometry invariance property for N r

PE where M -vertex regions are defined with
the lines joining Y3 to M . On the other hand, if we use the orthogonal projections from M to the edges, the
vertex regions, hence N r

PE will depend on the geometry of the triangle. That is, the orthogonal projections
from M to the edges will not be mapped to the orthogonal projections in the standard equilateral triangle.
Hence with the choice of the former type of M -vertex regions, it suffices to work on the standard equilateral
triangle. On the other hand, with the orthogonal projections, the exact and asymptotic distribution of γn

will depend on c1, c2, so one needs to do the calculations for each possible combination of c1, c2.

5.3 The Degenerate Case with γn(r, M)
p→ 1

Below, we prove that γn(r, M) is degenerate in the limit for r > 3/2.

Theorem 5.6. Suppose Xn is a set of iid random variables from a continuous distribution F on T (Y3). If
M 6∈ Tr (see Figure 5 and Equation (2) for Tr), then limn→∞ P (γn(r, M) = 1) = 1 for all M ∈ R2 \ Y3.

Proof: Suppose M /∈ Tr. Then RS (N r
PE , M) is nonempty with positive area. Hence the result follows

by Lemma 5.2. �

Corollary 5.7. Suppose Xn is a set of iid random variables from a continuous distribution F on T (Y3).
Then for r > 3/2, limn→∞ P (γn(r, M) = 1) = 1 for all M ∈ R2 \ Y3.

Proof: For r > 3/2, Tr = ∅, so M 6∈ Tr. Hence the result follows by Theorem 5.6. �

We estimate the distribution of γn(r, M) with r = 2 and M = MC for various n empirically. In Table 1
(left), we present the empirical estimates of γn(r, M) with n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo
replicates in Te. Observe that the empirical estimates are in agreement with the asymptotic distribution
given in Corollary 5.7.

k�n 10 20 30 50 100
1 961 1000 1000 1000 1000
2 34 0 0 0 0
3 5 0 0 0 0

k�n 10 20 30 50 100
1 9 0 0 0 0
2 293 110 30 8 0
3 698 890 970 992 1000

Table 1: The number of γn(r, M) = k out of N = 1000 Monte Carlo replicates with M = MC and r = 2
(left) and r = 5/4 (right).

The asymptotic distribution of γn(r, M) for r < 3/2 depends on the relative position of M with respect
to the triangle Tr.

5.4 The Degenerate Case with γn(r, M)
p→ 3

Theorem 5.8. Suppose Xn is a set of iid random variables from a continuous distribution F on T (Y3). If
M ∈ (Tr)

o, then P (γn(r, M) = 3) → 1 as n → ∞.
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We estimate the distribution of γn(r, M) with r = 5/4 and M = MC for various n values empirically.
In Table 1 (right), we present the empirical estimates of γn(r, M) with n = 10, 20, 30, 50, 100 based on
1000 Monte Carlo replicates in Te. Observe that the empirical estimates are in agreement with our result in
Theorem 5.8.

Theorem 5.9. Suppose Xn is a set of iid random variables from U(T (Y3)). If M ∈ ∂(Tr), then P (γn(r, M) > 1) →
1 as n → ∞.

For M ∈ ∂(Tr), there are two separate cases:

(i) M ∈ ∂(Tr) \ {t1(r), t2(r), t3(r)} where tj(r) with j ∈ {1, 2, 3} are the vertices of Tr whose explicit
forms are given in Equation (2).

(ii) M ∈ {t1(r), t2(r), t3(r)}.
Theorem 5.10. Suppose Xn is a set of iid random variables from U(T (Y3)). If M ∈ ∂(Tr)\{t1(r), t2(r), t3(r)},
then P (γn(r, M) = 3) → 1 as n → ∞.

We estimate the distribution of γn(r, M) with r = 5/4 and M =
(
3/5,

√
3/10

)
∈ ∂(Tr)\{t1(r), t2(r), t3(r)}

for various n empirically. In Table 2 we present empirical estimates of γn(r, M) with n = 10, 20, 30, 50, 100, 500,
1000, 2000 based on 1000 Monte Carlo replicates in Te. Observe that the empirical estimates are in agreement
with our result in Theorem 5.10.

k�n 10 20 30 50 100 500 1000 2000
1 118 60 51 39 15 1 2 1
2 462 409 361 299 258 100 57 29
3 420 531 588 662 727 899 941 970

Table 2: The number of γn(r, M) = k out of N = 1000 Monte Carlo replicates with r = 5/4 and M =(
3/5,

√
3/10

)
.

