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Abstract

The class cover catch digraph (CCCD) is motivated by applications in statistical pattern classification. For the special case of
uniformly distributed data in one dimension, Priebe et al. [Priebe, C.E., DeVinney, J.G., Marchette, D.J., 2001. On the distribution
of the domination number for random class cover catch digraphs. Statist. Probab. Lett. 55, 239–246] found the exact distribution
of the domination number of the random data-induced CCCD, and DeVinney and Wierman [DeVinney, J.G., Wierman, J.C., 2002.
A SLLN for a one-dimensional class cover problem. Statist. Probab. Lett. 59, 425–435] proved the Strong Law of Large Numbers
(SLLN). This paper proves the generalized SLLN for the domination number of CCCDs for non-uniform data in one dimension.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The class cover problem (CCP) originates from statistical pattern classification. (See Kulkarni et al. (1998)
for a survey of pattern classification.) The CCP is defined in the following way in Priebe et al. (2003): Suppose
X ≡ {X i : i = 1, . . . , n} and Y ≡ {Y j : j = 1, . . . , m} are two independent classes of i.i.d. random variables
taking values in a sample space Ω , with class-conditional distribution functions FX and FY , respectively. Consider
a dissimilarity function d : Ω × Ω → R such that d(α, β) = d(β, α) ≥ d(α, α) = 0 for any α, β ∈ Ω . For each
X i ∈ X , define the covering ball B(X i ) = {ω ∈ Ω : d(ω, X i ) < min1≤ j≤m d(Y j , X i )}. To make the covering ball
definition valid, it is assumed that FX and FY are continuous, so all X i ∈ X and Y j ∈ Y are distinct with probability
one. A class cover of X is a subset of covering balls whose union contains all X i ∈ X . The CCP is to find a minimum
cardinality class cover.

The class cover catch digraph (CCCD) induced by a CCP is defined as the digraph D = (V, A), with the vertex
set V = {X i : i = 1, · · · , n} and the arc set A = {(X i , X j ) : X j ∈ B(X i )}. By resorting to the terminology of
“domination”, the CCP can be converted to a graph theory problem on the induced CCCD. For a general digraph
D = (V, A), the set S ⊂ V is a dominating set of D if and only if for all v ∈ V , either v ∈ S or (s, v) ∈ A for some
s ∈ S. Hence, the CCP is equivalent to finding a minimum cardinality dominating set of the induced CCCD. Haynes
et al. (1998) provided a comprehensive discussion of domination in graphs.
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The domination number of a CCCD is the cardinality of the CCCD’s minimum dominating set. In the CCCD
setting, the domination number is a function of the sets X and Y , so it is natural to denote it by Γn,m(X ,Y). When
the context is clear, we abbreviate it by Γn,m .

Marchette (2004, Ch. 4) gives an overview of CCCDs and their applications to classification. Minimum class
covers for CCCDs have been used to construct classifiers that are competitive with other approaches in Ceyhan and
Priebe (2006), DeVinney and Priebe (2006), Eveland et al. (2005) and Priebe et al. (2003). In particular, Priebe et al.
(2003) have used CCCD classifiers for latent class discovery in gene expression monitoring by DNA microarrays.
CCCDs’ applications to high-dimensional classification problems are discussed in Marchette and Priebe (2003) and
Solka et al. (2002). Related classification research based on proximity catch digraphs appears in Ceyhan and Priebe
(2005), Ceyhan et al. (2007), and Ceyhan et al. (2006).

The size of the minimum class cover, the domination number, is an important measurement of the complexity of
the CCCD classifiers. Two important previous results have been established regarding the probabilistic behavior of
the domination number. In particular, Priebe et al. (2001) found the exact distribution of the domination number of
CCCDs for uniformly distributed data in one dimension. Based on this distribution, DeVinney and Wierman (2002)
proved the following SLLN for the special case of one-dimensional uniformly distributed data.

Theorem 1. If Ω = R, FX = FY = U [0, 1] and m = brnc, r ∈ (0, ∞), then

lim
n→∞

Γn,m

n
= g(r) a.s.,

where g(r) ≡
r(12r+13)

3(r+1)(4r+3)
.

2. Results and proof sketch

We extend DeVinney and Wierman’s SLLN to the general case for data with continuous densities in one dimension.
Specifically, we prove the following theorem.

