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2.2 Complete reducibility of representations

In this section, all representations are finite dimensional. We will study a semisimple Lie algebra
L by means of its adjoint representation in later sections.
2.2.1 Representations and Modules

Def. Let L be a Lie algebra. A vector space V' endowed with an operation L x V. — V' (denoted
(z,v) = z.v or xv) is call an L-module if it satisfies the following arioms (a,b € F, x,y €
L, vyweV):

M1. (ax +by).v = a(z.v) + b(y.v),

M2. x.(av + bw) = a(z.v) + b(z.w),

MS3. [x,ylv =xyv—y.xw.

Prop 2.5. An L-module V' is equivalent to an L-representation p : L — gl(V') by means of:
x.v — p(x)(v) for xe L, veV.

Every L-submodule W of V' corresponds to a subrepresentation L — gl(W).

Ex. The adjoint representation ad : L — gl(V') establishes L as an L-module: x.y = ad z(y) = [z, y]
for x € L (Lie algebra), y € L (vector space). I is submodule of L iff I is an ideal of L.

Def. An L-module V (equiv. representation) is called irreducible if it has precisely two L-
submodules: itself and 0. The L-module V is called completely reducible if V' is a direct sum
of irreducible L-modules, or equivalently, if each L-submodule W of V' possesses a complement
L-submodule W' such that V.=W @& W' (exercise).

Ex. Let L be a Lie algebra.

1. Every one dimensional L-module is irreducible, but a zero dimensional L-module is not irre-
ducible;

2. L is simple iff L is an irreducible L-module, and L is semisimple iff L is completely reducible,
w.r.t. the adjoint representation of L. (exercise)

Def. A linear map of L-modules, ¢ : V — W, is called a homomorphism of L-modules if
d(xv) = x.¢(v) for any x € L and v € V. An isomorphism of L-modules associates with a pair
of equivalent representations of L.

Other than direct sums, new L-modules can be constructed from the dual, tensors, and homo-
morphisms (exercises: show that they each satisfies the axioms M1, M2, and M3 for L-modules):

1. Dual: Let V be an L-module. The dual space V* = Hom p(V, F') becomes an L-module
(called the dual or contragredient) such that forz € L, f e V¥, v €V,

(z.f)(v) = = f(z.v).

2. Tensor: Let V and W be L-modules. The tensor product space V ®@p W (or simply V @ W)
becomes an L-module such that for any x € L, v € V and w € W,

z.(vRW) =2V W+ VR r.W.
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3. Homomorphism and Endomorphism: Let V and W be L-modules. There is a standard
isomorphism of vector spaces ¥ : V* @ p W — Hom p(V, W) defined by:

U(§®@w)(v) = d(v)w, deVyi, weW, veV.
The isomorphism ¥ makes Hom (V, W) an L-module by:
(x.f)(v) =z.f(v) = f(z.v), x€L, fe Hom (V,W), ve V.
In particular, when W =V, then End (V) ~ V* ® V also becomes an L-module. (exercise)

The space of all bilinear forms on L is also an L-module (see Exercise 6.8 of Humphrey.)

2.2.2 Casimir element of a representation

Let L be semisimple, ¢ : L — gl(V) a faithful (i.e. 1-1) representation of L. Then the bilinear
form

B(z,y) == Tr (¢(z)d(y))

is symmetric, associative, and nondegenerate (similar to the Killing form where ¢ = ad ).
Fix a basis (x1,--- ,x,) of L; there is a unique dual basis (y1,- - ,y,) relative to 3, such that
B(zi,y;j) = 0i;. Define the Casimir element of ¢ by:

co = o(z)d(y;) € EndV.
=1

Lem 2.6. Suppose L is semisimple and ¢ : L — gl(V') is a faithful representation. Then the
Casimir element cg commutes with every endomorphism in ¢(L).

Proof. Given z € L, let [z,x;] = ) ajexy and [z,y;] = 3, bijy;. The symmetry and associativity
of B imply that

aji + by = B([z, 25, ) + Bz, i), w5) = B(yi, [, x5]) — B[y 2], ;) =0 Vi, j.
We show that ¢, commutes with every endomorphism in ¢(L), using the identity [X,YZ] =
[X,Y]Z +Y[X, Z] for X,Y,Z € EndV. For z € L,

[B(x), o] = Z[as(xm(mi)]cb(yi)+Z¢<xi>[¢<x>,¢<yi>]
= > aid(a) o) + Y bijo(xi)d(y;)
,J

= D (it bij)o (i) () = 0.

