
Random Walks and Catch Digraphs in Classi�cation

Jason DeVinney�, Carey Priebey, Dave Marchettez, Diego Socolinskyx

July 1, 2002

Abstract

We present a new application of the class cover problem to statistical pattern clas-

si�cation. The goal of the class cover problem is to �nd a set of covering balls to cover

one class of points while not covering another class of points. We present an adaptive

method for choosing the radii of the covering balls. The purpose of the method is toward

improved classi�er performance.

1 Introduction

Throughout this paper, we will consider classi�cation in the two-class case. We are given
as training data two �nite, non-empty sets of class conditional X valued observations, X0
and X1. We assume that our data come from a dissimilarity space, with base set X and
dissimilarity measure � : X � X ! <+. Recall that a dissimilarity measure, � must obey
0 = �(x; x) < �(x; y) = �(y; x) for x 6= y [2]. Our goal is to design a classi�er g(X0;X1) :
X ! f0; 1g, such that given an unlabeled observation Z with true but unknown class label
Y in f0; 1g, the probability of misclassi�cation L(g) = P [g(X0;X1)(Z) 6= Y ] is close to Bayes
optimal L�. See for instance [5, 11].

Our methodology stems from a variation of the class cover problem (CCP). We begin with
a dissimilarity space (X ; �) and two �nite, non-empty sets, X0;X1 � X . We refer to X0 as
the target class and X1 as the non-target class. The most general CCP is to �nd a minimum
cardinality set of covering balls Bi, with center ci and radius ri (Bi = fx 2 X : �(x; ci) < rig),
whose union contains all of the target class and does not contain any of the non-target class.
Restrictions on ci and ri give rise to an interesting family of class cover problems. Cannon
and Cowen introduced the CCP [1] and study a version where the center of each ball must
be an element in the target class (ci 2 X0) and the radii, ri, must be the same for all values
of i.

The basis for our classi�er is a CCP with a simple relation to directed graphs [3, 6, 8, 9, 10].
This constrained CCP allows the radii to di�er, but the centers must belong to the target
class. At each point x 2 X0 we de�ne a covering ball for x, Bx = fz 2 X : �(z; x) < rxg where
rx = �(x;X1) = minz2X1

�(x; z). We de�ne a cover, C, for X0 as a collection of covering balls
such that X0 � [B2CB. The goal of the constrained CCP is to �nd a minimum cardinality
cover.
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A more general CCP can be achieved by relaxing the constraint that all target class points
must be in the cover and no non-target class points may be covered. A cover which does not
contain any non-target class points is called pure and a cover which contains all target class
points is called proper. A constrained CCP with allowances for impure and improper covers
was �rst studied in [9] and is called the �; � CCP. We can further generalize the CCP by
minimizing some function of the cover rather than the size of the cover. We will apply both
of these ideas to create a new CCP classi�er.

When applying the CCP to classi�cation, we use a generalization of the reduced nearest
neighbor classi�er [12] as a framework. The idea is to �nd a cover (independently) for
both classes by choosing one to be the target class, solving the CCP, and then switching
the roles of target and non target class and solving the new CCP. We must also choose a
cover-dissimilarity function d between new observations and a cover. The classi�er is then

g(z) =

8><
>:

0 if d(z; C0) < d(z; C1);

1 if d(z; C1) < d(z; C0);

�1 otherwise

(1)

where C0; C1 are the covers of class zero and one respectively and an output of -1 represents
no decision.

The goal of any classi�er is to correctly identify the regions (discriminant regions) where
the class conditional density function for one class is larger than that of the other class. The
goal of our cover is to estimate these regions as accurately and eÆciently as possible with the
given training data. It is therefore important that the function d we use to measure distance
to a cover has the following property for two covers C0; C1

z 2 C0 \ Cc
1 ) d(z; C0) < d(z; C1): (2)

Priebe et al. [9] investigate applications of the constrained CCP using impure and im-
proper covers. We will review this method in sections 2.1 and 2.2. The focus of this paper
extends that work with data adaptive allowances for impureness and improperness. This is
done by observing the local neighborhood while choosing the radius for the potential covering
ball. This method is explained in detail in section 2.3. We also modify the way in which
covers are chosen from previous methods. We will �nally present some results and an analysis
of performance.

2 Classi�ers

In this section we review the details for applying some variations of the constrained CCP
to classi�cation. We also present our new adaptive methodology. As before, we are given
training sets X0;X1 � X .