Theorem 2. If Ω = R, the density functions fX and fY are continuous and bounded on [a, b], m ≡ m(n) and
m/n → r as n → ∞, then

lim
n→∞

Γn,m

n
=

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du a.s.,

where g(r) =
r(12r+13)

3(r+1)(4r+3)
is as in Theorem 1.

Proof. We now outline the key steps in our proof, with the details deferred to Section 3. The basic approach is to
first prove the SLLN for piece-wise constant densities, and then approximate general densities by piece-wise constant
densities.

First, consider the case of piece-wise constant densities fX and fY . Without loss of generality, the intervals of
constancy for fX and fY can be taken to be the same. Hence, we suppose that fX and fY take respective constant
values al and bl in [cl , cl+1), l = 0, . . . , k − 1, where c0 = a and ck = b. We decompose the original CCP into k
sub-CCPs, each with uniformly distributed points in [cl , cl+1). We denote the random number of X -points in [cl , cl+1)

by Nl , and the random number of Y -points in [cl , cl+1) by Ml . As shown in Lemma 2, for each l, Ml/Nl → rl ≡ r ·
bl
al

almost surely as n → ∞. We wish to apply Theorem 1 to prove the following SLLN for the domination number Γ l
n,m

for each sub-CCP in [cl , cl+1):

Γ l
n,m

Nl
→ g(rl) a.s.

However, a stronger form of Theorem 1 is needed, since Theorem 1 requires m = brnc, while we need to
accommodate the case in which m ≡ m(n) and m/n → r as n → ∞. Lemma 1 in Section 3 is obtained by slightly
changing the proof by DeVinney and Wierman (2002). Summing up the convergence results for Γ l

n,m and adjusting
for boundary effects near the interval endpoints yields an SLLN for the case of piece-wise constant densities:

Γn,m

n
→

k−1∑
l=0

g(rl)bl(cl+1 − cl) =

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du a.s.



1112 J.C. Wierman, P. Xiang / Statistics and Probability Letters 78 (2008) 1110–1118

Secondly, for any η > 0, for a carefully chosen εη ≤ η/3 and δ ≡ δ(εη), we approximate the continuous densities
fX and fY by piece-wise constant densities f̂X and f̂Y respectively, where the intervals of constancy for f̂X and f̂Y
have length δ that depends on η via εη. The εη is chosen to guarantee that∣∣∣∣∣

∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
· f̂X (u)du −

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du

∣∣∣∣∣ ≤ η/3,

due to the continuity of g.
We construct two classes of coupled random vectors, X vs. X̂ , and Y vs. Ŷ , in the following way. For any random

vector (X1i , X2i ) uniformly distributed over the region under the graph of fX (i.e. the region bounded by the x-
axis, the line x = a, the line x = b, and the graph of fX ), the random variable X1i is distributed according to fX ;
based on the random point (X1i , X2i ), we construct a new random variable X̂1i , distributed according to f̂X . Denote
X = {X1i : i = 1, . . . , n} and X̂ = {X̂1i : i = 1, . . . , n}, where the X1i ∈ X are mutually independent. A
similar procedure generates (Y1 j , Y2 j ) uniformly distributed under the graph of fY , with Y1 j distributed according to
fY , and a new random variable Ŷ1 j distributed according to f̂Y . Similarly, denote Y = {Y1 j : j = 1, . . . , m} and
Ŷ = {Ŷ1 j : j = 1, . . . , m}, where all Y1 j ∈ Y are independent of each other. With this construction we show that
with probability 1, for sufficiently large n,∣∣∣∣∣Γn,m(X ,Y) − Γn,m(X̂ , Ŷ)

n

∣∣∣∣∣ ≤ εη ≤ η/3.

By using the result of the second step, we show that with probability 1, for sufficiently large n, Γn,m(X̂ , Ŷ) satisfies∣∣∣∣∣Γn,m(X̂ , Ŷ)

n
−

∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
f̂X (u)du

∣∣∣∣∣ ≤ εη ≤ η/3.

Theorem 2 follows by combining the three inequalities above. �

Remark 1. Theorem 2 is still valid under more general conditions such as when densities have a finite number of
discontinuities, have a finite number of vertical asymptotes (e.g. the arc-sine distribution), or are defined on unbounded
intervals (e.g. the normal distribution). See Remark 3 for details on adjusting the proof.

In addition, we obtain an upper bound for the limiting value in Theorem 2.

Theorem 3. Under the same conditions as Theorem 2,∫
g

(
r ·

fY (u)

fX (u)

)
fX (u)du ≤ g(r).