Therefore, ¢, commutes with ¢(L). O

When ¢ is an irreducible representation, we have ¢4 = dim L/ dim V' (a scalar in End V') due to
the following result and the fact that Trey = >0 | Tr (¢(z;)é(y;)) = n = dim L:

Thm 2.7 (Schur’s Lemma). Let ¢ : L — gl(V') be irreducible. Then the only endomorphism of V
commuting with all ¢(x) (r € L) are the scalars.
Proof. Suppose y € gl(V') commutes with matrices in ¢(L). Let A be an eigenvalue of y and V), the
eigenspace of y relative to A. For any x € L and v € V),

y(p(x).v) = ¢(x)(yv) = Ap(z)v =  ¢(xz).v € V.
In other words, V) is an L-submodule of V. Since V) # 0 and V is irreducible, we have V), = V.
Therefore, y = A is a scalar matrix. O
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2.2.3 Weyl’s Theorem

Lem 2.8. Let ¢ : L — gl(V') be a finite dimensional representation of a semisimple Lie algebra L.
Then ¢(L) C sl(V'). In particular, L acts trivially on any one dimensional L-module.

Proof. Since L is semisimple, we have ¢(L) = ¢([L, L]) C [¢(L), #(L)] C sl(V). O

Thm 2.9 (Weyl). Every finite dimensional representation ¢ : L — gl(V) of a semisimple Lie
algebra L is completely reducible, that is, ¢ is a direct sum of irreducible representations of L.

Proof. (exercise)It suffices to show that every L-submodule W of V processes a complementary
L-submodule X such that V =W ¢ X.
First we deal with the case where W is codimension one. There are two subcases:

1. W is irreducible: Assume that L acts faithfully on V' (otherwise, we replace L by L/Ker ¢).
Then L.W C W, and L acts trivially on the one-dimensional L-module V/W. The Casimir
element c := ¢y is a linear combination of products of elements ¢(x). Therefore, c(W) C W
and ¢ acts trivially on V/W. Moreover, ¢ commutes with ¢(L). For any = € L and v € Kerc,

c(zw) =cop(x)(v) = p(x)e(v) =0 = =z € Kere.

Hence Kerc is an L-submodule of V. The action of ¢ on the irreducible L-module W is a
nonzero scalar. Therefore, Ker ¢ has dimension one, and we have V = W & Ker ¢ as desired.

2. W is not irreducible: We apply induction on dim W. Let W’ C W be a nonzero L-submodule.
Then W/W' is a condimension one submodule of V/W’. By induction hypothesis, V/W' =
W/W'&W /W' where W /W' is a module with dimension one. Now W’ has codimension one
in W. By induction hypothesis, W = W @ X where X is a submodule of dimension one.
Then V=W @ X since WN X = 0.

Next, we consider a general L-submodule W. The space Hom (V, W) is an L-module. Denote

V = {f€Hom (V,W)| flw = a for some a € F},
W = {feHom((V,W)| flw =0} CV.

Both V and W are subspaces of Hom (V, W), and W has codimension one in V. For any = € L,
feV,andweW,

(x.f/)(w) =z.f(w) — f(z.w) = a(z.w) — a(z.w) = 0.

So L.V C W, and both V and W are L-submodules of Hom (V,W). By proceeding discussion, V
has a one-dimensional submodule (say, F'g where g : V. — W has g|lw = lw) complementary to
W. Then L acts trivially on Fg, so that 0 = (z.g)(v) = z.g(v) — g(z.v) for v € V. Therefore,
g:V — W is an L-module homomorphism, and Ker g is an L-submodule of V. Since g maps V
into W (so that dim Ker g > dim(V/W)), and g acts as 1y on W (so that W NKer g = 0), we have
V=Wa®Kerg. O

Ex. We know that every semisimple L is a direct sum of simple ideals: L = L1 & Lo & --- @ L.
Then the adjoint representation ad : L — gl(L) is decomposed into a direct sum of irreducible
representations: L = L1 @& Lo & --- @ Ly, since each simple ideal is irreducible w.r.t. the adjoint
action.
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2.2.4 Preservation of Jordan decomposition

A direct application of Weyl’s Theorem lies in the Jordan decomposition.

Thm 2.10. Let L C gl(V') be semisimple, V finite dimensional. Then L contains the semisimple
and nilpotent parts in gl(V') of all its elements, and the abstract and usual Jordan decompositions
in L coincide.

