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1.4 Solvable Lie algebras

1.4.1 Derived series and solvable Lie algebras

The derived series of a Lie algebra L is given by:

L(0) = L, L(1) = [L,L], , L(2) = [L(1), L(1)], · · · , L(k) = [L(k−1), L(k−1)], · · ·

A Lie algebra L is called solvable if L(n) = 0 for some n.

Ex. The Lie algebra t(n, F ) of n× n upper triangular matrices is solvable. (exercise)

Ex. Every nilpotent Lie algebra is solvable. (Prove L(k) ⊂ L(k) for all k by induction on k. )

We give some basic properties of solvable Lie algebras, and compare them with those of nilpotent
Lie algebras.

Prop 1.19. Let L be a Lie algebra.

1. If L is solvable, then so are all subalgebras and homomorphic images of L.
(Similar for nilpotent case)

2. Given any ideal I E L, L is solvable iff both I and L/I are solvable.
(For nilpotent case, the “if” part only holds for special I, e.g. I = Z(L).)

3. If I and J are solvable ideals of L, then so is I + J .
(Similar for nilpotent case. See ex 3.6 of Humphreys)

Remark. Prop 1.19 implies that L has a unique maximal nilpotent solvable ideal, called the radical
of L, denoted RadL. L is called semisimple if RadL = 0.

Cor 1.20. Every Lie algebra L is decomposed as a solvable ideal RadL and a semisimple homo-
morphic image L/RadL: 0→ RadL→ L→ L/RadL→ 0.

Ex. A Lie algebra L is called simple if L has no ideals except itself and 0, and [L,L] 6= 0 (i.e. L
is not abelian). Show that every simple Lie algebra is semisimple.

1.4.2 Lie’s Theorem

In Engel’s theorem, we see that every nilpotent algebra L (dimL = n) has adL isomorphic by
conjugation to a subalgebra of n(n, F ) (of strictly upper triangular matrices). From now on, we
always assume that F is algebraically closed and charF = 0, unless otherwise specified. Then Lie’s
Theorem says that a solvable subalgebra of gl(n, F ) is isomorphic by conjugation to a subalgebra
of t(n, F ) (of upper triangular matrices).

Thm 1.21. Let L be a solvable subalgebra of gl(V ), 0 < dimV <∞. Then V contains a common
eigenvector for all the endomorphisms in L. Explicitly, there exist v ∈ V − {0} and λ ∈ L∗ such
that

x.v = λ(x)v for all x ∈ L.

Remark. The claim is not true if F is not an algebraic closure. For example, F = R, and

S =

{[
a b
−b a

]
| a, b ∈ R

}
, L =

{[
X Y
0 Z

]
| X,Y, Z ∈ S

}
.

Then L '
{[

x y
0 z

]
| x, y, z ∈ C

}
is solvable. However, L is not similar to a subalgebra of t(4,R).

(why?)
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Proof of Theorem 1.21. We prove by induction on dimL. The case dimL = 0 is clear. We follow
the steps below similar to the proof of Theorem 1.16:

1. Goal: find a codimension one ideal K E L; then select z ∈ L−K, so that L = K + Fz.

Since L is solvable, we have L ) [L,L]. The quotient algebra L/[L,L] is abelian and every
subspace is an ideal. The inverse image K of a codimension one subspace of L/[L,L] is a
codimension one ideal in L.

2. Since K is solvable and dimK < dimL, by induction hypothesis, there is a common eigenvec-
tor v ∈ V for K. In other words, there is a linear functional λ : K → F , such that y.v = λ(y)v
for any y ∈ K. So the common eigenspace of K for λ is nonzero:

W := {w ∈ V | y.w = λ(y)w, for all y ∈ K}.

3. Assume that W is L-invariant. Since F is algebraically closed, z ∈ L has an eigenvector
v0 ∈W . Since L = K + Fz, v0 is a common eigenvector for L. We prove the theorem.

4. Remaining goal: Prove that W is L-invariant.

Fix x ∈ L and w ∈W . For any y ∈ K and any integer i > 0,

y(x.w) = xy.w − [x, y].w = λ(y)x.w − λ([x, y])w. (1.2)

To let x.w ∈W , we have to prove that λ([x, y]) = 0.

Let n > 0 be the smallest integer for which w, x.w, · · · , xn.w is linearly dependent. Define

Wi = span{w, x.w, · · · , xi−1.w}.

Then dimWi = i for i < n, and dimWn = dimWn+1 = · · · = n.

We prove that y(xi.w) ∈ λ(y)xi.w + Wi for any y ∈ K and any integer i > 0 by induction
on i. The case i = 1 is done by (1.2). Now suppose y(xi−1.w) = λ(y)xi−1.w + wi−1, where
wi−1 ∈Wi−1. Then

yxi.w = x(yxi−1.w)− [x, y]xi−1.w

= x(λ(y)xi−1.w + wi−1︸︷︷︸
in Wi−1

)− [x, y]xi−1.w︸ ︷︷ ︸
in Wi

(by induction hypothesis)

∈ λ(y)xi.w +Wi.

