1.2 Ideals and homomorphisms

1.2.1 Ideals

Def. A subspace I of a Lie algebra L is called an ideal of $L(I \unlhd L)$ if

$$
x \in L, y \in I \quad \Longrightarrow \quad[x, y] \in I \quad \text { (equiv. }[y, x] \in I)
$$

Ex. Examples of ideals of a Lie algebra L:

1. 0 and L are ideals of L.
2. The derived algebra $[L L]$, consisting of all linear combinations of commutators $[x y]$ for all $x, y \in L$, is an ideal of L. Moreover, L is abelian iff $[L L]=0$.
3. The center $Z(L):=\{z \in L \mid[x z]=0$ for all $x \in L\}$ is an ideal of L. (exercise)
4. In $\mathfrak{g l}(n, \mathrm{~F}), \mathfrak{n}(n, \mathrm{~F})=\{$ strictly upper triangular matrices $\}$ is an ideal of $\mathfrak{t}(n, \mathrm{~F})=\{$ upper triangular matrices $\}$

Lem 1.8. The set of inner derivations, ad L, is an ideal of $\operatorname{Der}(L)$. Indeed, for $z \in L$ and $\delta \in \operatorname{Der}(L)$, we have (exercise)

$$
[\delta, \operatorname{ad} z]=\operatorname{ad} \delta(z)
$$

Def. When $I \unlhd L$, the quotient algebra L / I is a Lie algebra under the operation

$$
[x+I, y+I]:=[x, y]+I
$$

Def. A Lie algebra is simple if its only ideals are 0 and L, and $[L L] \neq 0$.
Ex. The most famous simple algebra is $L=\mathfrak{s l}(2, \mathrm{~F})$ for char $\mathrm{F} \neq 2$. $\mathfrak{s l}(2, \mathrm{~F})$ has a basis:

$$
x:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad y:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad h:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

with the multiplication table

$$
[x y]=h, \quad[h x]=2 x, \quad[h y]=-2 y
$$

Check that $\mathfrak{s l}(2, \mathrm{~F})$ is simple. (exercise)
Def. The centralizer of a subset X of L is

$$
C_{L}(X):=\{x \in L \mid[x X]=0\} .
$$

Then $C_{L}(X) \leq L$, and $C_{L}(L)=Z(L)$.
Def. The normalizer of a subalgebra K of L is

$$
N_{L}(K):=\{x \in L \mid[x K] \subset K\} .
$$

$N_{L}(K)$ is the largest subalgebra of L which includes K as an ideal (exercise). K is called selfnormalizing if $N_{L}(K)=K . K \unlhd L$ iff $N_{L}(K)=L$.

1.2.2 Homomorphisms and representations

The definitions and basic properties of homomorphisms of Lie algebras are similar to their counterparts in linear transformations.

Def. A linear transformation $\phi: L \rightarrow L_{1}$ of Lie algebras $(L,[])$ and $\left(L_{1},[]_{1}\right)$ is called a homomorphism of Lie algebras, if

$$
\phi([x, y])=[\phi(x), \phi(y)]_{1} \quad \text { for all } x, y \in L .
$$

We can define the kernel Kerф, the image Im ϕ, monomorphism, epimorphism, isomorphism, and automorphism. Ker ϕ is an ideal of L; $\operatorname{Im} \phi$ is a subalgebra of L_{1}.

Prop 1.9. 1. If $\phi: L \rightarrow L^{\prime}$ is a homomorphism of Lie algebra, then $L / \operatorname{Ker} \phi \simeq \operatorname{Im} \phi$. For any ideal I of L containing in Ker ϕ, there exists a unique homomorphism $\psi: L / I \rightarrow L^{\prime}$, such that $\phi=\psi \circ \pi$, where $\pi: L \rightarrow L / I$ is the canonical projection.
2. If $I \unlhd L$ and $J \unlhd L$, then $(I+J) / J \simeq I /(I \cap J)$.
3. If $I \unlhd L, J \unlhd L$, and $I \subset J$, then $J / I \unlhd L / I$ and $(L / I) /(J / I) \simeq L / J$.

Def. A representation of a Lie algebra L is a homomorphism $\phi: L \rightarrow \mathfrak{g l}(V)$.
Ex. In the adjoint representation ad : $L \rightarrow \mathfrak{g l}(L)$, we have $\operatorname{Ker}(\operatorname{ad})=Z(L)$ and $\operatorname{Im}(\operatorname{ad})=\operatorname{ad} L$. Then $L / Z(L) \simeq \operatorname{ad} L$. If L is simple, then $Z(L)=0$ and $L \simeq \operatorname{ad} L$.

Def. (optional) Every representation $\phi: L \rightarrow \mathfrak{g l}(V)$ one-to-one corresponds to a left L-module V by $x \cdot v:=\phi(x) v$ for all $x \in L$ and $v \in V$. (See $\S 6.1$ for the definition of L-module)

1.2.3 Automorphisms

Def. Let Aut (L) denote the set of all automorphisms of Lie algebra L.
Aut (L) forms a subgroup of $\mathrm{GL}(L)$.
Prop 1.10. Suppose $\mathbf{F}=\mathbf{R}$ or \mathbf{C}, L is a matrix Lie algebra, and G is the matrix group generated by $\{\exp (t x) \mid t \in \mathbf{R}, x \in L\}$. Then the linear map ϕ_{g}, defined by

$$
\phi_{g}(x)=g x g^{-1} \quad \text { for } \quad x \in L,
$$

is in $\operatorname{Aut}(L)$, and $\left\{\phi_{g} \mid g \in G\right\}$ is a connected normal subgroup of Aut (L).
Proof. (exercise)
Now we have the sets $\operatorname{End}(L)=\mathfrak{g l}(L), \operatorname{Der}(L), \operatorname{GL}(L), \operatorname{Aut}(L)$.

1. $\operatorname{Aut}(L) \subset \mathrm{GL}(L) \subset \operatorname{End}(L)$
2. $\operatorname{Der}(L) \subset \mathfrak{g l}(L)=\operatorname{End}(L)$
3. When $\mathrm{F}=\mathbf{R}$ or $\mathbf{C},\langle\exp \mathfrak{g l}(L)\rangle \subset \mathrm{GL}(L)$.

Thm 1.11. Suppose F is a field of characteristics 0, such that $\exp (\mathrm{F}) \subset \mathrm{F}$ (e.g. $\mathrm{F}=\mathbf{R}$ or $\mathbf{C})$. Then for any $\delta \in \operatorname{Der}(L)$, we have

$$
\exp (\delta):=\sum_{n=0}^{\infty} \frac{1}{n!} \delta^{n} \in \operatorname{Aut}(L)
$$

Moreover, the group generated by $\{\exp (\delta) \mid \delta \in \operatorname{Der}(L)\}$ is a normal subgroup of Aut (L).
Def. $X \in \operatorname{End}(L)$ is called nilpotent if $X^{k}=0$ for some $k \in \mathbf{N}$.
Obviously, the only eigenvalue of a nilpotent endomorphism X is 0 . Indeed, X can be represented as a strictly upper triangular matrix w.r.t. certain basis of L.

Cor 1.12. Suppose char $\mathrm{F}=0$. Given $x \in L$ such that $\operatorname{ad} x$ is nilpotent, we have $\exp (\operatorname{ad} x) \in$ Aut (L). Indeed,

$$
(\exp x) y(\exp x)^{-1}=\exp \operatorname{ad} x(y) \quad \text { for all } y \in L
$$