5.5 The Nondegenerate Case

Theorem 5.11. Suppose Xn is a set of iid random variables from U(T (Y3)). If M ∈ {t1(r), t2(r), t3(r)},
then P (γn(r, M) = 2) → pr as n → ∞ where pr ∈ (0, 1) is provided in Equation (4) but only numerically
computable.

For example, pr=5/4 ≈ .6514 and pr=
√

2 ≈ .4826.
So the asymptotic distribution of γn(r, M) with r ∈ [1, 3/2) and M ∈ {t1(r), t2(r), t3(r)} is given by

γn(r, M) ∼ 2 + BER(1 − pr). (7)

We estimate the distribution of γn(r, M) with r = 5/4 and M =
(
7/10,

√
3/10

)
for various n empirically.

In Table 3, we present the empirical estimates of γn(r, M) with n = 10, 20, 30, 50, 100, 500, 1000, 2000
based on 1000 Monte Carlo replicates in Te. Observe that the empirical estimates are in agreement with our
result pr=5/4 ≈ .6514.

k�n 10 20 30 50 100 500 1000 2000
1 174 118 82 61 22 5 1 1
2 532 526 548 561 611 617 633 649
3 294 356 370 378 367 378 366 350

Table 3: The number of γn(r, M) = k out of N = 1000 Monte Carlo replicates with r = 5/4 and M =(
7/10,

√
3/10

)
.
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Remark 5.12. For r = 3/2, as n → ∞, P (γn(r, MC) > 1) → 1 at rate O
(
n−1

)
. �

Theorem 5.13. Suppose Xn is a set of iid random variables from U(T (Y3)). Then for r = 3/2, as n → ∞,

γn(3/2, MC) ∼ 2 + BER(p ≈ .2487) (8)

For the proof of Theorem 5.13, see Ceyhan and Priebe (2004, 2005).
Using Theorem 5.13,

lim
n→∞

E [γn(3/2, MC)] = 3 − p3/2 ≈ 2.2587 (9)

and
lim

n→∞
Var [γn(3/2, MC)] = 6 + p3/2 − p2

3/2 ≈ .1917. (10)

Indeed, the finite sample distribution of γn(3/2, MC) hence the finite sample mean and variance can also be
obtained by numerical methods.

We also estimate the distribution of γn(3/2, MC) for various n values empirically. The empirical estimates
for n = 10, 20, 30, 50, 100, 500, 1000, 2000 based on 1000 Monte Carlo replicates are given in Table 4.
estimates are in agreement with our result pr=3/2 ≈ .7413.

k�n 10 20 30 50 100 500 1000 2000
1 151 82 61 50 27 2 3 1
2 602 636 688 693 718 753 729 749
3 247 282 251 257 255 245 268 250

Table 4: The number of γn(3/2, MC) = k out of N = 1000 Monte Carlo replicates.

5.6 Distribution of the γn(r, M) in Multiple Triangles

So far we have worked with data in one Delaunay triangle, i.e., m = 3 or J3 = 1. In this section, we present
the asymptotic distribution of the domination number of r-factor PCDs in multiple Delaunay triangles.
Suppose Ym = {y1, y2, . . . , ym} ⊂ R2 be a set of m points in general position with m > 3 and no more than
3 points are cocircular. Then there are Jm > 1 Delaunay triangles each of which is denoted as Tj . Let M j

be the point in Tj that corresponds to M in Te, T j
r be the triangle that corresponds to Tr in Te, and tji (r)

be the vertices of T j
r that correspond to ti(r) in Te for i ∈ {1, 2, 3}. Moreover, let nj := |Xn ∩ Tj |, the

number of X points in Delaunay triangle Tj . For Xn ⊂ CH(Ym), let γnj
(r, M j) be the domination number

of the digraph induced by vertices of Tj and Xn ∩ Tj . Then the domination number of the r-factor PCD in
Jm triangles is

γn(r, M, Jm) =

Jm∑

j=1

γnj
(r, M j).

