Lie Algebra (Math 7360)

 

Schedule

Section

Place

Time

Final Exam Schedule

Math 7360-140

Parker 248

MWF

14:00-14:50

Fri

May 6

16:00-18:30

 

Instructor: Dr. Huajun Huang

Information

1.   Complex semisimple Lie algebras, Jean-Pierre Serre, Springer, Berlin Heidelberg, 1987.

2.   Lie Algebras, Nathan Jacobson, Dover, New York, 1979.

3.   Lie groups beyond an introduction, Chapters I & II, Anthony W. Knapp, 2002.

4.   Modular Lie Algebras and Their Representations, Helmut Strade and Rolf Farnsteiner, Pure and Applied Mathematics, Marcel Dekker, New York, 1988.

·      Lie algebras, subalgebras, linear Lie algebras and linear groups, adjoint representations, abelian Lie algebras.

·      Ideals, centers, derived algebras, simple algebras, quotient algebras, homomorphisms, representations.

·      Solvable Lie algebras, radical, semisimple Lie algebras, nilpotent Lie algebras, Engel's Theorem.

·      Lie's Theorem, Jordan-Chevalley decomposition, Cartan's Criterion for solvable Lie algebras.

·      Killing forms, radicals, simple ideals, inner derivations, abstract Jordan decompositions.

·      Lie algebra modules, module homomorphisms, irreducible modules, completely reducible modules, Schur's Lemma, Casimir element, Weyl's Theorem, preservation of Jordan decomposition.

·      Representations of sl(2,F).

·      Toral subalgebras, root space decomposition (Cartan decomposition), properties of maximal toral subalgebras.

·      Reflections, root system, roots, dual root system, base, Weyl chambers, Weyl group.

·      Cartan matrix, Cartan integers, Coxeter graphs, Dynkin diagrams, classification of simple Lie algebras, automorphisms of root systems.

·      Weights, root lattices, half sum of positive roots, highest weight, saturated sets of weights.

Grade

A

B

C

D

F

Score

90-100

80-89

70-79

60-69

0-59

Materials

§  1.1, 1.2, 1.3, 1.4,

§  2.1, 2.2, 2.3, 2.4,

§  3.1, 3.2, 3.3.

§  Chapter 1 Chapter 2 Chapter 3

§  Final Project