2.1 Preclassi�er

A naive classi�er is built using a pure and proper cover from each class. By switching
the role of target class between X0 and X1, two di�erent instances of the CCP can be solved,
resulting in two covers C0 and C1. For a cover C we de�ne a simple cover-dissimilarity
function as

dN (z; C) =

(
0 if z 2

S
B2C B

1 otherwise
(3)
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Given two covers C0; C1, the above cover-dissimilarity function in the nearest neighbor frame-
work of (1) creates the following simple classi�er g : X ! f�1; 0; 1g where,

gpre(z) =

8><
>:

0 z 2 C0 \ Cc
1

1 z 2 C1 \ Cc
0

�1 otherwise

(4)

One drawback of this classi�er is that it makes no decision for some points in X . We can
remedy this with a scaled cover-dissimilarity function. For a cover C made up of balls fBig
with centers ci and radius ri, we de�ne a new cover-dissimilarity function as

dS(z; C) = min
fi:Bi2Cg

�(z; ci)

ri
(5)

Both dissimilarity functions in (3) and (5) have the property in (2).
Another drawback of the pre-classi�er is its tendency to over�t. When trying to approx-

imate the discriminant region for one class (�nding a cover), it would be better to allow our
covering balls to contain a few \contaminating" points from the other class. Presumably,
these points should be outliers of that class. We might also allow our cover to miss a few
target class points. Ideally, these points would also be outliers and we would not want to
consider their covering ball as part of the cover. We begin to address these observations with
the �; � CCP.

2.2 �; � CCP

In this section we review the CCP in [9] which involves impure and improper covers. Let �
and � be nonnegative integers. Without loss of generality, in this section we will assume that
X0 is the target class. Ideally we would like to require our cover for X0 to miss at most � points
from X0 and to contain at most � points from X1. This turns out to be an extremely hard
decision problem if � > 0 because now we must consider � + 1 balls centered at each target
class point and �nd a smallest subset of balls (a cover) so that their union contains at least
jX0 ��j target class points and at most � non-target class points. We simplify the situation
by rede�ning � to be the number of non-target class points in each covering ball. We de�ne
the covering ball B�

i at each target class point xi 2 X0 as fx 2 X : �(xi; x) < ��(xi;X1)g
where ��(xi;X1) is the � + 1th smallest distance from xi to elements in X1. Now a cover for

the target class is the smallest collection of balls B�
i such that at least jX0j � � target class

points are covered. Clearly we can achieve a pure and proper cover by setting � = � = 0.
Below (Figure 1) are illustrations of covers with various values of � and �.

While this technique greatly improves on the pre-classi�er, its assumption that every
covering ball should contain � non-target class points is suboptimal. What we would like is
some way to let each covering ball determine its own radius based on its local neighborhood.
For example, if we increase the radius of a covering ball and the result is to capture one new
non-target class point and ten new target class points, then we might say that change in
radius is worthwhile. We attempt to formalize this idea in the next section.

2.3 Random Walk CCP

We propose a new adaptive strategy for choosing the radii for covering balls. Our intent is
to have the same e�ect as the � and � parameters (sensitivity to contamination and outliers),
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(a) � = 0 � = 0
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(b) � = 1 � = 1

Figure 1: Figure 1(a) shows a pure and proper cover of the black points. Figure 1(b) shows
a cover with � = 1 � = 1.

while behaving in a more local manner. Instead of choosing global parameters � and �, we
allow each ball to choose its own radius based on the local density of target and non target
class points. We will also choose our covers in a slightly di�erent way. Instead of choosing
a minimum cardinality cover, we will choose a cover which minimizes some property of the
cover.

2.3.1 Choosing Radii

For each point xi in the target class X0, we will examine a random walk Rxi
which is

de�ned as follows. For any nonnegative r 2 R let

Rxi
(r) = jfx 2 X0 : �(xi; x) � rgj � jfx 2 X1 : �(xi; x) � rgj:

A way of visualizing this as a random walk is to think of a ball of radius r centered at xi.
As r increases from zero, the ball will encounter points from X0 and X1. Each time the ball
encounters a target class point or non-target class point, the random walk goes up by one or
down by one respectively. See Figure 2 for an illustration of this. A large positive value of
Rxi

indicates a high local density of target class points in some ball around xi. If there are
an unequal number of target class and non-target class points (consider unequal priors on the
data) then we change the de�nition of the random walk. Suppose jX0j = n0 and jX1j = n1.
A more general de�nition for the random walk is

Rxi
(r) =

n1

n0
jfx 2 X0 : �(xi; x) � rgj � jfx 2 X1 : �(xi; x) � rgj:

Once we have the random walk for some target class point xi, we will use it to choose a
radius for the ball Bi. But how shall we do this? We will argue for one possible way. Before
we can do so, we must understand the goal or purpose of each individual covering ball. What
follows here is a rather casual discussion designed to understand the intuition behind our
methodology. Let us suppose that the training data are independent observations drawn
from the class conditional distributions F0 and F1 (with densities f0 and f1). Let Di = fx 2
X : fi(x) > f1�i(x)g be the discriminant region for class i 2 f0; 1g. To approximate Di, each
covering ball Bj should be the largest ball centered at xj such that Bj \D1�i = ;. Because
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Snapshots of a random walk.
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our training samples are �nite, it is impossible to determine the exact largest radius for Bj

so that Bj \D1�i = ;. We will instead attempt to �nd a radius r�xj
for a point xj that is

as large as possible and has high probability that Bj \D1�i = ;. In this way, our cover will
become an approximation of the discriminant region Di for each class.

Consider a point x 2 X0. We will use f1(z) � f0(z) as the null hypothesis for all z 2 X
in a small region around x. If we reject the null hypothesis, that is, we see evidence that
f1(z) < f0(z) in some region around x, then we would like to put a covering ball of positive
radius around x. Suppose x is in a region where f1(z) < f0(z) locally. Then, with high
probability Rx(r) will increase for r 2 (0; rm) for some rm > 0. We determine the radius, r�x,
for a covering ball centered at x with the following formula

r�x = argmax
r

Rx(r)� P (r)

where P (r) is an increasing penalty function that biases toward choosing smaller radii. The
choice of smaller radii as opposed to larger radii has two advantages; we can more accurately
approximate the discriminant region with smaller balls, and our balls have a higher probability
of lying completely in the target class' discriminant region.

2.3.2 Finding the Cover

Once the radii are chosen, we must �nd a cover. Ideally we would like to �nd the cover
which maximizes the performance of our classi�er. Because of the combinatorial explosion of
possibilities we will greedily choose our cover. That is, we will choose our cover one ball at
a time, each ball improving the current classi�er as much as possible.

Instead of checking the performance of our classi�er at each stage we will instead use a
closely related surrogate test. To determine which ball to add next to the cover we will �nd
the ball which most improves our preclassi�er. That is we will favor balls with a high number
of (as yet uncovered) target class points and a low number of non target class points. Because
of the local nature of this methodology, we will impose a penalty function p(r) that increases
with radius. For the ball of radius r�x centered at x we assign a score Tx = Rx(r

�
x)�p(r�x) and

we choose the ball with maximum score. After a ball is added to a cover, any points covered
by that ball are disregarded and we recompute radii for each uncovered point and choose a
new ball to add to the cover based on newly computed scores. We continue adding balls in
this way until all target class points are covered.

2.3.3 The Classi�er

Once we have the cover for both classes, we de�ne a distance function � to describe
distance to a cover and then use the classi�er as de�ned in equation (1) to perform the
classi�cation.

3 Results

3.1 Simulation Data

In this simulation we have F0 =U([0,1]�[0,1]) and F1 = 1
2 U([0.1,0.55]�[0.1,0.55]) +

1
2U([0.6,0.8]�[0.6,0.8]). Figure 3 shows 200 points drawn from F0 as empty circles and 200
points drawn from F1 as the black �lled circles. We compared the performance of our CCP
classi�ers to the nearest neighbor classi�er, the k-nearest neighbor (with k optimized for each
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value of n) classi�er and support vector machines. We used the radial basis function kernel
included in the SVM-light package to implement our support vector machines [4]. We created
training sets of n observations from each class (n 2 f50; 100; 200; 500g) and then performed
Monte Carlo replicates on test sets of 100 observations from each class. For each replicate, the
performance of a classi�er was measured by the fraction of observations misclassi�ed (as an
approximation of the misclassi�cation rate L(g)). We performed Monte Carlo replicates until
the standard deviation for the average performance became less than 0.003. The experimental
approximation of the misclassi�cation rate for each classi�er is shown in Table 1. The Bayes
optimal error rate for this model is approximately 0.121. Notice that the CCP-based classi�ers
outperform the nearest neighbor and the optimized k-nearest neighbor classi�ers. The two
CCP classi�ers have about the same performance on this data set, however one advantage of
the random walk CCP classi�er over the �; � classi�er is reduced classi�er complexity. Table
2 shows the average number of balls in a cover for each class for each value of n.

Also shown in Figure 3 is an illustration of the classi�cation regions calculated by the
top four performing classi�ers for n = 200. The optimal classi�cation regions are outlined in
black.

Training Size NN k-NN SVM �; � CCP RW-CCP

50 0.242 0.240 0.221 0.212 0.212
100 0.224 0.212 0.195 0.190 0.183
200 0.210 0.188 0.181 0.171 0.165
500 0.199 0.166 0.159 0.154 0.153

Table 1: Classi�er performance on simulation data.

