
Chapter 1

Basic Concepts

Let F be an arbitrary field in this chapter. Recall that an algebraic structure (e.g. vector space,
group, ring, field, module, algebra) is a set with some binary operations that satisfies some axioms.

1.1 Definitions and Examples

History and Motivation

The study of Lie theory began in the second half of 19th century, when Marius Sophus Lie (a
Norwagian mathematician) was motivated by Galois’s theory in solving polynomail equations, and
tried to find a similar solution to partial differential equations. He developed a theory of continuous
transformation groups that preserve certain geometric structures, i.e. Lie groups. It turns out that
most properties on the global structure of a Lie group can be determined the local infinitestimal
structure, i.e. the Lie algebra associate with the Lie group. In brief, Lie group is about
continuous symmetries. Lie algebra is about infinitesimal symmetries.

A detailed biographies of Sophus Lie and the originate of Lie theory can be found at: http://www-
history.mcs.st-andrews.ac.uk/Biographies/Lie.html. An introduction of early history can be found
at: https://en.wikipedia.org/wiki/Lie group

Text: “Introduction to Lie Algebras and Representation Theory” by James Humphrey. (On
algebraic closed field of characteristic zero, clear, concise, self-contained.)

References:

1. Complex semisimple Lie algebras, by J.P. Serre, brief.

2. Lie algebras, by Nathan Jacobson, cover results over several types of fields (char p, char 0,
algebraically closed).

1.1.1 Lie algebra, subalgebra, and linear Lie algebra

Def. A Lie algebra over F, denoted by (L, []), is an F -vector space L with a binary operator

[] : L× L→ L, (x, y) 7→ [xy] (or [x, y])

that satisfies the following axioms:

1. (Bilinearity) [] is bilinear.

2. (Skew Symmetry) [xx] = 0 for all x ∈ L.
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3. ( Jacobi identity) [x[yz]] + [y[zx]] + [z[xy]] = 0 for all x, y, z ∈ L.

[] is called the bracket or commutator.

Remark. 1. [xx] = 0 =⇒ [xy] = −[yx]. Conversely, if char F 6= 2, then [xy] = −[yx] =⇒
[xx] = 0.

2. In general, Lie algebra is not associate: [x[yz]] 6= [[xy]z].

Ex. Let V = Fn. In End (V ) ' Fn×n, define [X,Y ] = XY − Y X. Verify that (Fn×n, []) is a Lie
algebra. It is called the general linear algebra and denoted by gl(V ) = gl(n,F).

Def. A subspace K of L is called a (Lie) subalgebra if [xy] ∈ K for all x, y ∈ K, denoted by
K ≤ L.

Ex. The following are Lie subalgebras of gl(n,F):

1. the subspace t(n,F) of upper triangular matrices in gl(n,F);

2. the subspace n(n,F) of strictly upper triangular matrices in gl(n,F);

3. the subspace d(n,F) of diagonal matrices in gl(n,F).

We have t = d + n, [tt] = n and [tn] = n.

Remark. 1. Any subalgebra of gl(n,F) is called a linear Lie algebra or matrix Lie algebra.

2. Any Lie algebra L such that [xy] = 0 for all x, y ∈ L is called an abelian Lie algebra, such
as d(n,F).

Def. Two Lie algebras (L, []) and (L1, []1) are isomorphic if there exists a vector space isomor-
phism φ : L→ L1 satisfying

φ([xy]) = [φ(x)φ(y)]1 for all x, y ∈ L,

and then φ is called an isomorphism.

Like the other algebraic structures, Lie algebras are often classified up to isomorphism.

Ex. The only 1-dim Lie algebra over F is the abelian Lie algebra. (why?)

Ex. The 2-dim Lie algebras L = span (x, y) over F are:

1. Abelian Lie algebra: [xy] = 0.

2. Non-abelian Lie algebra: we may choose x, y such that [xy] = y.

L '
{[

x y
0 0

]
| x, y ∈ F

}
.

Ex (HW). F3 with the cross-product is a 3-dim Lie algebra:

[uv] =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ .
Thm 1.1 (Ado-Iwasawa). Every Lie algebra is isomorphic to certain matrix Lie algebra (char F =
0: Ado, char F = p: Iwasawa.)
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1.1.2 Classical algebras

There are four families of classical algebras, denoted by A`,B`,C`,D`, which are the typical
examples of simple Lie algebras.

Let [n] := {1, 2, · · · , n}. Define the Kronecker delta function

δij =

{
1, if i = j

0, if i 6= j

In Fn×n, let eij be the matrix that has the only nonzero enetry 1 in the (i, j)-position.

Lem 1.2. {eij | i, j ∈ [n]} is a basis of gl(n,F), and

[eij , ekl] = δjkeil − δliekj .