See Figure 10 (left) for the 77 X points that are in CH(Ym) out of the 200 X points plotted in Figure 1.
Observe that 10 Y points yield J10 = 13 Delaunay triangles. In Figure 10 (right) are the corresponding
arcs for M = MC and r = 3/2. The corresponding γn = 22. Suppose Xn is a set of iid random variables
from U(CH(Ym)), the uniform distribution on convex hull of Ym and we construct the r-factor PCDs using
the points M j that correspond to M in Te. Then for fixed m (or fixed Jm), as n → ∞, so does each nj .
Furthermore, as n → ∞, each component γnj

(r, M j) become independent. Therefore using Equation (3),
we can obtain the asymptotic distribution of γn(r, M, Jm). As n → ∞, for fixed Jm,

γn(r, M, Jm) ∼






2 Jm + BIN(Jm, 1 − pr), for M j ∈ {tj1(r), tj2(r), tj3(r)} and r ∈ [1, 3/2],
Jm, for r > 3/2,

3 Jm, for M ∈ T j
r \ {tj1(r), tj2(r), tj3(r)} and r ∈ [1, 3/2),

(11)

where BIN(n, p) stands for binomial distribution with n trials and probability of success p, for r ∈ [1, 3/2)
and M ∈ {t1(r), t2(r), t3(r)}, pr is given in Equation 3 and for r = 3/2 and M = MC , pr ≈ .7413 (see
Equation (8)).
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Figure 10: The 77 X points (crosses) in the convex hull of Y points (circles) given in Figure 1 (left) and the
corresponding arcs (right) of r-factor proportional edge PCD with r = 3/2 and M = MC .

5.7 Extension of N r
PE to Higher Dimensions

The extension to Rd for d > 2 with M = MC is provided in Ceyhan and Priebe (2005), but the extension
for general M is similar.

Let γn(r, M, d) := γ(Xn, N r
PE , M, d) be the domination number of the PCD based on the extension of

N r
PE(·, M) to Rd. Then it is easy to see that γn(r, M, 3) is nondegenerate as n → ∞ for r = 4/3. In Rd, it

can be seen that γn(r, M, d) is nondegenerate in the limit only when r = (d+1)/d. Furthermore, for large d,
asymptotic distribution of γn(r, M, d) is nondegenerate at values of r closer to 1. Moreover, it can be shown
that limn→∞ P

(
2 ≤ γn(r = (d + 1)/d, M, d) ≤ d + 1

)
= 1 and we conjecture the following.

Conjecture 5.14. Suppose Xn is set of iid random variables from the uniform distribution on a simplex in
Rd. Then the domination number γn(r, M) in the simplex satisfies

lim
n→∞

P (d ≤ γn((d + 1)/d, M, d) ≤ d + 1) = 1.

For instance, with d = 3 we estimate the empirical distribution of γ(Xn, 4/3) for various n. The empirical
estimates for n = 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000 based on 1000 Monte Carlo replicates for each
n are given in Table 5.

k�n 10 20 30 40 50 100 200 500 1000 2000
1 52 18 5 5 4 0 0 0 0 0
2 385 308 263 221 219 155 88 41 31 19
3 348 455 557 609 621 725 773 831 845 862
4 215 219 175 165 156 120 139 128 124 119

Table 5: The number of γn(4/3, MC) = k out of N = 1000 Monte Carlo replicates.

6 Discussion

The r-factor proportional-edge proximity catch digraphs (PCDs), when compared to class cover catch di-
graphs (CCCDs), have some advantages. The asymptotic distribution of the domination number γn(r, M)
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of the r-factor PCDs, unlike that of CCCDs, is mathematically tractable (computable by numerical integra-
tion). A minimum dominating set can be found in polynomial time for r-factor PCDs in Rd for all d ≥ 1, but
finding a minimum dominating set is an NP-hard problem for CCCDs (except for R). These nice properties
of r-factor PCDs are due to the geometry invariance of distribution of γn(r, M) for uniform data in triangles.

On the other hand, CCCDs are easily extendable to higher dimensions and are defined for all Xn ⊂ Rd,
while r-factor PCDs are only defined for Xn ⊂ CH(Ym). Furthermore, the CCCDs based on balls use
proximity regions that are defined by the obvious metric, while the PCDs in general do not suggest a metric.
In particular, our r-factor PCDs are based on some sort of dissimilarity measure, but no metric underlying
this measure exists.

The finite sample distribution of γn(r, M), although computationally tedious, can be found by numerical
methods, while that of CCCDs can only be empirically estimated by Monte Carlo simulations. Moreover,
we had to introduce many auxiliary tools to compute the distribution of γn(r, M) in R2. Same tools will
work in higher dimensions, perhaps with more complicated geometry.