Proof. By elementary calculus, g(r) is a concave continuous function. By Jensen’s Inequality,∫
g

(
r ·

fY (u)

fX (u)

)
fX (u)du ≤ g

(∫
r ·

fY (u)

fX (u)
fX (u)du

)
= g(r). �

Theorem 3 shows that when fX = fY , the almost sure limit of Γn,m
n is maximized. So roughly speaking, the domination

number Γn,m is maximized when X -points and Y -points have the same density, among all possible combinations of
continuous and bounded densities. An intuitive explanation is that the domination number of CCCDs measures the
degree of discrepancy between X -points and Y -points. Specifically, when there is no discrepancy (i.e. fX = fY ),
more X -covering-balls are needed to segregate the class X from the class Y , thus the domination number is bigger
than when a difference exists (i.e. fX 6= fY ).

Remark 2. As the almost sure limit of Γn,m
n has the maximal value g(r) when fX = fY , Theorem 3 suggests a

hypothesis test for the equality of densities which compares Γn,m
n with g(r).
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3. Detailed proof

3.1. Extension of Theorem 1

First, we weaken the condition of m = brnc in Theorem 1 to m/n → r .

Lemma 1. If FX = FY = U [0, 1], m ≡ m(n) and m/n → r, r ∈ (0, ∞), then

lim
n→+∞

Γn,m

n
= g(r) a.s.,

where g(r) is as in Theorem 1.

Proof Sketch. Since the proof closely follows the arguments by DeVinney and Wierman (2002, pp. 431–433), we
only address the differences from their argument. Consider r = 1. Construct two independent Poisson processes A
and B, with common rate λ ∈ (0, ∞). A-points play the role of X -points, and B-points play the role of Y -points. By
conditioning on the (m + 1)th arrival of the B process and re-scaling to the interval [0,1], we transfer the result back
to the original setting, but with a random number Nm = m + Gm of X -points. The classical SLLN can be applied to
a CCP induced from these Nm X -points and m Y -points. Since m/n → r = 1, for any ε > 0, when n is sufficiently
large, |m−n|

n ≤
ε
2 . Hence Chernoff’s Theorem gives

P

(
|Nm − n|

n
≥ ε

)
≤ P

(
|Gm |

n
≥

ε

2

)
≤ C1e−α1(nε/2−1)

+ C2e−α2(nε/2−1), (1)

where α1, α2 > 0 and C1 and C2 are constants. This shows that the difference between Nm and n is negligible in the
limit. As shown in DeVinney and Wierman (2002, page 431), due to the exponential probability bound in Inequality (1)
and by the Borel–Cantelli Lemma, the SLLN still holds for the original setting with n X -points.

As in DeVinney and Wierman (2002), when r 6= 1, the proof can be easily extended by letting process A have rate
rλ and process B have rate λ. �

3.2. Piece-wise constant densities

Next, consider the case where fX and fY are piece-wise constant densities. Recall that the intervals of constancy
for fX and fY can be taken to be the same without loss of generality, so

fX (x) =

k−1∑
l=0

al I[cl ,cl+1)(x) and fY (y) =

k−1∑
l=0

bl I[cl ,cl+1)(y),

where a = c0 < c1 < · · · < ck = b. Define the following random variables:

Nl = |{X i : X i ∈ [cl , cl+1)}| and Ml = |{Y j : Y j ∈ [cl , cl+1)}|.

Lemma 2. If m/n → r, r ∈ (0, ∞), then for each interval [cl , cl+1), l = 0, . . . , k − 1, as n → ∞,

Ml

m
→ bl(cl+1 − cl) a.s. and

Nl

n
→ al(cl+1 − cl) a.s.,

and if al 6= 0, then Ml
Nl

→ rl a.s., where rl ≡ r ·
fY (u)
fX (u)

= r bl
al

for all u ∈ [cl , cl+1).

Proof. Since Y j , j = 1, . . . , m are i.i.d., the indicator random variables I{Y j ∈[cl ,cl+1)} are also i.i.d., with

E
(
I{Y j ∈[cl ,cl+1)}

)
= P

(
Y j ∈ [cl , cl+1)

)
= bl(cl+1 − cl).

