1.2 Ideals and homomorphisms

1.2.1 Ideals

Def. A subspace I of a Lie algebra L is called an ideal of L ($I \leq L$) if

$$x \in L, y \in I \implies [x,y] \in I \quad (equiv. [y,x] \in I)$$

Ex. Examples of ideals of a Lie algebra L:

- 1. 0 and L are ideals of L.
- 2. The derived algebra [LL], consisting of all linear combinations of commutators [xy] for all $x, y \in L$, is an ideal of L. Moreover, L is abelian iff [LL] = 0.
- 3. The center $Z(L) := \{z \in L \mid [xz] = 0 \text{ for all } x \in L\}$ is an ideal of L. (exercise)
- 4. In $\mathfrak{gl}(n, F)$, $\mathfrak{n}(n, F) = \{ \text{strictly upper triangular matrices} \} \text{ is an ideal of } \mathfrak{t}(n, F) = \{ \text{upper triangular matrices} \}$

Lem 1.8. The set of inner derivations, $\operatorname{ad} L$, is an ideal of $\operatorname{Der}(L)$. Indeed, for $z \in L$ and $\delta \in \operatorname{Der}(L)$, we have (<u>exercise</u>)

$$[\delta, \operatorname{ad} z] = \operatorname{ad} \delta(z).$$

Def. When $I \leq L$, the quotient algebra L/I is a Lie algebra under the operation

$$[x + I, y + I] := [x, y] + I.$$

Def. A Lie algebra is simple if its only ideals are 0 and L, and $[LL] \neq 0$.

Ex. The most famous simple algebra is $L = \mathfrak{sl}(2, F)$ for char $F \neq 2$. $\mathfrak{sl}(2, F)$ has a basis:

$$x := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad y := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad h := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

with the multiplication table

$$[xy] = h,$$
 $[hx] = 2x,$ $[hy] = -2y.$

Check that $\mathfrak{sl}(2, F)$ is simple. (exercise)

Def. The centralizer of a subset X of L is

$$C_L(X) := \{ x \in L \mid [xX] = 0 \}$$

Then $C_L(X) \leq L$, and $C_L(L) = Z(L)$.

Def. The normalizer of a subalgebra K of L is

$$N_L(K) := \{ x \in L \mid [xK] \subset K \}$$

 $N_L(K)$ is the largest subalgebra of L which includes K as an ideal (<u>exercise</u>). K is called self-normalizing if $N_L(K) = K$. $K \leq L$ iff $N_L(K) = L$.

1.2.2 Homomorphisms and representations

The definitions and basic properties of homomorphisms of Lie algebras are similar to their counterparts in linear transformations.

Def. A linear transformation $\phi : L \to L_1$ of Lie algebras (L, []) and $(L_1, []_1)$ is called a homomorphism of Lie algebras, if

$$\phi([x,y]) = [\phi(x), \phi(y)]_1 \quad \text{for all } x, y \in L.$$

We can define the kernel $Ker\phi$, the image $Im\phi$, monomorphism, epimorphism, isomorphism, and automorphism. $Ker\phi$ is an ideal of L; $Im\phi$ is a subalgebra of L_1 .

- **Prop 1.9.** 1. If $\phi : L \to L'$ is a homomorphism of Lie algebra, then $L/\operatorname{Ker} \phi \simeq \operatorname{Im} \phi$. For any ideal I of L containing in $\operatorname{Ker} \phi$, there exists a unique homomorphism $\psi : L/I \to L'$, such that $\phi = \psi \circ \pi$, where $\pi : L \to L/I$ is the canonical projection.
 - 2. If $I \leq L$ and $J \leq L$, then $(I + J)/J \simeq I/(I \cap J)$.
 - 3. If $I \leq L$, $J \leq L$, and $I \subset J$, then $J/I \leq L/I$ and $(L/I)/(J/I) \simeq L/J$.

Def. A representation of a Lie algebra L is a homomorphism $\phi : L \to \mathfrak{gl}(V)$.

Ex. In the adjoint representation $\operatorname{ad} : L \to \mathfrak{gl}(L)$, we have $\operatorname{Ker}(\operatorname{ad}) = Z(L)$ and $\operatorname{Im}(\operatorname{ad}) = \operatorname{ad} L$. Then $L/Z(L) \simeq \operatorname{ad} L$. If L is simple, then Z(L) = 0 and $L \simeq \operatorname{ad} L$.

Def. (optional) Every representation $\phi : L \to \mathfrak{gl}(V)$ one-to-one corresponds to a left L-module V by $x \cdot v := \phi(x)v$ for all $x \in L$ and $v \in V$. (See §6.1 for the definition of L-module)

1.2.3 Automorphisms

Def. Let Aut(L) denote the set of all automorphisms of Lie algebra L.

Aut (L) forms a subgroup of GL(L).

Prop 1.10. Suppose $F = \mathbf{R}$ or \mathbf{C} , L is a matrix Lie algebra, and G is the matrix group generated by $\{\exp(tx) \mid t \in \mathbf{R}, x \in L\}$. Then the linear map ϕ_g , defined by

$$\phi_q(x) = gxg^{-1}$$
 for $x \in L$,

is in Aut(L), and $\{\phi_g \mid g \in G\}$ is a connected normal subgroup of Aut(L).

Proof. (exercise)

Now we have the sets $\operatorname{End}(L) = \mathfrak{gl}(L)$, $\operatorname{Der}(L)$, $\operatorname{GL}(L)$, $\operatorname{Aut}(L)$.

- 1. Aut $(L) \subset \operatorname{GL}(L) \subset \operatorname{End}(L)$
- 2. Der $(L) \subset \mathfrak{gl}(L) = End(L)$
- 3. When $\mathbf{F} = \mathbf{R}$ or \mathbf{C} , $\langle \exp \mathfrak{gl}(L) \rangle \subset \mathrm{GL}(L)$.

Thm 1.11. Suppose F is a field of characteristics 0, such that $\exp(F) \subset F$ (e.g. $F = \mathbf{R}$ or \mathbf{C}). Then for any $\delta \in Der(L)$, we have

$$\exp(\delta) := \sum_{n=0}^{\infty} \frac{1}{n!} \delta^n \in Aut(L).$$

Moreover, the group generated by $\{\exp(\delta) \mid \delta \in Der(L)\}$ is a normal subgroup of Aut(L).

Def. $X \in End(L)$ is called **nilpotent** if $X^k = 0$ for some $k \in \mathbf{N}$.

Obviously, the only eigenvalue of a nilpotent endomorphism X is 0. Indeed, X can be represented as a strictly upper triangular matrix w.r.t. certain basis of L.

Cor 1.12. Suppose char F = 0. Given $x \in L$ such that $\operatorname{ad} x$ is nilpotent, we have $\exp(\operatorname{ad} x) \in Aut(L)$. Indeed,

$$(\exp x)y(\exp x)^{-1} = \exp \operatorname{ad} x (y) \quad \text{for all } y \in L.$$