Proof. Let x € L be arbitrary, with Jordan decomposition z = x5 + z;,, in gl(V). We show that
Zs, Ty € L, which implies that the abstract and usual Jordan decompositions in L coincide (why?).
The inclusion homomorphism L < gl(V) makes V' an L-module. For any L-submodule W of V,
define

Ly :={y € gl(V) | y(W) C W and Tr (y|w) = 0}.

Then x € Ly and therefore x5, x, € Ly since x5 and x, are polynomials of x without constant
terms. Let

N i= N (L) = {y € al(V),| [y, L € L}.

Similarly, z € N implies that s, xz, € N. Let L’ be the intersection of N with all spaces Ly,. Then
L’ is an L-module via adjoint action, and L € L' ¢ N. We have x4, x, € L.

Next we show that L = L. Weyl’s theorem implies that L' = L & M for an L-submodule M.
Then [L,M] C [L,N]NM C LN M = 0. So every y € M commutes with L. However, Weyl’s
theorem implies that V' is a direct sum of irreducible L-submodules, and Schur’s Lemma shows
that y acts as a scalar on each irreducible L-submodule W so that y|y = 0 as y € Ly . Therefore,
y =0 and thus M = 0. We get x5, 2, € L' = L. O

More preservation properties of the Jordan decomposition are listed below.
Prop 2.11. Let L be a semisimple Lie algebra.

1. Direct sum: suppsose L = L1 ® --- @ Ly is a direct sum of ideals. Then the abs. Jordqn
decomposition of v = 3 _, 2 (x®) € L;) in L is exactly x = x5+ xy, where 3 = 34, 2,

Ty = Zle xg), and () = xgi) + xg) is the abs. Jordan decomposition of each 9 in L;.

2. Homomorphism: if ¢ : L — L' is a homomorphism between semisimple Lie algebras L and
L', and © = x4+ x,, is the abs. Jordan decomposition of x in L, then ¢(x) = ¢(xs) + ¢(xp)
is the abs. Jordan decomposition of ¢(x) in ¢(L) as well as in L'.

3. Representation: if ¢ : L — gl(V) is a finite dimensional representation of L, and x =
Xs + Ty s the abs. Jordan decomposition of x in L, then ¢(x) = ¢(xs) + ¢(xy,) is the Jordan
decomposition of ¢(x) in gl(V).

Proof. 1. (exercise in the last section.)

2. (L) ~ L/Ker ¢ where Ker¢ is an ideal of L. By complete reducibility of semisimple Lie
algebras, we have L ~ Ker ¢ & ¢(L). The abs. Jordan decomposition of ¢(x) in ¢(L) is then
o(z) = ¢(xs) + ¢(xy,) from part 1.

Now ¢(L) € L'. WLOG, we may assume that L C gl(V') for some finite dimensional V. Then

the abs. Jordan decompositions in ¢(L) and L’ both coincide with the Jordan decomposition
in gl(V). Therefore, ¢(z) = ¢(xs) + ¢(zy) is the abs. Jordan decomposition of ¢(z) in L'

3. It follows from part 2 and the proceeding theorem. O
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2.2.5 Reductive Lie Algebras

A Lie algebra L for which Rad L = Z(L) is called reductive. (Examples: L abelian, L semisimple,
L =gl(n,F).)

Thm 2.12. The following are equivalent for a Lie algebra L:
1. L is reductive.

2.L=Z(L)®[L, L] =Z(L)® L1 &---® Ly where [L,L] is semisimple, and Ly,---,L; are
simple ideals of L.

3. L is a completely reducible ad L-module.
Proof.

1= 3: If Lisreductive, thenad L ~ L/Z(L) = L/Rad L is semisimple. Weyl Theorem implies that L
is a completely reducible ad L-module induced by the inclusion homomorphism ad L — gl(L).

3 = 2: Suppose L is a completely reducible ad L-module, say L = @leLi where each L; is a simple
ad L-submodule. For any L;, if dim L; = 1, then ad L acts trivially on L;, so that L; C Z(L);
if dim L; > 1, then L; is a simple ideal of L and ad L acts faithfully on L;, so that L; =
ad L(L;) C [L, L]. Overall, Z(L) is the direct sum of those L; with dim L; = 1, [L, L] is the
direct sum of those L; with dim L; > 1, and [L, L] ~ L/Z(L) is semisimple.

2 = 1: It is obvious. O
For a reductive Lie algebra L = Z(L) & [L, L], its Killing form has radical S = Z(L), and
KL = kz(r) ® KL, = 0lz(L) ® KiL,1)-
The derivation algebra of a reductive L is (exercise)

Der L = End (Z(L)) ® ad L.