Therefore, the standard SLLN yields

Ml

m
=

|{Y j : Y j ∈ [cl , cl+1)}|

m
=

n∑
j=1

I{Y j ∈[cl ,cl+1)}

m
→ E

(
I{Y j ∈[cl ,cl+1)}

)
= bl(cl+1 − cl) a.s.
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Similarly,

Nl

n
→ al(cl+1 − cl) a.s.

Hence, provided that al 6= 0,

Ml

Nl
=

m ·
Ml
m

n ·
Nl
n

→ r ·
bl(cl+1 − cl)

al(cl+1 − cl)
= rl a.s. �

Dividing the original CCP into k sub-CCPs, each induced by X l
= {X i : X i ∈ [cl , cl+1)} and Y l

= {Yi : Yi ∈

[cl , cl+1)}, l = 0, . . . , k − 1, we denote the cardinality of a minimum class cover of the lth CCP by Γn,m(X l ,Y l).
Since Lemma 2 shows that Ml/Nl → rl ; from Theorem 1, it follows that

Γn,m(X l ,Y l)

Nl
→ g(rl) a.s.

The points cl , l = 1, . . . , k − 1, are referred to as “filter” points in that for each l ∈ {1, . . . , k}, only X -points
and Y -points in [cl−1, cl) determine Γn,m(X l ,Y l). Recall that the domination number in one dimension is additive
over intervals between Y -points. Specifically, we have Γn,m(X ,Y) =

∑m
j=0 α j,m , where each component α j,m is

determined by the X -points contained in [Y( j), Y( j+1)). For any interval [Y( j), Y( j+1)) containing no filter point, α j,m
must be a component of Γn,m(X l ,Y l) for the l such that [Y( j), Y( j+1)) ⊂ [cl−1, cl). However, if [Y( j), Y( j+1)) contains
one “filter” point cl , then α j,m is decomposed into the right external component of Γn,m(X l ,Y l) plus the left external
component of Γn,m(X l+1,Y l+1). Finally, if [Y( j), Y( j+1)) contains two or more “filter” points: cl1 , . . . , clTj

(T j ≥ 2),

then α j,m is divided into the following T j + 1 components: the right external component of Γn,m(X l1 ,Y l1), plus

Γn,m(X l2 ,Y l2), . . . ,Γn,m(X lTj ,Y lTj ), plus the left external component of Γn,m(X lTj +1 ,Y lTj +1). In summary, for any
interval [Y( j), Y( j+1)) containing no filter point, the corresponding component α j,m of Γn,m(X ,Y) is also a component
of
∑k

l=1 Γn,m(X l ,Y l); for any interval [Y( j), Y( j+1)) containing T j filter points, the corresponding component α j,m

of Γn,m(X ,Y) is decomposed into T j + 1 components of
∑k

l=1 Γn,m(X l ,Y l). Furthermore, Lemma 3 of Priebe
et al. (2001) shows that any component mentioned above could only be 0, 1 or 2, so the T j “filter” points contained
in a given interval [Y( j), Y( j+1)) could contribute to the difference Γn,m(X ,Y) −

∑k
l=1 Γn,m(X l ,Y l) by at least

0 − 2 ∗ (T j + 1) = −2T j − 2 and at most 2 − 0 ∗ (T j + 1) = 2. Supposing that the set J consists of all j such that
[Y( j), Y( j+1)) contains at least one “filter” point, we have

∑
j∈J

(−2T j − 2) ≤ Γn,m(X ,Y) −

k∑
l=1

Γn,m(X l ,Y l) ≤

∑
j∈J

2.

Since there are k − 1 “filter” points, there are at most k − 1 such intervals [Y( j), Y( j+1)) that contain one or more
“filter” points, so |J | ≤ k − 1. Therefore, from the inequality above we obtain

−2
∑
j∈J

T j − 2(k − 1) ≤ Γn,m(X ,Y) −

k∑
l=1

Γn,m(X l ,Y l) ≤ 2(k − 1).

By considering
∑

j∈J T j = k − 1, the inequality above becomes

−4(k − 1) ≤ Γn,m(X ,Y) −

k∑
l=1

Γn,m(X l ,Y l) ≤ 2(k − 1).