The r-factor PCDs have applications in classification and testing spatial patterns of segregation or asso-
ciation. The former can be performed building discriminant regions for classification in a manner analogous
to the procedure proposed in Priebe et al. (2003a); and the latter can be performed by using the asymptotic
distribution of γn(r, M) similar to the procedure used in Ceyhan and Priebe (2005).
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Appendix

First, we begin with a remark that introduces some terminology which we will use for asymptotics throughout this
appendix.

Remark 6.1. Suppose Xn is a set of iid random variables from F with support S(F ) ⊆ Ω. If over a sequence
Ωn ⊆ Ω, n = 1, 2, 3, . . ., X restricted to Ωn, X|Ωn , has distribution Fn with Fn(x) = F (x)/PF (X ∈ Ωn) and
PF (X ∈ Ωn) → 1 as n → ∞, then we call Fn the asymptotically accurate distribution of X and Ωn the asymptotically

accurate support of F . If F has density f , then fn = f(x)/PF (X ∈ Ωn) is called the asymptotically accurate pdf of
X. In both cases, if we are concerned with asymptotic results, for simplicity we will, respectively, use F and f for
asymptotically accurate distribution and pdf. Conditioning will be implied by stating that X ∈ Ωn with probability
1, as n → ∞ or for sufficiently large n. �

Proof of Theorem 4.4

Without loss of generality, assume T (Y3) = Tb = T ((0, 0), (1, 0), (c1, c2)) Note that the probability of edge extrema
all being equal to each other is P (Xe1

(n) = Xe2
(n) = Xe3

(n)) = I(n = 1). Let Ec,2(n) be the event that there are
only two distinct (closest) edge extrema. Then for n > 1,

P (Ec,2(n)) = P (Xe1
(n) = Xe2

(n)) + P (Xe1
(n) = Xe3

(n)) + P (Xe2
(n) = Xe3

(n))

since the intersection of the events {Xei
(n) = Xej

(n)} and {Xei
(n) = Xek

(n)} for distinct i, j, k is equivalent to the
event {Xe1

(n) = Xe2
(n) = Xe3

(n)}. Notice also that P (Ec,2(n = 2)) = 1. So, for n > 2, there are two or three
distinct edge extrema with probability 1. Hence P (Ec,3(n)) + P (Ec,2(n)) = 1 for n > 2.

By simple integral calculus, we can show that P (Ec,2(n)) → 0 as n → ∞, which will imply the desired result. �
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Proof of Theorem 5.8

Note that (Tr)
o 6= ∅ iff r < 3/2. Suppose M ∈ (Tr)

o. Then for any point u in RM (yj), Nr
PE(u, M) ( T (Y3),

because there is a tiny strip adjacent to edge ej not covered by Nr
PE(u, M), for each j ∈ {1, 2, 3}. Then, Nr

PE(u, M)∪
Nr

PE(v, M) ( T (Y3) for all (u, v) ∈ RM (y1)×RM (y2). Pick sup (u,v)∈RM (y1)×RM (y2)N
r
PE(u, M)∪Nr

PE(v, M) ( T (Y3).
Then T (Y3) \

�
sup (u,v)∈RM (y1)×RM (y2)N

r
PE(u, M) ∪ Nr

PE(v, M)
�

has positive area. So

Xn ∩
�
T (Y3) \

�
sup (u,v)∈RM (y1)×RM (y2)N

r
PE(u, M) ∪ Nr

PE(v, M)
��

6= ∅
with probability 1 for sufficiently large n. (The supremum of a set functional A(x) over a range B is defined as the set
S := supx∈B A(x) such that S is the smallest set satisfying A(x) ⊆ S for all x ∈ B.) Then at least three points—one
for each vertex region— are required to dominate Xn. Hence for sufficiently large n, γn(r,M) ≥ 3 with probability
1, but κ (Nr

PE) = 3 by Theorem 5.1. Then limn→∞ P (γn(r,M) = 3) = 1 for r < 3/2. �

Proof of Theorem 5.9

Let M = (m1, m2) ∈ ∂(Tr), say M ∈ q3(r, x) (recall that qj(r, x) are defined such that d(yj , ej) = r · d(qj(r, x), yj)

for j ∈ {1, 2, 3}), then m2 =
√

3 (2−r)
2 r

and m1 ∈
h

3 (r−1)
2 r

, 3−r
2 r

i
. Let Xej

(n) be one of the closest point(s) to the edge

ej ; i.e., Xej
(n) ∈ argminX∈Xn

d(X, ej) for j ∈ {1, 2, 3}. Note that Xej
(n) is unique a.s. for each j.

