Chapter 2

Semisimple Lie Algebras

2.1 Killing form

2.1.1 Criterion for Semisimplicity

The **Killing form** of a Lie algebra L is a bilinear form $\kappa : L \times L \to F$ defined by:

 $\kappa(x, y) = \operatorname{Tr} (\operatorname{ad} x \operatorname{ad} y) \quad \text{for } x, y \in L.$

The Killing form is

- 1. symmetric: $\kappa(x, y) = \kappa(y, x)$, and
- 2. <u>associative</u>: in the sense that $\kappa([x, y], z) = \kappa(x, [y, z])$ (since Tr ([ad x, ad y]ad z) = Tr (ad x[ad y, ad z]).)

The **radical** of Killing form (or any symmetric bilinear form of L) is $S = \{x \in L \mid \kappa(x, y) = 0 \text{ for all } y \in L\}$. Given a basis $\{x_1, \dots, x_n\}$ of L, the dimension of radical is

$$\dim S = n - \operatorname{rank} \left[\kappa(x_i, x_j) \right]_{n \times n}$$

We call κ **nondegererate** if dim S = 0, i.e., the matrix $[\kappa(x_i, x_j)]_{n \times n}$ is nondegenerate.

3 the radical S of κ is an ideal: by associativity of κ , if $x \in S$ and $y, z \in L$, then

$$\kappa([x,y],z)=\kappa(x,[y,z])=0 \quad \Longrightarrow \quad [x,y]\in S.$$

Ex. Compute the matrix form of the Killing form κ of $\mathfrak{sl}(2, F)$ w.r.t. the basis $\{h, e, f\}$:

$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Lem 2.1. Suppose a Lie algebra L has the Killing form κ , and I is an ideal of L. Then:

- 1. the Killing form of I is $\kappa_I = \kappa|_{I \times I}$;
- 2. the orthogonal subspace I^{\perp} of I w.r.t. κ is also an ideal of L:

$$I^{\perp} := \{ x \in L \mid \kappa(x, y) = 0 \text{ for any } y \in I \}.$$

(Note that in general $I \cap I^{\perp} \neq 0$.)

Proof. For $x, y \in I$, ad x (resp. ad y) maps L to I. Therefore,

 $\kappa(x, y) = \operatorname{Tr} \left(\operatorname{ad} x \operatorname{ad} y\right) = \operatorname{Tr} \left(\left(\operatorname{ad} x\right)|_{I} (\operatorname{ad} y)|_{I}\right) = \kappa|_{I}(x, y).$

For any $x \in I^{\perp}$, $y \in L$, and $z \in I$,

$$\kappa([x, y], z) = \kappa(x, [y, z]) = 0$$

Therefore, I^{\perp} is also an ideal of L.

Corollary 1.29 implies that: (exercise)

a Lie algebra L is solvable iff the radical of its Killing form contains [L, L].

Now we develop a criterion for L to be semisimple, i.e., the maximal solvable ideal Rad L = 0.

Thm 2.2. A Lie algebra L is semisimple iff its Killing form is nondegenerate.

Proof. If L is semisimple, then $\operatorname{Rad} L = 0$. Let S be the radical of κ . Then $\operatorname{Tr} (\operatorname{ad} x \operatorname{ad} y) = 0$ for any $x \in S$ and $y \in L$ (esp. for $y \in [S, S]$). By Corollary 1.29, S is solvable. Therefore, S = 0.

Conversely, suppose on the contrary, S = 0 but $\operatorname{Rad} L \neq 0$. Then the last nonzero term I in the derived series of $\operatorname{Rad} L$ is a nonzero abelian ideal of L (exercise). For any $x \in I$ and $y \in L$, ad $x \operatorname{ad} y$ sends $L \to L \to I$. So the image of $(\operatorname{ad} x \operatorname{ad} y)^2$ is in [I, I] = 0. Therefore, $(\operatorname{ad} x \operatorname{ad} y)^2 = 0$, which implies that $\operatorname{ad} x \operatorname{ad} y$ is nilpotent and $\kappa(x, y) = \operatorname{Tr} (\operatorname{ad} x \operatorname{ad} y) = 0$. This shows that $I \subseteq S = 0$, a contradiction. Hence $\operatorname{Rad} L = 0$.

Remark. The proof also shows that $S \subseteq RadL$. However, the converse need not hold.

Next we explore some applications of the Killing form.

