2.2 Complete reducibility of representations

In this section, all representations are finite dimensional. We will study a semisimple Lie algebra L by means of its adjoint representation in later sections.

2.2.1 Representations and Modules

Def. Let L be a Lie algebra. A vector space V endowed with an operation $L \times V \to V$ (denoted $(x, v) \mapsto x.v$ or xv) is call an L-module if it satisfies the following axioms $(a, b \in F, x, y \in L, v, w \in V)$:

- M1. (ax + by).v = a(x.v) + b(y.v),
- M2. x.(av + bw) = a(x.v) + b(x.w),
- M3. [x, y].v = x.y.v y.x.v.

Prop 2.5. An L-module V is equivalent to an L-representation $\rho: L \to \mathfrak{gl}(V)$ by means of:

 $x.v \longleftrightarrow \rho(x)(v)$ for $x \in L, v \in V$.

Every L-submodule W of V corresponds to a subrepresentation $L \to \mathfrak{gl}(W)$.

Ex. The adjoint representation $\operatorname{ad} : L \to \mathfrak{gl}(V)$ establishes L as an L-module: $x.y = \operatorname{ad} x(y) = [x, y]$ for $x \in L$ (Lie algebra), $y \in L$ (vector space). I is submodule of L iff I is an ideal of L.

Def. An L-module V (equiv. representation) is called **irreducible** if it has precisely two L-submodules: itself and 0. The L-module V is called **completely reducible** if V is a direct sum of irreducible L-modules, or equivalently, if each L-submodule W of V possesses a complement L-submodule W' such that $V = W \oplus W'$ (exercise).

Ex. Let L be a Lie algebra.

- 1. Every one dimensional L-module is irreducible, but a zero dimensional L-module is not irreducible;
- 2. L is simple iff L is an irreducible L-module, and L is semisimple iff L is completely reducible, w.r.t. the adjoint representation of L. (exercise)

Def. A linear map of L-modules, $\phi : V \to W$, is called a homomorphism of L-modules if $\phi(x.v) = x.\phi(v)$ for any $x \in L$ and $v \in V$. An isomorphism of L-modules associates with a pair of equivalent representations of L.

Other than direct sums, new L-modules can be constructed from the dual, tensors, and homomorphisms (exercises: show that they each satisfies the axioms M1, M2, and M3 for L-modules):

1. Dual: Let V be an L-module. The dual space $V^* = \text{Hom}_F(V, F)$ becomes an L-module (called the **dual** or **contragredient**) such that for $x \in L$, $f \in V^*$, $v \in V$,

$$(x.f)(v) = -f(x.v)$$

2. Tensor: Let V and W be L-modules. The tensor product space $V \otimes_F W$ (or simply $V \otimes W$) becomes an L-module such that for any $x \in L$, $v \in V$ and $w \in W$,

$$x.(v\otimes w) = x.v\otimes w + v\otimes x.w.$$

3. Homomorphism and Endomorphism: Let V and W be L-modules. There is a standard isomorphism of vector spaces $\Psi: V^* \otimes_F W \to \operatorname{Hom}_F(V, W)$ defined by:

$$\Psi(\delta \otimes w)(v) := \delta(v)w, \qquad \delta \in V^*, \ w \in W, \ v \in V.$$

The isomorphism Ψ makes Hom (V, W) an *L*-module by:

$$(x.f)(v) = x.f(v) - f(x.v), \qquad x \in L, \ f \in \operatorname{Hom}(V,W), \ v \in V.$$

In particular, when W = V, then End $(V) \simeq V^* \otimes V$ also becomes an *L*-module. (exercise)

The space of all bilinear forms on L is also an L-module (see Exercise 6.8 of Humphrey.)

2.2.2 Casimir element of a representation

Let L be semisimple, $\phi : L \to \mathfrak{gl}(V)$ a **faithful** (i.e. 1-1) representation of L. Then the bilinear form

$$\beta(x,y) := \operatorname{Tr}(\phi(x)\phi(y))$$

is symmetric, associative, and nondegenerate (similar to the Killing form where $\phi = ad$).