Since k is fixed,

lim
n→∞

Γn,m(X ,Y)

n
= lim

n→∞

k−1∑
l=0

Γn,m(X l ,Y l)

n

=

k−1∑
l=0

lim
n→∞

Γn,m(X l ,Y l)

Nl
·

Nl

n
.
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If al 6= 0, then by Lemma 1, Γn,m (X l ,Y l )

Nl
→ g(rl) a.s., and by Lemma 2, Nl

n → al(cl+1 − cl) a.s. Hence

limn→∞
Γn,m (X l ,Y l )

Nl
·

Nl
n = g(rl)al(cl+1 − cl) a.s. If instead al = 0, then, almost surely, there are no X -points

in [cl , cl+1), so Γn,m(X l ,Y l) = 0 a.s. Thus we still have limn→∞
Γn,m (X l ,Y l )

n = 0 = g(rl)al(cl+1 − cl) a.s. where
rl = ∞ and g(∞) ≡ limr→∞ g(r) = 0. Therefore we obtain

lim
n→∞

Γn,m(X ,Y)

n
=

k−1∑
l=0

g(rl)al(cl+1 − cl) a.s.

Rewriting the expressions in the sum in the form of integrals generates

lim
n→∞

Γn,m(X ,Y)

n
=

k−1∑
l=0

∫ cl+1

cl

g

(
r ·

fY (u)

fX (u)

)
fX (u)du

=

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du a.s.

3.3. Continuous densities

The formula obtained in the previous section is also valid when the densities fX and fY are bounded and
continuous:

Theorem 4. If Ω = R, the density functions fX and fY are bounded and continuous on [a, b], and m/n → r, r ∈

(0, ∞), then

lim
n→∞

Γn,m(X ,Y)

n
=

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
· fX (u)du a.s.,

where g(r) is as in Theorem 1.

Proof. Since the density functions fX and fY are bounded and continuous on [a, b], fX and fY are uniformly
continuous. Thus for any ε > 0, there exists a δ ≡ δ(ε) > 0 such that for all x and y with |x − y| < δ,
| fX (x) − fX (y)| ≤

ε
4(b−a)

and | fY (x) − fY (y)| ≤
ε

4r(b−a)
. Let ∆l = [a + (l − 1)δ, a + lδ) ∩ [a, b] for l ≥ 1.

Define piece-wise constant functions that approximate fX and fY by

f̄X (x) = min{ fX (u) : u ∈ ∆l} for x ∈ ∆l ,

f̄Y (y) = min{ fY (u) : u ∈ ∆l} for y ∈ ∆l .

Note that f̄X and f̄Y both depend on ε via δ; hence all functions and random variables derived from f̄X and f̄Y are
also ε-dependent, but for simplicity we drop an explicit reference to ε throughout the proof.

Since f̄X ≤ fX , f̄Y ≤ fY , it follows that
∫ b

a f̄X ≤ 1 and
∫ b

a f̄Y ≤ 1. Re-scaling f̄X and f̄Y gives density functions
f̂X and f̂Y , which approximate fX and fY , respectively. Our next step is to construct two classes of coupled random
vectors: X vs. X̂ , and Y vs. Ŷ . Every component of the random vector X has density function fX , whereas every
component of X̂ has density function f̂X ; and a similar property holds for Y and Ŷ as well. Now that we have
introduced all the key notations, we first describe the overall structure of the proof before getting into the details.
Recall that the ultimate goal is to prove that ∀η > 0, with probability one, there exists an Nη > 0 such that, when
n > Nη,∣∣∣∣Γn,m(X ,Y)

n
−

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du

∣∣∣∣ ≤ η. (2)

Hence it suffices to prove that when n > Nη,∣∣∣∣∣Γn,m(X ,Y)

n
−

Γn,m(X̂ , Ŷ)

n

∣∣∣∣∣ ≤ η/3 (3)
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n
−

∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
f̂X (u)du

∣∣∣∣∣ ≤ η/3 (4)∣∣∣∣∣
∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
f̂X (u)du −

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du

∣∣∣∣∣ ≤ η/3. (5)

We first consider Inequality (5). Note that the expressions inside the above integral are polynomials in the density
functions f̂X and f̂Y . Since as ε → 0, f̂X (u) → fX (u) and f̂Y (u) → fY (u) for any u ∈ [a, b], the Dominated
Convergence Theorem gives∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
· f̂X (u)du →

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du as ε → 0.

Thus, for any given η, there must exist an εη ≤ η/3 such that∣∣∣∣∣
∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
· f̂X (u)du −

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du

∣∣∣∣∣ ≤ η/3,

where f̂X and f̂Y are constructed as described in the very beginning of the proof by choosing ε = εη. In the rest of
this proof, we show that for ε = εη, Inequalities (3) and (4) hold when n is sufficiently large, with probability 1.