Lem 1.3. Every s ∈ Fn×n corresponds to a bilinear form on V = Fn by

〈u, v〉 = utsv, u, v ∈ V.

Define

Ls := {x ∈ gl(n,F) | 〈xu, v〉+ 〈u, xv〉 = 0}
= {x ∈ Fn×n | sx = −xts}.

Then Ls is a Lie subalgebra of gl(n,F).

Remark. Bilinear forms are classified by congruence relationship. Suppose s, g ∈ Fn×n and g is
nonsingular. What is the relation between Ls and Lgtsg?

Lgtsg = {x ∈ Fn×n | gtsgx = −xtgtsg}
= {x ∈ Fn×n | sgxg−1 = −(gt)−1xtgts}
= {x ∈ Fn×n | sgxg−1 = −(gt)−1xtgts}
= {x ∈ Fn×n | gxg−1 ∈ Ls}
= {x ∈ Fn×n | x ∈ g−1Lsg} = g−1Lsg.

So Lie algebras Ls and Lgtsg = g−1Lsg are (inner) isomorphic.

Now we can describe the classical algebras (up to isomorphisms):

A`: Let V = F`+1. Let sl(V ) = sl(` + 1,F) consist of the elements of gl(V ) = gl(n,F) having
trace zero. The trace of a matrix x is the sum of its diagonal entries. For all x, y ∈ gl(V ) we
have

Tr ([xy]) = Tr (xy − yx) = Tr (xy)− Tr (yx) = 0.

So sl(V ) = sl(`+ 1,F) is a subalgebra of gl(V ), called the special linear algebra.

C`: Let V = F2`, and s =

[
0 I`
−I` 0

]
. The symplectic algebra is

sp(V ) = sp(2`,F) := Ls = {x ∈ F2`×2` | xts = −sx}.

Explicitly, x =

[
m n
p q

]
∈ sp(2`,F) for m,n, p, q ∈ gl(`,F) iff

nt = n, pt = p, mt = −q.

Clearly sp(2`,F) ≤ sl(2`,F). A basis of sp(2`,F) consists of:
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(a) the diagonal matrices eii − e`+i,`+i, i ∈ [`];

(b) eij − e`+j,`+i, i, j ∈ [`], i 6= j;

(c) ei,`+i, i ∈ [`]; and ei,`+j + ej,`+i, 1 ≤ i < j ≤ `;
(d) e`+i,i, i ∈ [`]; and e`+i,j + e`+j,i, 1 ≤ j < i ≤ `.

So dim sp(2`,F) = 2`2 + `.

B`: Let V = F2`+1 and s =

 1 0 0
0 0 I`
0 I` 0

. The orthogonal algebra

ø(V ) = ø(2`+ 1,F) := Ls.

If x ∈ gl(2` + 1,F) is partitioned in the same form as s, say x =

 a b1 b2
c1 m n
c2 p q

, then x ∈

ø(2`+ 1,F) iff

a = 0, c1 = −bt2, c2 = −bt1, q = −mt, nt = −n, pt = −p.

We have ø(2`+ 1,F) ≤ sl(2`+ 1,F). A basis of ø(2`+ 1,F) consists of

(a) eii − e`+i,`+i, 2 ≤ i ≤ `+ 1;

(b) e1,`+i+1 − ei+1,1 and e1,i+1 − e`+i+1,1, i ∈ [`];

(c) ei+1,j+1 − e`+j+1,`+i+1, i, j ∈ [`], i 6= j;

(d) ei+1,`+j+1 − ej+1,`+i+1, 1 ≤ i < j ≤ `;
(e) ei+`+1,j+1 − ej+`+1,i+1, 1 ≤ j < i ≤ `.

Therefore, dim ø(2`+ 1,F) = 2`2 + `.

D`: Let V = F2` and s =

[
0 I`
I` 0

]
. The orthogonal algebra

ø(V ) = ø(2`,F) := Ls.

A matrix x =

[
m n
p q

]
∈ ø(2`,F) iff

q = −mt, nt = −n, pt = −p.

Similarly ø(2`,F) ≤ sl(2`,F). (exercise)A basis of ø(2`,F) consists of

(a) eii − e`+i,`+i, i ∈ [`];

(b) ei,j − e`+j,`+i, i, j ∈ [`], i 6= j;

(c) ei,`+j − ej,`+i, 1 ≤ i < j ≤ `;
(d) ei+`,j − ej+`,i, 1 ≤ j < i ≤ `.

Therefore, dim ø(2`,F) = 2`2 − `.

As we noted early, any matrix from the same congruence class over F will produce an isomorphic
Lie algebra.
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1.1.3 Abstract Lie algebra

Suppose L has a basis {x1, · · · , xn}. The Lie algebra structure of L can be determined by the
bracket operation on the basis:

[xixj ] =

n∑
k=1

akijxk,

where akij are called the structure constants. The axioms (L2) and (L3) imply that (exercise)

akii = 0, akij + akji = 0,
∑
k

(akija
m
kl + akjla

m
kl + aklia

m
kj) = 0.