2.1.2 Simple Ideals of Semisimple Lie Algebra

A Lie algebra L is a **direct sum of ideals** L_1, \dots, L_t if $L = L_1 \oplus \dots \oplus L_t$ as vector spaces. Obviously, $[L_i, L_j] = 0$ for $i \neq j$.

Thm 2.3. Let L be semisimple with Killing form κ . Then

- 1. L is a direct sum of some simple ideals: $L = L_1 \oplus \cdots \oplus L_t$.
- 2. The Killing form of L_i is exactly $\kappa_i = \kappa|_{L_i \times L_i}$. There is an orthogonal direct sum $\kappa = \kappa_1 \oplus \cdots \oplus \kappa_t$.
- 3. Every simple ideal of L coincides with one of the L_i .
- 4. Every ideal I of L is a direct sum of some L_i 's, which is semisimple. There is a direct sum of ideals $L = I \oplus I^{\perp}$ w.r.t. the Killing form.
- 5. Every homomorphic image of L is semisimple and isomorphic to a direct sum of some L_i 's.

6.
$$L = [L, L].$$

Proof. Let I be any ideal of L. Then I^{\perp} and $I \cap I^{\perp}$ are also ideals of L. By Cartan's Criterion, $I \cap I^{\perp}$ is solvable. Hence $I \cap I^{\perp} = 0$ and $L = I \oplus I^{\perp}$ by dimension counting. Moreover, any ideal J of I is also an ideal of L, and hence an orthogonal direct sum component of L w.r.t. κ . Therefore, L can be decomposed into an orthogonal direct sum of indecomposable nonabelian ideals, aka. simple ideals:

$$L = L_1 \oplus \cdots \oplus L_t$$
, $L_i \perp L_j$ w.r.t. κ for $i \neq j$.

Claims 1 and 2 are proved.

If I is any ideal of L, then $I = [I, L] = [I, L_1] \oplus \cdots \oplus [I, L_t]$. Each $[I, L_i] \subseteq I \cap L_i$ is either 0 or L_i . It immediately implies Claims 3, 4, and 5.

Finally,

$$[L,L] = \bigoplus_{i} \bigoplus_{j} [L_i, L_j] = \bigoplus_{i} [L_i, L_i] = \bigoplus_{i} L_i = L. \quad \Box$$

Remark. The study of semisimple Lie algebras can be done by exploring the simple Lie algebras.

2.1.3 Derivations

We have shown that $\operatorname{ad} L$ is an ideal of $\operatorname{Der} L$. When L is semisimple, it turns out that every derivation of L is inner.

Thm 2.4. If L is semisimple, then $\operatorname{ad} L = \operatorname{Der} L$.

Proof. $A := \operatorname{ad} L$ is an ideal of $D := \operatorname{Der} L$. So the Killing form κ_A is the restriction of κ_D to $A \times A$. Since L is semisimple, Z(L) = 0 and $A \simeq L/Z(L) \simeq L$. Therefore, κ_A is nondegenerate. There is a direct sum of ideals $D = A \oplus A^{\perp}$ (w.r.t. the Killing form κ_D). For any $\delta \in A^{\perp}$ and $x \in L$,

$$0 = [\delta, \operatorname{ad} x] = \operatorname{ad} (\delta x) \implies \delta x = 0 \text{ for any } x \in L.$$

Therefore, $\delta = 0$, $A^{\perp} = 0$, and D = A.

Remark. When L is semisimple, the Lie algebra of AutL is DerL = adL. If G is a (real or complex) connected Lie group whose Lie algebra L is semisimple, then the Lie algebra of Aut(G) is exactly DerL = adL.

2.1.4 Abstract Jordan Decomposition

Lemma 1.27 shows that Der L contains the semisimple part and the nilpotent part of all its elements. When L is semisimple, Der $L = \operatorname{ad} L$. We can write every $\operatorname{ad} x \in \operatorname{ad} L$ uniquely as

$$\operatorname{ad} x = \operatorname{ad} x_s + \operatorname{ad} x_n,$$

where $x_s, x_n \in L$, $\operatorname{ad} x_s$ is semisimple, $\operatorname{ad} x_n$ is nilpotent, and $\operatorname{ad} x_s$ and $\operatorname{ad} x_n$ commute. Then $x = x_s + x_n$ and $[x_s, x_n] = 0$. This is called the **abstract Jordan decomposition** of x in L, and x_s (resp. x_n) is called the **semisimple part** (resp. **nilpotent part**) of x.

The abstract Jordan decomposition is perserved by direct sums (<u>exercise</u>), Lie algebra homomorphisms, and representations (to be proved in the next section).