The claim is proved.

Now for any y ∈ K, all of x, y, and [x, y] ∈ K stabilize Wn. Relative to the basis
w, x.w, · · · , xn−1.w of Wn, [x, y] is represented by an upper triangular entries with λ([x, y])
as diagonal entries. Therefore, 0 = TrWn([x, y]) = nλ([x, y]). Since charF = 0, we have
λ([x, y]) = 0 as desired.

Cor 1.22 (Lie’s Theorem). Let L be a solvable subalgebra of gl(V ), dimV <∞. Then L stabilizes
some flag in V . In other words, the matrices of L relative to a suitable basis of V are upper
triangular.

Remark. Any finite dimension representation of a solvable algebra L, φ : L→ gl(V ), implies that
φ(L) is solvable and thus stabilizes a flag of V .
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Cor 1.23. Let L be solvable. Then there exists a chain of ideals of L, 0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L,
such that dimLi = i.

Proof. Apply Lie’s Theorem to adjoint representation ad : L→ gl(L).

Cor 1.24. Let L be solvable. Then x ∈ [L,L] implies that ad Lx is nilpotent. In particular, [L,L]
is nilpotent.

Proof. adL ⊂ gl(L) is solvable. So adL consists of upper triangular matrices relative to a suitable
basis of L. Then ad [L,L] = [adL, adL] consists of strictly upper triagular matrices, which are
nilpotent.

1.4.3 Jordan-Chevalley decomposition

We explore some linear algebra results in this subsection. Let Jn(λ) denote the n×n Jordan block
with diagonal entries λ, and Jn := Jn(0) denote the n× n matrix that has 1 on the superdiagonal
and 0 elsewhere.

Ex. 1. Jn(λ) = λIn + Jn, where λIn is diagonal, Jn is nilpotent, and λIn and Jn are commu-
tative;

2. A Jordan matrix x = Jn1(λ1)⊕Jn2(λ2)⊕ · · · can be decomposed as x = xs + xn, where xs is
diagonal, xn is nilpotent, xs and xn are commutative;

3. Given the decomposition of Jordan matrix x = xs + xn above, any similar matrix gxg−1 of x
can be decomposed as

gxg−1 = gxsg
−1 + gxng

−1,

where gxsg
−1 is diagonalizable, gxng

−1 is nilpotent, and they commute to each other.

A matrix x ∈ Fn×n (or x ∈ End (V )) is called semisimple if the roots of its minimal polynomial
over F are all distinct. Equivalently, when F is algebraically closed, x is semisimple iff x is
diagonalizable.

Prop 1.25. Let V be a finite dimensional vector space over an arbitrary field F , and x ∈ End (V ).

1. There exist unique xs, xn ∈ End (V ) satisfying the (additive) Jordan-Chevalley decompo-
sition: x = xs + xn, where xs is semisimple, xn is nilpotent, xs and xn commute.

2. There exist polynomials p(T ) and q(T ) without constant term, such that xs = p(x) and xn =
q(x). In particular, xs and xn commute with any endomorphism commuting with x.

Proof for complex case: By choosing an appropriate base of V , we may assume that the matrix form
of x is in Jordan canonical form. Then the decomposition x = xs + xn is explicitly constructed in
the proceeding example; moreover, x, xs and xn commute. It remains to show that xs and xn are
polynomials expressions of x.

If x has only one eigenvalue λ, then x = Jn1(λ)⊕Jn2(λ)⊕· · ·⊕Jnk
(λ) has the Jordan-Chevalley

decomposition x = λ+ xn where xn = x−λ. Since (x−λ)n = 0, we can express λ as a polynomial
of x without constant term, say λ = p(x), then xn = x− p(x) is also expressed as a polynomial of
x without constant term.

Now suppose x is a direct sum of Jordan matrices x(1) ⊕ · · · ⊕ x(t) corresponding to distinct
eigenvalues λ1, · · · , λt, each Jordan matrix x(i) has the minimal polynomial (z − λi)mi , and x(i) =

x
(i)
s + x

(i)
n where x

(i)
s = pi(x

(i)) and x
(i)
n = qi(x

(i)). The minimal polynomial of x is h(z) =



20 CHAPTER 1. BASIC CONCEPTS

∏t
i=1(z − λi)mi . The polynomial ring C[z] is PID. For each i ∈ [t], the polynomials (z − λi)mi and

h(z)/(z − λi)mi =
∏
j 6=i(z − λj)mj are relatively prime. By Chinese Remainder Theorem, there

exists ri(z) ∈ C[z] with degree less than deg h(z), such that

ri(z) ≡ 1 mod (z − λi)mi , ri(z) ≡ 0 mod
∏
j 6=i

(z − λj)mj .