Fix a basis (x_1, \dots, x_n) of L; there is a unique dual basis (y_1, \dots, y_n) relative to β , such that $\beta(x_i, y_j) = \delta_{ij}$. Define the **Casimir element of** ϕ by:

$$c_{\phi} := \sum_{i=1}^{n} \phi(x_i) \phi(y_i) \in \operatorname{End} V$$

Lem 2.6. Suppose L is semisimple and $\phi : L \to \mathfrak{gl}(V)$ is a faithful representation. Then the Casimir element c_{ϕ} commutes with every endomorphism in $\phi(L)$.

Proof. Given $x \in L$, let $[x, x_j] = \sum_k a_{jk} x_k$ and $[x, y_i] = \sum_j b_{ij} y_j$. The symmetry and associativity of β imply that

$$a_{ji} + b_{ij} = \beta([x, x_j], y_i) + \beta([x, y_i], x_j) = \beta(y_i, [x, x_j]) - \beta([y_i, x], x_j) = 0 \qquad \forall i, j \in [0, \infty]$$

We show that c_{ϕ} commutes with every endomorphism in $\phi(L)$, using the identity [X, YZ] = [X, Y]Z + Y[X, Z] for $X, Y, Z \in \text{End } V$. For $x \in L$,

$$\begin{aligned} [\phi(x), c_{\phi}] &= \sum_{i} [\phi(x), \phi(x_{i})] \phi(y_{i}) + \sum_{i} \phi(x_{i}) [\phi(x), \phi(y_{i})] \\ &= \sum_{i,j} a_{ij} \phi(x_{j}) \phi(y_{i}) + \sum_{i,j} b_{ij} \phi(x_{i}) \phi(y_{j}) \\ &= \sum_{i,j} (a_{ji} + b_{ij}) \phi(x_{i}) \phi(y_{j}) = 0. \end{aligned}$$

Therefore, c_{ϕ} commutes with $\phi(L)$.

When ϕ is an irreducible representation, we have $c_{\phi} = \dim L / \dim V$ (a scalar in End V) due to the following result and the fact that $\operatorname{Tr} c_{\phi} = \sum_{i=1}^{n} \operatorname{Tr} (\phi(x_i)\phi(y_i)) = n = \dim L$:

Thm 2.7 (Schur's Lemma). Let $\phi : L \to \mathfrak{gl}(V)$ be irreducible. Then the only endomorphism of V commuting with all $\phi(x)$ ($x \in L$) are the scalars.

Proof. Suppose $y \in \mathfrak{gl}(V)$ commutes with matrices in $\phi(L)$. Let λ be an eigenvalue of y and V_{λ} the eigenspace of y relative to λ . For any $x \in L$ and $v \in V_{\lambda}$,

$$y(\phi(x).v) = \phi(x)(y.v) = \lambda\phi(x).v \implies \phi(x).v \in V_{\lambda}.$$

In other words, V_{λ} is an *L*-submodule of *V*. Since $V_{\lambda} \neq 0$ and *V* is irreducible, we have $V_{\lambda} = V$. Therefore, $y = \lambda$ is a scalar matrix.

2.2.3 Weyl's Theorem

Lem 2.8. Let $\phi : L \to \mathfrak{gl}(V)$ be a finite dimensional representation of a semisimple Lie algebra L. Then $\phi(L) \subset \mathfrak{sl}(V)$. In particular, L acts trivially on any one dimensional L-module.

Proof. Since L is semisimple, we have $\phi(L) = \phi([L, L]) \subset [\phi(L), \phi(L)] \subset \mathfrak{sl}(V)$.

Thm 2.9 (Weyl). Every finite dimensional representation $\phi : L \to \mathfrak{gl}(V)$ of a semisimple Lie algebra L is completely reducible, that is, ϕ is a direct sum of irreducible representations of L.