We continue by describing the construction procedure of X̂ and Ŷ . First, consider i.i.d. random points
(X1i , X2i ), 1 ≤ i ≤ n, distributed uniformly over the region bounded by the x-axis, the line x = a, the line x = b,
and the graph of fX . Then,

P(s ≤ X1i ≤ t) =

∫ t

s
fX (u)du for all a ≤ s ≤ t ≤ b,

so the marginal distribution of X1i is fX . Similarly, construct i.i.d. random points (Y1 j , Y2 j ), 1 ≤ j ≤ m, with Y1 j ’s
marginal distribution being fY . Denote X = {X1i : i = 1, . . . , n} and Y = {Y1 j : j = 1, . . . , m}.

Next, let (X̄1i , X̄2i ) and (Ȳ1 j , Ȳ2 j ) be i.i.d. random points uniformly distributed over the regions under the graph
of f̄X and f̄Y respectively. Denote R̄X as the region between the graphs of fX and f̄X , and R̄Y as the region between
the graphs of fY and f̄Y .

Finally, define(
X̂1i , X̂2i

)
=

(
X1i I

{(X1i ,X2i )6∈R̄X }
+ X̄1i I

{(X1i ,X2i )∈R̄X }
, X2i I

{(X1i ,X2i )6∈R̄X }
+ X̄2i I

{(X1i ,X2i )∈R̄X }

)
and (

Ŷ1 j , Ŷ2 j

)
=

(
Y1 j I

{(Y1 j ,Y2 j )6∈R̄Y }
+ Ȳ1 j I

{(Y1 j ,Y2 j )∈R̄Y }
, Y2 j I

{(Y1 j ,Y2 j )6∈R̄Y }
+ Ȳ2 j I

{(Y1 j ,Y2 j )∈R̄Y }

)
.

Here the idea is to set (X̂1i , X̂2i ) = (X1i , X2i ) if (X1i , X2i ) 6∈ R̄X , and (X̂1i , X̂2i ) = (X̄1i , X̄2i ) if (X1i , X2i ) 6∈

R̄X . The same idea applies for Y -points. Denote X̂ = {X̂1i : i = 1, . . . , n} and Ŷ = {Ŷ1 j : j = 1, . . . , m}.

Lemma 3. X̂1i and Ŷ1 j have piece-wise constant density functions f̂X and f̂Y , respectively.

Proof. First, consider the simple case when the interval [s, t] ⊆ ∆l for some l. Denote f̂X (∆l) ≡ f̂X (x) for all
x ∈ ∆l , and IX i ≡ I

{(X1i ,X2i )∈R̄X }
. Then,

P(s ≤ X̂1i ≤ t) = P(s ≤ X̂1i ≤ t | IX i = 1)P(IX i = 1) + P(s ≤ X̂1i ≤ t | IX i = 0)P(IX i = 0)

= P(s ≤ X̂1i ≤ t | (X1i , X2i ) ∈ R̄X )P(IX i = 1)

+P(s ≤ X1i ≤ t | (X1i , X2i ) 6∈ R̄X )P(IX i = 0)

= (t − s) f̂X (∆l)P(IX i = 1) + (t − s) f̂X (∆l)P(IX i = 0)

= (t − s) f̂X (∆l).
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If the interval [s, t] 6⊆ ∆l for any l, then [s, t] can be written as a union ∪
m
k=0[sk, tk], where each [sk, tk] ⊆ ∆k for

distinct k. Similarly,

P(s ≤ X̂1i ≤ t) =

m∑
k=0

(tk − sk) f̂X (∆k),

where f̂X (∆k) ≡ f̂X (x) for all x ∈ ∆k . A similar result for Ŷ1 j can be obtained by the same argument. �

Recall that the random variable Γn,m(X ,Y) represents the size of a minimum class cover of X ≡ {X1i , i =

