2.2 Complete reducibility of representations

In this section, all representations are finite dimensional. We will study a semisimple Lie algebra L by means of its adjoint representation in later sections.

2.2.1 Representations and Modules

Def. Let L be a Lie algebra. A vector space V endowed with an operation $L \times V \rightarrow V$ (denoted $(x, v) \mapsto x . v$ or $x v)$ is call an L-module if it satisfies the following axioms ($a, b \in F, x, y \in$ $L, v, w \in V)$:

$$
\begin{aligned}
& \text { M1. }(a x+b y) \cdot v=a(x \cdot v)+b(y \cdot v), \\
& \text { M2. } x \cdot(a v+b w)=a(x \cdot v)+b(x \cdot w), \\
& \text { M3. }[x, y] \cdot v=x \cdot y \cdot v-y \cdot x \cdot v .
\end{aligned}
$$

Prop 2.5. An L-module V is equivalent to an L-representation $\rho: L \rightarrow \mathfrak{g l}(V)$ by means of:

$$
x . v \longleftrightarrow \rho(x)(v) \quad \text { for } x \in L, v \in V .
$$

Every L-submodule W of V corresponds to a subrepresentation $L \rightarrow \mathfrak{g l}(W)$.
Ex. The adjoint representation ad : $L \rightarrow \mathfrak{g l}(V)$ establishes L as an L-module: $x . y=\operatorname{ad} x(y)=[x, y]$ for $x \in L$ (Lie algebra), $y \in L$ (vector space). I is submodule of L iff I is an ideal of L.

Def. An L-module V (equiv. representation) is called irreducible if it has precisely two L submodules: itself and 0 . The L-module V is called completely reducible if V is a direct sum of irreducible L-modules, or equivalently, if each L-submodule W of V possesses a complement L-submodule W^{\prime} such that $V=W \oplus W^{\prime}$ (exercise).
Ex. Let L be a Lie algebra.

1. Every one dimensional L-module is irreducible, but a zero dimensional L-module is not irreducible;
2. L is simple iff L is an irreducible L-module, and L is semisimple iff L is completely reducible, w.r.t. the adjoint representation of L. (exercise)

Def. A linear map of L-modules, $\phi: V \rightarrow W$, is called a homomorphism of L-modules if $\phi(x . v)=x . \phi(v)$ for any $x \in L$ and $v \in V . A n$ isomorphism of L-modules associates with a pair of equivalent representations of L.

Other than direct sums, new L-modules can be constructed from the dual, tensors, and homomorphisms (exercises: show that they each satisfies the axioms M1, M2, and M3 for L-modules):

1. Dual: Let V be an L-module. The dual space $V^{*}=\operatorname{Hom}_{F}(V, F)$ becomes an L-module (called the dual or contragredient) such that for $x \in L, f \in V^{*}, v \in V$,

$$
(x . f)(v)=-f(x . v)
$$

2. Tensor: Let V and W be L-modules. The tensor product space $V \otimes_{F} W$ (or simply $V \otimes W$) becomes an L-module such that for any $x \in L, v \in V$ and $w \in W$,

$$
x .(v \otimes w)=x . v \otimes w+v \otimes x . w .
$$

3. Homomorphism and Endomorphism: Let V and W be L-modules. There is a standard isomorphism of vector spaces $\Psi: V^{*} \otimes_{F} W \rightarrow \operatorname{Hom}_{F}(V, W)$ defined by:

$$
\Psi(\delta \otimes w)(v):=\delta(v) w, \quad \delta \in V^{*}, w \in W, v \in V
$$

The isomorphism Ψ makes $\operatorname{Hom}(V, W)$ an L-module by:

$$
(x . f)(v)=x . f(v)-f(x . v), \quad x \in L, f \in \operatorname{Hom}(V, W), v \in V .
$$

In particular, when $W=V$, then $\operatorname{End}(V) \simeq V^{*} \otimes V$ also becomes an L-module. (exercise)
The space of all bilinear forms on L is also an L-module (see Exercise 6.8 of Humphrey.)