Notice that for all j ∈ {1, 2, 3}, Xej
(n) /∈ Nr

PE(X) for all X ∈ Xn ∩ RM (yj) implies that γn(r, M) > 1 with
probability 1. For sufficiently large n, Xej

(n) /∈ Nr
PE(X) for all X ∈ Xn ∩ RM (yj) with probability 1, for j ∈ {1, 2},

by the choice of M . Hence we consider only Xe3
(n). The asymptotically accurate pdf of Xe3

(n) is

fe3
(x, y) = n

�
A(SU (x, y))

A(T (Y3))

�n−1
1

A(T (Y3))
,

where SU (x, y) is the unshaded region in Figure 11 (left) (for a given Xe3
(n) = xe3

= (x, y)) whose area is

A(SU (x, y)) =
√

3
�
2 y −

√
3
�2

/12. Note that Xe3
(n) /∈ Nr

PE(X) for all X ∈ Xn ∩ RM (y3) iff Xn ∩ [Γr
1 (Xn, M) ∩

RM (y3)] = ∅. Then given Xe3
(n) = (x, y),

P
�
Xn ∩

�
Γr

1 (Xn, M) ∩ RM (y3)
�

= ∅
�

=

�
A(SU (x, y)) − A (Γr

1 (Xn, M) ∩ RM (y3))

A(SU(x, y))

�n−1

,

where A (Γr
1 (Xn, M) ∩ RM (y3)) =

√
3 y2

3 (r−1) r
(see Figure 11 (right) where the shaded region is Γr

1 (Xn, M) ∩ RM (y3)

for a given Xe3
(n) = (x, y)), then for sufficiently large n

P (Xn ∩ [Γr
1 (Xn, M) ∩ RM (y3)] = ∅) ≈Z �

A(SU (x, y)) − A (Γr
1 (Xn, M) ∩ RM (y3))

A(SU (x, y))

�n−1

fe3
(x, y) dy dx

=

Z
n

A(T (Y3))

�
A(SU(x, y)) − A (Γr

1 (Xn, M) ∩ RM (y3))

A(T (Y3))

�n−1

dy dx.

Let

G(x, y) =
A(SU (x, y)) − A (Γr

1 (Xn, M) ∩ RM (y3))

A(T (Y3))
=

4√
3

 √
3
�
2 y −

√
3
�2

12
−

√
3 y2

3 (r − 1) r

!
,

which is independent on x, so we denote it as G(y).
Let ε > 0 be sufficiently small, then for sufficiently large n,

P (Xn ∩ [Γr
1 (Xn, M) ∩ RM (y3)] = ∅) ≈Z ε

0

Z 1−y/
√

3

y/
√

3

n G(y)n−1 4/
√

3 dy dx =
�
1 − 2 y/

√
3
�Z ε

0

n G(y)n−1 4/
√

3 dy.

The integrand is critical at y = 0, since G(0) = 1 (i.e., when xe3
∈ e3). Furthermore, G(y) = 1 − 4 y/

√
3 + O

�
y2
�

around y = 0. Then letting y = w/n, we get

P (Xn ∩ [Γr
1 (Xn, M) ∩ RM (y3)] = ∅) ≈

�
1 − 2w√

3n

�
4√
3

Z nε

0

�
1 − 4w√

3n
+ O

�
n−2��n−1

dw.

letting n → ∞, ≈ 4/
√

3

Z ∞

0

exp
�
−4w/

√
3
�

dw = 1.

Hence limn→∞ P (γn(r, M) > 1) = 1. For M ∈ qj(r, x) ∩ Tr with j ∈ {1, 2} the result follows similarly. �
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y2 = (1, 0)y1 = (0, 0)

y3 = (1/2,
√

3/2)

e3

xe3 = (x, y)

y2 = (1, 0)y1 = (0, 0)

y3 = (1/2,
√

3/2)

e3

Mt1 t2

t3
Tr

xe3 = (x, y)

Γ1(Xn, Nr
PE,M ) ∩ RM (y3)

Figure 11: A figure for the description of the pdf of Xe3
(n) (left) and Γr

1 (Xn, M) (right) given Xe3
(n) =

xe3
= (x, y).