It implies that ri(x
(i)) = 1 and ri(x

(j)) = 0 for j 6= i. Therefore, let

p(z) =
t∑
i=1

pi(z)ri(z), q(z) =
t∑
i=1

qi(z)ri(z).

Then xs = p(x) and xn = q(x) as desired.

Remark. The Jordan decomposition exists in any field (See textbook, or we can modify the above
proof to deal with arbitrary field.) Moreover, it is relative to the abstract Jordan decomposition for
elements on any semisimple Lie algebra (later section).

Lem 1.26. Let x ∈ EndV , dimV < ∞, x = xs + xn its Jordan decomposition. Then adx =
adxs + adxn is the Jordan decomposition of adx (in End (EndV ) )

Proof. Suppose dimV = n, and x is in Jordan canonical form for a given basis of V . Then
{eij | i, j ∈ [n]} is a basis of EndV in which adxs is diagonal and adxn is nilpotent.

Remark. The Jordan decomposition is indeed preserved by any finite dimensional representation
ρ : EndV → EndW , that is, ρ(x) = ρ(xs) + ρ(xn) is the Jordan decomposition of ρ(x) in EndW .

Lem 1.27. Let U be a finite dimensional F -algebra. Then DerU contains the semisimple and
nilpotent parts (in EndU) of all its elements.

Proof. Suppose δ ∈ DerU has the Jordan decomposition δ = σ + ν in EndU . For a ∈ F , we set

Ua = {x ∈ U | (δ − a · 1)kx = 0 for some k}.

Then U =
∐

a∈spec(δ)

Ua where spec(δ) = spec(σ) denotes the spectrum of δ (or σ), and σ acts on Ua

as a scalar multiplication by a. For any n ∈ Z+, by induction (exercise), the derivation δ satisfies
that

(δ − (a+ b) · 1)n(xy) =
n∑
i=0

(
n

i

)
((δ − a · 1)n−ix) · ((δ − b · 1)iy).

For any x ∈ Ua and y ∈ Ub, we have xy ∈ Ua+b. Therefore, σ(xy) = (a + b)xy = σ(x)y + xσ(y).
Therefore, σ is a derivation. So σ, ν ∈ DerU .

1.4.4 Cartan’s Criterion for Solvability

Lie’s Theorem says that a linear Lie algebra L ∈ gl(V ) is solvable iff it is a subalgebra of t(n, F )
relative to a suitable basis. Then [L,L] consists of strictly upper triangular matrices, and Tr (xy) =
0 for all x ∈ L and y ∈ [L,L]. It turns out that the converse is also true.

Thm 1.28 (Cartan’s Criterion). Let L be a subalgebra of gl(V ), V finite dimensional. Then L is
solvable iff Tr (xy) = 0 for all x ∈ [L,L] and y ∈ L.
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Proof for “⇐=” in complex case: We prove that if Tr (xy) = 0 for any x ∈ [L,L] and y ∈ L, then
adx is nilpotent. By Engel’s Theorem, it implies that [L,L] is nilpotent, so that L is solvable.

Let
M = {z ∈ gl(V ) | [z, L] = ad z(L) ⊆ [L,L]}.

Clearly L ⊆M . Let [x, y] be a typical generator of [L,L], and z ∈M . By computation (exercise),

Tr ([x, y]z) = Tr (x[y, z]) = 0,

by [y, z] ∈ [L,L] and the hypothesis. So Tr (xz) = 0 for any x ∈ [L,L] and z ∈M .
Fix x ∈ [L,L]. Let x = s + n be the Jordan decomposition of x. We show that s = 0, so that

adx = adn is nilpotent. Now adx = ad s+ adn is the Jordan decomposition of ad s in EndL, and
ad s is a polynomial of adx without constant term. Since adx(L) ⊆ [L,L], we have ad s(L) ⊆ [L,L]
so that s ∈M .

With an appropriate basis of V , s has the matrix form diag (a1, · · · , am). Let {eij | i, j ∈ [m]} be
the standard basis of gl(V ). Then ad s(eij) = (ai−aj)eij . So ad s is diagonal w.r.t. the basis {eij}.
By Lagrange interpolation, there exists a polynomial r(T ) ∈ C[T ] without constant term, such that
r(ai− aj) = ai − aj . 1 Then ad s = r(ad s), which implies that ad s(L) ⊆ [L,L]. Therefore, s ∈M ,
so that

0 = Tr (xs) = Tr (ss) =
m∑
i=1

|ai|2.

We get s = 0 as desired.

Cor 1.29. A Lie algebra L is solvable iff Tr (adx ad y) = 0 for all x ∈ [L,L], y ∈ L.

We will recall this corollary in the next section about Killing form.

1This part shoud be modified for the other alg closed char 0 fields F . See Humphrey’s text.