2.2.2 Casimir element of a representation

Let L be semisimple, $\phi: L \rightarrow \mathfrak{g l}(V)$ a faithful (i.e. 1-1) representation of L. Then the bilinear form

$$
\beta(x, y):=\operatorname{Tr}(\phi(x) \phi(y))
$$

is symmetric, associative, and nondegenerate (similar to the Killing form where $\phi=\mathrm{ad}$).
Fix a basis $\left(x_{1}, \cdots, x_{n}\right)$ of L; there is a unique dual basis $\left(y_{1}, \cdots, y_{n}\right)$ relative to β, such that $\beta\left(x_{i}, y_{j}\right)=\delta_{i j}$. Define the Casimir element of ϕ by:

$$
c_{\phi}:=\sum_{i=1}^{n} \phi\left(x_{i}\right) \phi\left(y_{i}\right) \quad \in \operatorname{End} V .
$$

Lem 2.6. Suppose L is semisimple and $\phi: L \rightarrow \mathfrak{g l}(V)$ is a faithful representation. Then the Casimir element c_{ϕ} commutes with every endomorphism in $\phi(L)$.
Proof. Given $x \in L$, let $\left[x, x_{j}\right]=\sum_{k} a_{j k} x_{k}$ and $\left[x, y_{i}\right]=\sum_{j} b_{i j} y_{j}$. The symmetry and associativity of β imply that

$$
a_{j i}+b_{i j}=\beta\left(\left[x, x_{j}\right], y_{i}\right)+\beta\left(\left[x, y_{i}\right], x_{j}\right)=\beta\left(y_{i},\left[x, x_{j}\right]\right)-\beta\left(\left[y_{i}, x\right], x_{j}\right)=0 \quad \forall i, j
$$

We show that c_{ϕ} commutes with every endomorphism in $\phi(L)$, using the identity $[X, Y Z]=$ $[X, Y] Z+Y[X, Z]$ for $X, Y, Z \in \operatorname{End} V$. For $x \in L$,

$$
\begin{aligned}
{\left[\phi(x), c_{\phi}\right] } & =\sum_{i}\left[\phi(x), \phi\left(x_{i}\right)\right] \phi\left(y_{i}\right)+\sum_{i} \phi\left(x_{i}\right)\left[\phi(x), \phi\left(y_{i}\right)\right] \\
& =\sum_{i, j} a_{i j} \phi\left(x_{j}\right) \phi\left(y_{i}\right)+\sum_{i, j} b_{i j} \phi\left(x_{i}\right) \phi\left(y_{j}\right) \\
& =\sum_{i, j}\left(a_{j i}+b_{i j}\right) \phi\left(x_{i}\right) \phi\left(y_{j}\right)=0 .
\end{aligned}
$$

Therefore, c_{ϕ} commutes with $\phi(L)$.
When ϕ is an irreducible representation, we have $c_{\phi}=\operatorname{dim} L / \operatorname{dim} V$ (a scalar in End V) due to the following result and the fact that $\operatorname{Tr} c_{\phi}=\sum_{i=1}^{n} \operatorname{Tr}\left(\phi\left(x_{i}\right) \phi\left(y_{i}\right)\right)=n=\operatorname{dim} L$:
Thm 2.7 (Schur's Lemma). Let $\phi: L \rightarrow \mathfrak{g l}(V)$ be irreducible. Then the only endomorphism of V commuting with all $\phi(x)(x \in L)$ are the scalars.
Proof. Suppose $y \in \mathfrak{g l}(V)$ commutes with matrices in $\phi(L)$. Let λ be an eigenvalue of y and V_{λ} the eigenspace of y relative to λ. For any $x \in L$ and $v \in V_{\lambda}$,

$$
y(\phi(x) \cdot v)=\phi(x)(y \cdot v)=\lambda \phi(x) \cdot v \quad \Longrightarrow \quad \phi(x) \cdot v \in V_{\lambda} .
$$

In other words, V_{λ} is an L-submodule of V. Since $V_{\lambda} \neq 0$ and V is irreducible, we have $V_{\lambda}=V$. Therefore, $y=\lambda$ is a scalar matrix.