Proof of Theorem 5.10

Let M = (m1, m2) ∈ ∂(Tr) \ {t1(r), t2(r), t3(r)}, say M ∈ q3(r, x). Then m2 =
√

3 (r−1)
2 r

. Without loss of generality,
assume 1

2
≤ m1 < 3−r

2 r
. See also Figure 12.

y2 = (1, 0)y1 = (0, 0)

y3 = (1/2,
√

3/2)

e3

e1

t1 t2

t3

M

Tr

q̂1

q̂3

y2 = (1, 0)y1 = (0, 0)

y3 = (1/2,
√

3/2)

e3

e1

t1 t2

t3

M

Tr

q̂1

q̂3

Figure 12: A figure for the description of the pdf of Q̂1(n) and Q̂3(n) (left) and the unshaded region is
N r

PE(q̂1, M) ∪ N r
PE(q̂3, M) (right).

Whenever Xn ∩ RM (yj) 6= ∅, letbQj(n) ∈ argminX∈Xn∩RM (yj ) d (X, ej) = argmaxX∈Xn∩RM (yj) d(ℓ(yj , X), yj) for j ∈ {1, 2, 3}.

Note that at least one of the bQj(n) uniquely exists w.p. 1 for finite n and as n → ∞, bQj(n) are unique w.p. 1. Then

γn(r, M) ≤ 2 iff Xn ⊂
h
Nr

PE

� bQ1(n), M
�
∪ Nr

PE

� bQ2(n), M
�i

or

Xn ⊂
h
Nr

PE

� bQ2(n), M
�
∪ Nr

PE

� bQ3(n), M
�i

or Xn ⊂
h
Nr

PE

� bQ1(n), M
�
∪ Nr

PE

� bQ3(n), M
�i

.

Let Ei,j
n be the event that Xn ⊂ Nr

PE

� bQi, M
�
∪
h
Nr

PE

� bQj(n), M
�i

for (i, j) ∈
�
(1, 2), (1, 3), (2, 3)

	
. Then

P (γn(r,M) ≤ 2) = P
�
E1,2

n

�
+ P

�
E2,3

n

�
+ P

�
E1,3

n

�
− P

�
E1,2

n ∩ E2,3
n

�
− P

�
E1,2

n ∩ E1,3
n

�
− P

�
E1,3

n ∩ E2,3
n

�
+ P

�
E1,2

n ∩ E2,3
n ∩ E1,3

n

�
.

But note that P
�
E1,2

n

�
→ 0 as n → ∞ by the choice of M since

sup u∈RM (y1)
v∈RM (y2)

Nr
PE(u, M) ∪ Nr

PE(v, M) ( T (Y3),
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and

P

 
Xn ∩ T (Y3) \

"
sup u∈RM (y1)

v∈RM (y2)

Nr
PE(u, M) ∪ Nr

PE(v,M)

#
6= ∅
!

→ 1 as n → ∞.

Then,

P
�
E1,2

n

�
− P

�
E1,2

n ∩ E2,3
n

�
− P

�
E1,2

n ∩ E1,3
n

�
+ P

�
E1,2

n ∩ E2,3
n ∩ E1,3

n

�
≤ 4P

�
E1,2

n

�
→ 0 as n → ∞.

Therefore,
lim

n→∞
P (γn(r,M) ≤ 2) = lim

n→∞

�
P
�
E2,3

n

�
+ P

�
E1,3

n

��
.

Furthermore, observe that P
�
E1,3

n

�
≥ P

�
E2,3

n

�
by the choice of M . Then we first find limn→∞ P

�
E1,3

n

�
. Given

a realization of Xn with bQ1(n) = bq1 = (x1, y1) and bQ3(n) = bq3 = (x3, y3), the remaining n − 2 points should fall, for

example, in the undshaded region in Figure 12 (left). Then the asymptotically accurate joint pdf of bQ1(n), bQ3(n) is

f13

�
~ζ
�

=
n (n − 1)

A(T (Y3))2

 
A(T (Y3)) − A(SR

�
~ζ
��

~ζ
�
)

A(T (Y3))

!n−2

where ~ζ = (x1, y1, x3, y3), SR

�
~ζ
�

is the shaded region in Figure 12 (left) whose area is A(SR

�
~ζ
�
) =

√
3 (2 r y3−

√
3 (r−1))2

12 r (r−1)
+

√
3[2

√
3 r y1−3 (r−1)+6 r (x1−m1)]2

72 r (1−r (2 m1−1))
.

