
Chapter 2

Semisimple Lie Algebras

2.1 Killing form

2.1.1 Criterion for Semisimplicity

The Killing form of a Lie algebra L is a bilinear form κ : L× L→ F defined by:

κ(x, y) = Tr (adxad y) for x, y ∈ L.

The Killing form is

1. symmetric: κ(x, y) = κ(y, x), and

2. associative: in the sense that κ([x, y], z) = κ(x, [y, z]) (since Tr ([adx, ad y]ad z) = Tr (adx[ad y, ad z]).)

The radical of Killing form (or any symmetric bilinear form of L) is S = {x ∈ L | κ(x, y) =
0 for all y ∈ L}. Given a basis {x1, · · · , xn} of L, the dimension of radical is

dimS = n− rank
[
κ(xi, xj)

]
n×n .

We call κ nondegererate if dimS = 0, i.e., the matrix
[
κ(xi, xj)

]
n×n is nondegenerate.

3 the radical S of κ is an ideal: by associativity of κ, if x ∈ S and y, z ∈ L, then

κ([x, y], z) = κ(x, [y, z]) = 0 =⇒ [x, y] ∈ S.

Ex. Compute the matrix form of the Killing form κ of sl(2, F ) w.r.t. the basis {h, e, f}:

h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
.

Lem 2.1. Suppose a Lie algebra L has the Killing form κ, and I is an ideal of L. Then:

1. the Killing form of I is κI = κ|I×I ;

2. the orthogonal subspace I⊥ of I w.r.t. κ is also an ideal of L:

I⊥ := {x ∈ L | κ(x, y) = 0 for any y ∈ I}.

(Note that in general I ∩ I⊥ 6= 0.)
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Proof. For x, y ∈ I, adx (resp. ad y) maps L to I. Therefore,

κ(x, y) = Tr (adxad y) = Tr ((adx)|I(ad y)|I) = κ|I(x, y).

For any x ∈ I⊥, y ∈ L, and z ∈ I,

κ([x, y], z) = κ(x, [y, z]) = 0.

Therefore, I⊥ is also an ideal of L.

Corollary 1.29 implies that: (exercise)

a Lie algebra L is solvable iff the radical of its Killing form contains [L,L].

Now we develop a criterion for L to be semisimple, i.e., the maximal solvable ideal RadL = 0.

Thm 2.2. A Lie algebra L is semisimple iff its Killing form is nondegenerate.

Proof. If L is semisimple, then RadL = 0. Let S be the radical of κ. Then Tr (adxad y) = 0 for
any x ∈ S and y ∈ L (esp. for y ∈ [S, S]). By Corollary 1.29, S is solvable. Therefore, S = 0.

Conversely, suppose on the contrary, S = 0 but RadL 6= 0. Then the last nonzero term I in the
derived series of RadL is a nonzero abelian ideal of L (exercise). For any x ∈ I and y ∈ L, adxad y
sends L → L → I. So the image of (adxad y)2 is in [I, I] = 0. Therefore, (adxad y)2 = 0, which
implies that adxad y is nilpotent and κ(x, y) = Tr (adxad y) = 0. This shows that I ⊆ S = 0, a
contradiction. Hence RadL = 0.

Remark. The proof also shows that S ⊆ RadL. However, the converse need not hold.

Next we explore some applications of the Killing form.

2.1.2 Simple Ideals of Semisimple Lie Algebra

A Lie algebra L is a direct sum of ideals L1, · · · , Lt if L = L1 ⊕ · · · ⊕ Lt as vector spaces.
Obviously, [Li, Lj ] = 0 for i 6= j.

Thm 2.3. Let L be semisimple with Killing form κ. Then

1. L is a direct sum of some simple ideals: L = L1 ⊕ · · · ⊕ Lt.

2. The Killing form of Li is exactly κi = κ|Li×Li. There is an orthogonal direct sum κ =
κ1 ⊕ · · · ⊕ κt.

3. Every simple ideal of L coincides with one of the Li.

4. Every ideal I of L is a direct sum of some Li’s, which is semisimple. There is a direct sum
of ideals L = I ⊕ I⊥ w.r.t. the Killing form.

5. Every homomorphic image of L is semisimple and ismorphic to a direct sum of some Li’s.

6. L = [L,L].
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Proof. Let I be any ideal of L. Then I⊥ and I ∩ I⊥ are also ideals of L. By Cartan’s Criterion,
I ∩ I⊥ is solvable. Hence I ∩ I⊥ = 0 and L = I ⊕ I⊥ by dimension counting. Moreover, any ideal J
of I is also an ideal of L, and hence an orthogonal direct sum component of L w.r.t. κ. Therefore, L
can be decomposed into an orthogonal direct sum of indecomposable nonabelian ideals, aka. simple
ideals:

L = L1 ⊕ · · · ⊕ Lt, Li ⊥ Lj w.r.t. κ for i 6= j.

Claims 1 and 2 are proved.
If I is any ideal of L, then I = [I, L] = [I, L1]⊕ · · · ⊕ [I, Lt]. Each [I, Li] ⊆ I ∩ Li is either 0 or

Li. It immediately implies Claims 3, 4, and 5.
Finally,

[L,L] =
⊕
i

⊕
j

[Li, Lj ] =
⊕
i

[Li, Li] =
⊕
i

Li = L.

Remark. The study of semisimple Lie algebras can be done by exploring the simple Lie algebras.

2.1.3 Derivations

We have shown that adL is an ideal of DerL. When L is semisimple, it turns out that every
derivation of L is inner.

Thm 2.4. If L is semisimple, then adL = DerL.

Proof. A := adL is an ideal of D := DerL. So the Killing form κA is the restriction of κD to A×A.
Since L is semisimple, Z(L) = 0 and A ' L/Z(L) ' L. Therefore, κA is nondegenerate. There is
a direct sum of ideals D = A⊕A⊥ (w.r.t. the Killing form κD). For any δ ∈ A⊥ and x ∈ L,

0 = [δ, adx] = ad (δx) =⇒ δx = 0 for any x ∈ L.

Therefore, δ = 0, A⊥ = 0, and D = A.

Remark. When L is semisimple, the Lie algebra of AutL is DerL = adL. If G is a (real or
complex) connected Lie group whose Lie algebra L is semisimple, then the Lie algebra of Aut (G)
is exactly DerL = adL.

2.1.4 Abstract Jordan Decomposition

Lemma 1.27 shows that DerL contains the semisimple part and the nilpotent part of all its elements.
When L is semisimple, DerL = adL. We can write every adx ∈ adL uniquely as

adx = adxs + adxn,

where xs, xn ∈ L, adxs is semisimple, adxn is nilpotent, and adxs and adxn commute. Then
x = xs + xn and [xs, xn] = 0. This is called the abstract Jordan decomposition of x in L, and
xs (resp. xn) is called the semisimple part (resp. nilpotent part) of x.

The abstract Jordan decomposition is perserved by direct sums (exercise), Lie algebra homo-
morphisms, and representations (to be proved in the next section).