2.2.3 Weyl's Theorem

Lem 2.8. Let $\phi: L \rightarrow \mathfrak{g l}(V)$ be a finite dimensional representation of a semisimple Lie algebra L. Then $\phi(L) \subset \mathfrak{s l}(V)$. In particular, L acts trivially on any one dimensional L-module.

Proof. Since L is semisimple, we have $\phi(L)=\phi([L, L]) \subset[\phi(L), \phi(L)] \subset \mathfrak{s l}(V)$.
Thm 2.9 (Weyl). Every finite dimensional representation $\phi: L \rightarrow \mathfrak{g l}(V)$ of a semisimple Lie algebra L is completely reducible, that is, ϕ is a direct sum of irreducible representations of L.

Proof. (exercise)It suffices to show that every L-submodule W of V processes a complementary L-submodule X such that $V=W \oplus X$.

First we deal with the case where W is codimension one. There are two subcases:

1. W is irreducible: Assume that L acts faithfully on V (otherwise, we replace L by $L / \operatorname{Ker} \phi$). Then $L . W \subset W$, and L acts trivially on the one-dimensional L-module V / W. The Casimir element $c:=c_{\phi}$ is a linear combination of products of elements $\phi(x)$. Therefore, $c(W) \subset W$ and c acts trivially on V / W. Moreover, c commutes with $\phi(L)$. For any $x \in L$ and $v \in \operatorname{Ker} c$,

$$
c(x . v)=c \phi(x)(v)=\phi(x) c(v)=0 \quad \Rightarrow \quad x . v \in \operatorname{Ker} c .
$$

Hence $\operatorname{Ker} c$ is an L-submodule of V. The action of c on the irreducible L-module W is a nonzero scalar. Therefore, $\operatorname{Ker} c$ has dimension one, and we have $V=W \oplus \operatorname{Ker} c$ as desired.
2. W is not irreducible: We apply induction on $\operatorname{dim} W$. Let $W^{\prime} \subset W$ be a nonzero L-submodule. Then W / W^{\prime} is a condimension one submodule of V / W^{\prime}. By induction hypothesis, $V / W^{\prime}=$ $W / W^{\prime} \oplus \widetilde{W} / W^{\prime}$ where $\widetilde{W} / W^{\prime}$ is a module with dimension one. Now W^{\prime} has codimension one in \widetilde{W}. By induction hypothesis, $\widetilde{W}=W^{\prime} \oplus X$ where X is a submodule of dimension one. Then $V=W \oplus X$ since $W \cap X=0$.

Next, we consider a general L-submodule W. The space $\operatorname{Hom}(V, W)$ is an L-module. Denote

$$
\begin{aligned}
\mathcal{V} & =\left\{f \in \operatorname{Hom}(V, W)|f|_{W}=a \text { for some } a \in F\right\}, \\
\mathcal{W} & =\left\{f \in \operatorname{Hom}(V, W)|f|_{W}=0\right\} \quad \subset \mathcal{V} .
\end{aligned}
$$

Both \mathcal{V} and \mathcal{W} are subspaces of $\operatorname{Hom}(V, W)$, and \mathcal{W} has codimension one in \mathcal{V}. For any $x \in L$, $f \in \mathcal{V}$, and $w \in W$,

$$
(x . f)(w)=x . f(w)-f(x . w)=a(x . w)-a(x . w)=0 .
$$

So $L . \mathcal{V} \subset \mathcal{W}$, and both \mathcal{V} and \mathcal{W} are L-submodules of $\operatorname{Hom}(V, W)$. By proceeding discussion, \mathcal{V} has a one-dimensional submodule (say, $F g$ where $g: V \rightarrow W$ has $\left.g\right|_{W}=1_{W}$) complementary to \mathcal{W}. Then L acts trivially on $F g$, so that $0=(x . g)(v)=x . g(v)-g(x . v)$ for $v \in V$. Therefore, $g: V \rightarrow W$ is an L-module homomorphism, and $\operatorname{Ker} g$ is an L-submodule of V. Since g maps V into W (so that $\operatorname{dim} \operatorname{Ker} g \geq \operatorname{dim}(V / W)$), and g acts as 1_{W} on W (so that $W \cap \operatorname{Ker} g=0$), we have $V=W \oplus \operatorname{Ker} g$.