Given bQj(n) = bqj = (xj , yj) for j ∈ {1, 3},

P
�
E1,3

n

�
=

 
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3)) − A(SR

�
~ζ
�
)

!n−2

then for sufficiently large n

P
�
E1,3

n

�
≈

Z  
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3)) − A(SR

�
~ζ
�
)

!n−2

f13

�
~ζ
�
d~ζ,

=

Z
n (n − 1)

A(T (Y3))2

 
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3))

!n−2

d~ζ

where

A (Nr
PE (bq1, M) ∪ Nr

PE (bq3, M)) =

√
3

4
−
 �√

3 r y1 + 3 r x1 − 3
� �√

3 (r − 1) − 2 r y3

�
6

!
.

See Figure 12 (right) for Nr
PE(bq1, M) ∪ Nr

PE(bq3, M). Let

G
�
~ζ
�

=
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3))
.

Note that the integral is critical at x1 = x3 = m1 and y1 = y3 = m2, since G
�
~ζ
�

= 1. Since Nr
PE(x,MC) depends

on the distance d(x, ej) for x ∈ RM (yj), we make the change of variables (x1, y1) → (d(M, e1) + z1, y1) where

d(M, e1) =
√

3 (r+1−2 r m1)
4 r

and (x3, y3) → (x3, m2 + z3) then G
�
~ζ
�

depends only on z1, z3, we denote it G(z1, z3)
which is

G(z1, z3) = 1 − 8 r z2
1

3 (1 + r (1 − 2m1))
− 4 r z2

3

3 (r − 1)
− 2 r z3

�√
3 (3 − r)

�
+ r

�
4 z1 − 2

√
3m1

�
3

.

The new integrand is n (n−1)

A(T (Y3))2
G(z1, z3)

n−2. Integrating with respect to x3 and y1 yields 2
√

3 z3 r
3 (r−1)

and 4
√

3 r z1

3 (2 r m1−r−1)
,

respectively. Hence for sufficiently large n

P
�
E1,3

n

�
≈
Z ε

0

Z ε

0

n (n − 1)

A(T (Y3))2

�
2
√

3 z3 r

3 (r − 1)

� �
4
√

3 r z1

3 (2 r m1 − r − 1)

�
G(z1, z3)

n−2dz1 dz3.

Note that the new integral is critical when z1 = z3 = 0, so we make the change of variables z1 = w1/
√

n and
z3 = w3/n then G(z1, z3) becomes

G(w1, w3) = 1 +
1

n

�
2
√

3 r (r − 3 + 2 r m1)

3
w3 +

8 r

3 (r + 1 − 2 r m1)
w2

1

�
+ O

�
n−3/2

�
,
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so for sufficiently large n

P
�
E1,3

n

�
≈
Z √

n ε

0

Z n ε

0

(n − 1)

n3

16

3

�
2
√

3 r

3 (r − 1)

� �
4
√

3 r

3 (2 r m1 − r − 1)

�
(−4m1 + 2 +

√
2)w1 w3"

1 − 1

n

 
2
√

3 r (r − 3 + 2 r m1)

3
w3 +

8 r

3 (r + 1 − 2 r m1)
w2

1

!
+ O

�
n−3/2

�#n−2

dw3w1,

≈ O
�
n−1

� Z ∞

0

Z ∞

0

w1 w3 exp

�
−2

√
3 r (r − 3 + 2 r m1)w3

3
− 8 r w2

1

3 (r + 1 − 2 r m1)

�
dw3w1 = O

�
n−1

�
since

R∞
0

R∞
0

w1 w3 exp
�
− 2

√
3 r (r−3+2 r m1)

3
w3 − 8 r

3 (r+1−2 r m1)
w2

1

�
dw3w1 = 3

8 r (3−r (2 m1+1))
, which is a finite con-

stant. Then P
�
E1,3

n

�
→ 0 as n → ∞, which also implies P

�
E2,3

n

�
→ 0 as n → ∞. Then P (γn(r, M) ≤ 2) → 0.

Hence the desired result follows. �

Proof of Theorem 5.11

Let M = (m1, m2) ∈ {t1(r), t2(r), t3(r)}. Without loss of generality, assume M = t2(r) then m1 = 2−r+c1 (r−1)
r

and

m2 = c2 (r−1)
r

. See Figure 13.
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Figure 13: A figure for the description of the pdf of Q̂1(n) and Q̂3(n) (left) and the unshaded region is
N r

PE(q̂1, M) ∪ N r
PE(q̂3, M) (right) given Q̂j(n) = q̂j for j ∈ {1, 3}.