Training Size �; � CCP RW-CCP
class 1 class 0 class 1 class 0

50 6.7 16.3 2.8 5.3
100 9.3 28.2 3.4 8.4
200 13.4 49.6 4.6 13.0
500 27.3 110.1 5.9 19.2

Table 2: Average number of balls per cover.

3.2 Experimental Data

The experimental data set is multispectral data observations of minelike objects taken by
an unmanned aerial vehicle as part of the Coastal Battle�eld Reconnaissance and Analysis
(COBRA) Program. There are 39 observations, of which 12 are actual mines and 27 are false
alarms. The raw data is six dimensional (six spectra), but we consider the two dimensions
most valuable to classi�cation based on the work of Olson, Pang and Priebe [7].

Figure 4 shows the classi�cation regions produced by the top four performing classi�ers.
Using the leave-one-out error rate estimate we observe that the random walk CCP and �; �

CCP classi�ers have the best performance of 9/39 and 8/39 incorrect respectively. The
nearest neighbor, k-nearest neighbor and SVM classi�ers classify 10/39 incorrectly or worse.
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Figure 3: Comparison of classi�cation regions for simulation data.

4 Conclusion

We have presented a new methodology for applying the class cover problem to classi�-
cation. The classi�er based on the random walk CCP was designed to improve on some of
the weaknesses of previous CCP-based classi�ers. The adaptive manner in which the radii
of covering balls are chosen is the main strength of the new classi�er. This classi�er is being
presented here as a proof of concept. Our strategy for determining the radius of a ball is a
good �rst attempt, but we believe that a more robust method exists. Also, our method of
�nding a cover could be improved on by considering other factors such as statistical depth.
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Figure 4: Comparison of classi�cation regions for mine�eld data.

9



5 Acknowledgments

This work was partially supported by the OÆce of Naval Research Grant N00014-01-1-
0395 and Defense Advanced Research Projects Agency Grant F49620-01-1-0395. Mine�eld
data was provided by NSWC Coastal Systems Station, Dahlgren Division, Panama City,
Florida with support from the United States Marine Corps Amphibious Warfare Technology.
Special thanks to R.R. Muise.

References

[1] A. Cannon and L. Cowen. Approximations algorithms for the class cover problem. In
6th International Symposium on Arti�cial Intelligence and Mathematics, 2000, 2000.

[2] F. Critchley and B. Fichet. Lecture Notes in Statistics: Classi�cation and Dissimilarity

Analysis, volume 93, chapter 2. Springer-Verlag, 1994.

[3] J. DeVinney and C. Priebe. Class cover catch digraphs. 2002. Submitted for Publication.
Available as Technical Report No. 633, Department of Mathematical Sciences, Johns
Hopkins University, Baltimore, MD 21218-2682.

[4] T. Joachims. Making large-Scale SVM Learning Practical. Advances in Kernel Methods

- Support Vector Learning. MIT-Press, 1999.

[5] S. Kulkarni, G. Lugosi, and S. Venkatesh. Learning pattern classi�cation - a survey.
IEEE Transactions on Information Theory, 44(6):2178{2206, October 1998.

[6] D.J. Marchette and C.E. Priebe. Characterizing the scale dimension of a high dimen-
sional classi�cation problem. Pattern Recognition, to appear. Available as Technical
Report No. 614, Department of Mathematical Sciences, Johns Hopkins University, Bal-
timore, MD 21218-2682.

[7] T. Olson, J.S. Pang, and C.E. Priebe. A likelihood{mpec approach to target classi-
�cation. Mathematical Programming, to appear. Available as Technical Report No.
590, Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD
21218-2682.

[8] C. Priebe, J. DeVinney, and D. Marchette. On the distribution of the domination number
for random class cover catch digraphs. Stat. Probab. Lett., (55), 2002.

[9] C. Priebe, D. Marchette, J. DeVinney, and D. Socolinsky. Classi�cation using class
cover catch digraphs. 2002. Submitted for publication. Available as Technical Report
No. 628, Department of Mathematical Sciences, Johns Hopkins University, Baltimore,
MD 21218-2682.

[10] C.E. Priebe, J.L. Solka, D.J. Marchette, and B.T. Clark. Class cover catch digraphs for
latent class discovery in gene expression monitoring by dna microarrays. Computational

Statistics and Data Analysis. to appear.

[11] B.D. Ripley. Pattern Recognition and Neural Networks, chapter 6.3. Cambridge, 1996.

[12] D.B. Skalak. Prototype selection for composite nearest neighbor classi�ers. Technical
report, University of Massachusetts, 1995.

10