Ex. We know that every semisimple L is a direct sum of simple ideals: $L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{t}$. Then the adjoint representation ad :L $\quad \mathfrak{g l}(L)$ is decomposed into a direct sum of irreducible representations: $L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{t}$, since each simple ideal is irreducible w.r.t. the adjoint action.

2.2.4 Preservation of Jordan decomposition

A direct application of Weyl's Theorem lies in the Jordan decomposition.
Thm 2.10. Let $L \subset \mathfrak{g l}(V)$ be semisimple, V finite dimensional. Then L contains the semisimple and nilpotent parts in $\mathfrak{g l}(V)$ of all its elements, and the abstract and usual Jordan decompositions in L coincide.

Proof. Let $x \in L$ be arbitrary, with Jordan decomposition $x=x_{s}+x_{n}$ in $\mathfrak{g l}(V)$. We show that $x_{s}, x_{n} \in L$, which implies that the abstract and usual Jordan decompositions in L coincide (why?). The inclusion homomorphism $L \hookrightarrow \mathfrak{g l}(V)$ makes V an L-module. For any L-submodule W of V, define

$$
L_{W}:=\left\{y \in \mathfrak{g l}(V) \mid y(W) \subset W \text { and } \operatorname{Tr}\left(\left.y\right|_{W}\right)=0\right\}
$$

Then $x \in L_{W}$ and therefore $x_{s}, x_{n} \in L_{W}$ since x_{s} and x_{n} are polynomials of x without constant terms. Let

$$
N:=N_{\mathfrak{g l}(V)}(L)=\{y \in \mathfrak{g l}(V), \mid[y, L] \subset L\} .
$$

Similarly, $x \in N$ implies that $x_{s}, x_{n} \in N$. Let L^{\prime} be the intersection of N with all spaces L_{W}. Then L^{\prime} is an L-module via adjoint action, and $L \subset L^{\prime} \subset N$. We have $x_{s}, x_{n} \in L^{\prime}$.

Next we show that $L=L^{\prime}$. Weyl's theorem implies that $L^{\prime}=L \oplus M$ for an L-submodule M. Then $[L, M] \subset[L, N] \cap M \subset L \cap M=0$. So every $y \in M$ commutes with L. However, Weyl's theorem implies that V is a direct sum of irreducible L-submodules, and Schur's Lemma shows that y acts as a scalar on each irreducible L-submodule W so that $\left.y\right|_{W}=0$ as $y \in L_{W}$. Therefore, $y=0$ and thus $M=0$. We get $x_{s}, x_{n} \in L^{\prime}=L$.

More preservation properties of the Jordan decomposition are listed below.
Prop 2.11. Let L be a semisimple Lie algebra.