Let bQj(n) and the events Ei,j
n be defined as in the proof of Theorem 5.10 for (i, j) ∈

�
(1, 2), (1, 3), (2, 3)

	
. Then

as in the proof of Theorem 5.10,

P (γn(r,M) ≤ 2) = P
�
E1,2

n

�
+ P

�
E2,3

n

�
+ P

�
E1,3

n
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�
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�
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�
− P

�
E1,3

n ∩ E2,3
n

�
+ P

�
E1,2

n ∩ E2,3
n ∩ E1,3

n

�
.

Observe that the choice of M implies that P
�
E1,3

n

�
≥ P

�
E2,3

n

�
and by symmetry (in Te) P

�
E1,2

n

�
= P

�
E2,3

n

�
.

So first we find P
�
E1,3

n

�
. As in the proof of Theorem 5.10 asymptotically accurate joint pdf of bQ1(n), bQ3(n) is

f13
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=
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�
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where ~ζ = (x1, y1, x3, y3) and SR

�
~ζ
�

is the shaded region in Figure 13 (left) whose area is
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�
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�
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�
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√
3 (r − 1)2

�
12 (r − 1) r
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√
3
�√

3 r y1 + 3 x1 r − 3
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36 (r − 1) r
.

Given bQj(n) = bqj = (xj , yj) for j ∈ {1, 3},

P
�
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then for sufficiently large n

P
�
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� bQ = bq1, M
�
∪ Nr

PE (bq3, M)
�
− A(SR

�
~ζ
�
)

A(T (Y3)) − A(SR

�
~ζ
�
)

1An−2

f13

�
~ζ
�
d~ζ,

=

Z
n (n − 1)

A(T (Y3))2

 
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3))

!n−2

d~ζ

where

A (Nr
PE (bq1, M) ∪ Nr

PE (bq3, M)) =

√
3

4
−
�
2 r y3 −

√
3 (r − 1)

� �
3 −

√
3 r y1 − 3 r x1

�
6

.

See Figure 13 (right) for Nr
PE(bq1, M) ∪ Nr

PE(bq3, M). Let

G
�
~ζ
�

=
A (Nr

PE (bq1, M) ∪ Nr
PE (bq3, M)) − A(SR

�
~ζ
�
)

A(T (Y3))
.

Note that the integral is critical when x1 = x3 = m1 and y1 = y3 = m2, since G
�
~ζ
�

= 1.
As in the proof of Theorem 5.10, we make the change of variables (x1, y1) → (d(M, e1)+ z1, y1) where d(M, e1) =√

3 (r−1)
2 r

and (x3, y3) → (x3, m2 + z3). Then G
�
~ζ
�
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z2
1 − 4 r
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3 − 8 r2

3
z1 z3.

The new integral is Z
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G(z1, z3)

n−2dx3dy1dz3dz1.

Note that G(z1, z3) is independent of y1, x3, so integrating with respect to x3 and y1 yields 2
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3 r z1
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and 2

√
3 r z3
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,

respectively. The new integral is critical at z1 = z3 = 0. Hence, for sufficiently large n and sufficiently small ε > 0,
the integral becomes,
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Since the new integral is critical when z1 = z2 = 0, we make the change of variables zj = wj/
√

n for j ∈ {1, 3}; then
G(z1, z3) becomes
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�
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,

so
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which is not analytically integrable, but pr can be obtained by numerical integration, e.g., pr=
√

2 ≈ .4826 and
pr=5/4 ≈ .6514.

Next, we find limn→∞ P
�
E2,3

n

�
. The asymptotically accurate joint pdf of bQ2(n), bQ3(n) is
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Figure 14: A figure for the description of the pdf of Q̂2(n) and Q̂3(n) (left) and unshaded region is N r
PE(q̂2)∪

N r
PE(q̂3) (right) given Q̂j(n) = q̂j for j ∈ {2, 3}.

As before,
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.
See Figure 14 (right) for Nr

PE(bq2) ∪ Nr
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Note that the integral is critical when x2 = x3 = m1 and y2 = y3 = m2, since G
�
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= 1.
We make the change of variables (x3, y3) → (x3, m2 + z3) and (x2, y2) → (d(M, e2) + z2, y2) where d(M, e2) =√
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The new integral is Z
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The integrand is independent of x3 and y2, so integrating with respect to x3 and y2 yields 2
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so for sufficiently large n
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which is a finite constant.
Thus we have shown that P
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