1.1.4 Lie algebras of derivations

Def. An F-algebra is an F- vector space U together with a bilinear operation

U × U → U , (a, b) 7→ ab.

A derivation of U is a linear endomorphism δ ∈ End (U) satisfying

the product rule: δ(ab) = aδ(b) + δ(a)b.

Let Der (U) denote the set of all derivations of U .

Der (U) is not an F-algebra in general. However, it is closed under [δδ′] = δδ′ − δ′δ (exercise).

Thm 1.4. Der (U) is a Lie subalgebra of gl(U).

Ex. The derivation algebra of a Lie algebra (L, []) is

Der (L) = {δ ∈ End (L) | δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ L}.

The Jacobi identity on L can be written as (by [xy] = −[yx]):

[z[xy]] = [[zx]y] + [x[zy]].

Define ad z ∈ End (L) for any z ∈ L by

ad z (x) := [z, x] for all x ∈ L.

Then
ad z([x, y]) = [ad z(x), y] + [x, ad z(y)].

Therefore, ad z ∈ Der (L) for all z ∈ L.

Def. Every ad z ∈ Der (L) is called an inner derivation. All others are called outer derivations.

Def. The adjoint representation of L is defined by

ad : L→ End (L), z 7→ ad z.

Lem 1.5. adL := {adx | x ∈ L} is a Lie subalgebra of Der (L). Precisely,

[adx, ad y] = ad [x, y].

We will see that adL is indeed an ideal of Der (L).
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1.1.5 Lie groups and Lie algebras

Lie algebras are closely related to linear algebraic groups and Lie groups. We consider F = R or
C here for simplicity.

Def. A group G is called a complex Lie group, if G is also a complex differential manifold
(locally like Cm) such that the group operations

· : G×G→ G and −1 : G→ G

are differentiable functions. Similarly for real Lie group.

Thm 1.6. Every (real or complex) Lie group G corresponds to a Lie algebra of the same dimension,
namely the tangent space L := T1G at 1 ∈ G, with the bracket operation

[XY ] := XY − Y X for X,Y ∈ T1G.

Conversely, a Lie algebra L may correspond (as the tangent space at identity) to many noniso-
morphic Lie groups; these Lie groups have the same universal covering space, which is the unique
connected simple connected Lie group corresponding to L.

Ex. The real Lie groups G1 := {eıθ | θ ∈ R} has the Lie algebra ıR, and G2 := R+ have the Lie
algebra R, where ıR and R are isomorphic.

However, there exist one-to-one correspondences between the matrix Lie algebras and the con-
nected matrix Lie groups.

Thm 1.7. Suppose F = C or R. Then every matrix Lie algebra L ≤ gl(n,F) corresponds to a
unique connected matrix Lie group G, such that L = T1G (here 1 ∈ G is In.) Explicitly, G is
generated by all elements

expX := In +
∞∑
k=1

1

k!
Xk for X ∈ L,

Ex. (Classical groups):

1. Lie algebra gl(n,F) corresponds to the matrix group GL(n,F) of all n×n invertible matrices.

2. Lie algebra sl(n,F) of trace 0 matrices corresponds to the matrix group SL(n,F) of all n× n
matrices of determinante 1.

3. Recall that Lie algebras of types B, C, D are defined by

L = {x ∈ Fn×n | xts = −sx}

where

C` : n = 2`, s =

[
0 I`
−I` 0

]
;

B` : n = 2`+ 1, s =

 1 0 0
0 0 I`
0 I` 0

 ;

D` : n = 2`, s =

[
0 I`
I` 0

]
.
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For each L above, the corresponding connected matrix Lie group G is the identity component
of

{g ∈ GL(n,F) | gts = sg−1}

for the same s defining L (exercise).

We may use GL(V ) to denote the group of invertible endomorphisms of a vector space V .
Similarly for SO(V ) and Sp(V ).

Homework

1. Verify that F 3 with the cross-product × is a Lie algebra.

2. Verify that the matrix form of elements of D` (associate with s =

[
0 I`
I` 0

]
) is x =

[
m n
p q

]
where q = −mt, nt = −n, and pt = −p. Then verify the dimension of D`.

3. (1.1.10)

(a) Show that A1, B1, C1 are all isomorphic, and D1 is the one dimensional Lie algebra;

(b) show that B2 is isomorphic to C2;

(c) show that D3 is isomorphic to A3;

(d) what can you say about D2?

4. (1.1.11) Verify that the commutator of two derivations of an F -algebra is again a derivation,
whereas the ordinary product need not be.