1. Direct sum: suppsose $L=L_{1} \oplus \cdots \oplus L_{t}$ is a direct sum of ideals. Then the abs. Jordan decomposition of $x=\sum_{i=1}^{t} x^{(i)}\left(x^{(i)} \in L_{i}\right)$ in L is exactly $x=x_{s}+x_{n}$, where $x_{s}=\sum_{i=1}^{t} x_{s}^{(i)}$, $x_{n}=\sum_{i=1}^{t} x_{n}^{(i)}$, and $x^{(i)}=x_{s}^{(i)}+x_{n}^{(i)}$ is the abs. Jordan decomposition of each $x^{(i)}$ in L_{i}.
2. Homomorphism: if $\phi: L \rightarrow L^{\prime}$ is a homomorphism between semisimple Lie algebras L and L^{\prime}, and $x=x_{s}+x_{n}$ is the abs. Jordan decomposition of x in L, then $\phi(x)=\phi\left(x_{s}\right)+\phi\left(x_{n}\right)$ is the abs. Jordan decomposition of $\phi(x)$ in $\phi(L)$ as well as in L^{\prime}.
3. Representation: if $\phi: L \rightarrow \mathfrak{g l}(V)$ is a finite dimensional representation of L, and $x=$ $x_{s}+x_{n}$ is the abs. Jordan decomposition of x in L, then $\phi(x)=\phi\left(x_{s}\right)+\phi\left(x_{n}\right)$ is the Jordan decomposition of $\phi(x)$ in $\mathfrak{g l}(V)$.
Proof. 1. (exercise in the last section.)
4. $\phi(L) \simeq L / \operatorname{Ker} \phi$ where $\operatorname{Ker} \phi$ is an ideal of L. By complete reducibility of semisimple Lie algebras, we have $L \simeq \operatorname{Ker} \phi \oplus \phi(L)$. The abs. Jordan decomposition of $\phi(x)$ in $\phi(L)$ is then $\phi(x)=\phi\left(x_{s}\right)+\phi\left(x_{n}\right)$ from part 1 .
Now $\phi(L) \subset L^{\prime}$. WLOG, we may assume that $L \subset \mathfrak{g l}(V)$ for some finite dimensional V. Then the abs. Jordan decompositions in $\phi(L)$ and L^{\prime} both coincide with the Jordan decomposition in $\mathfrak{g l}(V)$. Therefore, $\phi(x)=\phi\left(x_{s}\right)+\phi\left(x_{n}\right)$ is the abs. Jordan decomposition of $\phi(x)$ in L^{\prime}.
5. It follows from part 2 and the proceeding theorem.

2.2.5 Reductive Lie Algebras

A Lie algebra L for which $\operatorname{Rad} L=Z(L)$ is called reductive. (Examples: L abelian, L semisimple, $L=\mathfrak{g l}(n, F)$.)

Thm 2.12. The following are equivalent for a Lie algebra L:

1. L is reductive.
2. $L=Z(L) \oplus[L, L]=Z(L) \oplus L_{1} \oplus \cdots \oplus L_{t}$ where $[L, L]$ is semisimple, and L_{1}, \cdots, L_{t} are simple ideals of L.
3. L is a completely reducible ad L-module.

Proof.
$1 \Rightarrow 3$: If L is reductive, then ad $L \simeq L / Z(L)=L / \operatorname{Rad} L$ is semisimple. Weyl Theorem implies that L is a completely reducible ad L-module induced by the inclusion homomorphism ad $L \hookrightarrow \mathfrak{g l}(L)$.
$3 \Rightarrow 2$: Suppose L is a completely reducible ad L-module, say $L=\oplus_{i=1}^{k} L_{i}$ where each L_{i} is a simple $\operatorname{ad} L$-submodule. For any L_{i}, if $\operatorname{dim} L_{i}=1$, then ad L acts trivially on L_{i}, so that $L_{i} \subset Z(L)$; if $\operatorname{dim} L_{i}>1$, then L_{i} is a simple ideal of L and $\operatorname{ad} L$ acts faithfully on L_{i}, so that $L_{i}=$ $\operatorname{ad} L\left(L_{i}\right) \subset[L, L]$. Overall, $Z(L)$ is the direct sum of those L_{i} with $\operatorname{dim} L_{i}=1,[L, L]$ is the direct sum of those L_{i} with $\operatorname{dim} L_{i}>1$, and $[L, L] \simeq L / Z(L)$ is semisimple.
$2 \Rightarrow 1$: It is obvious.
For a reductive Lie algebra $L=Z(L) \oplus[L, L]$, its Killing form has radical $S=Z(L)$, and

$$
\kappa_{L}=\kappa_{Z(L)} \oplus \kappa_{[L, L]}=\left.0\right|_{Z(L)} \oplus \kappa_{[L, L]} .
$$

The derivation algebra of a reductive L is (exercise)

$$
\operatorname{Der} L=\operatorname{End}(Z(L)) \oplus \operatorname{ad} L
$$