1, . . . , n} with respect to Y ≡ {Y1 j , j = 1, . . . , m}, and Γn,m(X̂ , Ŷ) represents the size of a minimum class cover of
X̂ ≡ {X̂1i , i = 1, . . . , n} with respect to Ŷ ≡ {Ŷ1 j , j = 1, . . . , m}. For any point (X1i , X2i ) ∈ R̄X , we have the set
X̂1i = X̄1i , which is equivalent to replacing X1i by X̄1i so that the original domination number Γn,m(X ,Y) changes
to the new domination number Γn,m(X̂ , Ŷ). Note that deleting any X1i can decrease the original domination number
Γn,m(X ,Y) by at most 1, while adding any X̄1i can further decrease Γn,m(X ,Y) by at most 1. Therefore, replacing
X1i by X̄1i can contribute to the difference |Γn,m(X ,Y) − Γn,m(X̂ , Ŷ)| by at most 2. Similarly, (Y1i , Y2i ) in R̄Y can
also change the difference between Γn,m(X ,Y) and Γn,m(X̂ , Ŷ) by at most 2. Thus,

|Γn,m(X ,Y) − Γn,m(X̂ , Ŷ)| ≤ 2

(
n∑

i=1

I
{(X1i ,X2i )∈R̄X }

+

m∑
i=1

I
{(Y1i ,Y2i )∈R̄Y }

)
.

Since I
{(X1i ,X2i )∈R̄X }

, i = 1, . . . , n are i.i.d. random variables, applying the SLLN yields

n∑
i=1

I
{(X1i ,X2i )∈R̄X }

n
n→∞
−→ E(I

{(X1i ,X2i )∈R̄X }
)

= P
(
(X1i , X2i ) ∈ R̄X

)
≤ (b − a) ·

εη

4(b − a)
=

εη

4
a.s., (6)

and
m∑

i=1
I
{(Y1i ,Y2i )∈R̄Y }

n
=

m

n
·

m∑
i=1

I
{(Y1i ,Y2i )∈R̄Y }

m
n→∞
−→ r · E(I

{(Y1i ,Y2i )∈R̄Y }
)

= r · P((Y1i , Y2i ) ∈ R̄Y ) ≤ r · (b − a) ·
εη

4r(b − a)
=

εη

4
a.s. (7)

Recall that εη ≤ η/3. Consequently, with probability 1, there exists an N ′(εη) > 0 such that when n > N ′(εη),∣∣∣∣∣Γn,m(X ,Y) − Γn,m(X̂ , Ŷ)

n

∣∣∣∣∣ ≤ 2 ·

(εη

4
+

εη

4

)
= εη ≤ η/3,

which is exactly Inequality (3).
By the SLLN for piece-wise densities, with probability 1, there exists an N ′′(εη) > 0 such that when n > N ′′(εη),∣∣∣∣∣Γn,m(X̂ , Ŷ)

n
−

∫ b

a
g

(
r ·

f̂Y (u)

f̂X (u)

)
f̂X (u)du

∣∣∣∣∣ ≤ εη ≤ η/3,

which is exactly Inequality (4).
Therefore, with probability 1, both Inequality (3) and Inequality (4) hold when n > Nη ≡ max{N ′(εη), N ′′(εη)}.

Hence, Inequality (2) immediately follows as we have showed that Inequality (5) holds when choosing ε = εη. Since
η > 0 is arbitrary, we conclude that

lim
n→∞

Γn,m(X ,Y)

n
=

∫ b

a
g

(
r ·

fY (u)

fX (u)

)
fX (u)du a.s. �
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Remark 3. For simplicity, we assumed that the density functions fX and fY are continuous and bounded. However,
for some more general cases (e.g., when the densities are bounded but with only a finite number of discontinuities,
when the densities have a finite number of vertical asymptotes, or when the densities are defined on unbounded
intervals), our proof can apply as well by a slight modification. The key is to find appropriate piece-wise constant
functions f̄X (bounded above by fX ) and f̄X (bounded above by fY ), where f̄X and f̄Y sufficiently approximate fX
and fY , respectively, so that Inequality (5), P

(
(X1i , X2i ) ∈ R̄X

)
≤

εη

4 as in Inequality (6), and P
(
(Y1i , Y2i ) ∈ R̄Y

)
≤

εη

4 as in Inequality (7) still hold.

4. Summary

In this paper, we prove the generalized SLLN for the domination number of CCCDs in one dimension (Theorem 4).
Our proof is based on the SLLN for uniform distributions proved by DeVinney and Wierman (2002). In addition, we
give an upper bound for the almost sure limit of Γn,m

n . This upper bound has an interesting explanation from the point
of view of pattern classification, and it may result in a statistical test for the identity of two densities.

For further research directions, we are interested in proving the SLLN in higher dimensions, where the CCCD
problem is significantly more challenging because the exact distribution of Γn,m is unknown. Moreover, we are also
exploring ways to prove the Central Limit Theorem (CLT) for the domination number.
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