Proof. (<u>exercise</u>) It suffices to show that every *L*-submodule *W* of *V* processes a complementary *L*-submodule *X* such that $V = W \oplus X$.

First we deal with the case where W is codimension one. There are two subcases:

1. W is irreducible: Assume that L acts faithfully on V (otherwise, we replace L by $L/\operatorname{Ker} \phi$). Then $L.W \subset W$, and L acts trivially on the one-dimensional L-module V/W. The Casimir element $c := c_{\phi}$ is a linear combination of products of elements $\phi(x)$. Therefore, $c(W) \subset W$ and c acts trivially on V/W. Moreover, c commutes with $\phi(L)$. For any $x \in L$ and $v \in \operatorname{Ker} c$,

$$c(x.v) = c\phi(x)(v) = \phi(x)c(v) = 0 \quad \Rightarrow \quad x.v \in \operatorname{Ker} c.$$

Hence Ker c is an L-submodule of V. The action of c on the irreducible L-module W is a nonzero scalar. Therefore, Ker c has dimension one, and we have $V = W \oplus \text{Ker } c$ as desired.

2. W is not irreducible: We apply induction on dim W. Let $W' \subset W$ be a nonzero L-submodule. Then W/W' is a condimension one submodule of V/W'. By induction hypothesis, $V/W' = W/W' \oplus \widetilde{W}/W'$ where \widetilde{W}/W' is a module with dimension one. Now W' has codimension one in \widetilde{W} . By induction hypothesis, $\widetilde{W} = W' \oplus X$ where X is a submodule of dimension one. Then $V = W \oplus X$ since $W \cap X = 0$.

Next, we consider a general L-submodule W. The space Hom (V, W) is an L-module. Denote

$$\mathcal{V} = \{ f \in \operatorname{Hom}(V, W) \mid f|_W = a \text{ for some } a \in F \}, \\ \mathcal{W} = \{ f \in \operatorname{Hom}(V, W) \mid f|_W = 0 \} \subset \mathcal{V}.$$

Both \mathcal{V} and \mathcal{W} are subspaces of Hom (V, W), and \mathcal{W} has codimension one in \mathcal{V} . For any $x \in L$, $f \in \mathcal{V}$, and $w \in W$,

$$(x.f)(w) = x.f(w) - f(x.w) = a(x.w) - a(x.w) = 0.$$

So $L.\mathcal{V} \subset \mathcal{W}$, and both \mathcal{V} and \mathcal{W} are *L*-submodules of Hom (V, W). By proceeding discussion, \mathcal{V} has a one-dimensional submodule (say, Fg where $g: V \to W$ has $g|_W = 1_W$) complementary to \mathcal{W} . Then *L* acts trivially on Fg, so that 0 = (x.g)(v) = x.g(v) - g(x.v) for $v \in V$. Therefore, $g: V \to W$ is an *L*-module homomorphism, and Ker *g* is an *L*-submodule of *V*. Since *g* maps *V* into *W* (so that dim Ker $g \ge \dim(V/W)$), and *g* acts as 1_W on *W* (so that $W \cap \text{Ker } g = 0$), we have $V = W \oplus \text{Ker } g$.

Ex. We know that every semisimple L is a direct sum of simple ideals: $L = L_1 \oplus L_2 \oplus \cdots \oplus L_t$. Then the adjoint representation $\operatorname{ad} : L \to \mathfrak{gl}(L)$ is decomposed into a direct sum of irreducible representations: $L = L_1 \oplus L_2 \oplus \cdots \oplus L_t$, since each simple ideal is irreducible w.r.t. the adjoint action.

2.2.4 Preservation of Jordan decomposition

A direct application of Weyl's Theorem lies in the Jordan decomposition.

Thm 2.10. Let $L \subset \mathfrak{gl}(V)$ be semisimple, V finite dimensional. Then L contains the semisimple and nilpotent parts in $\mathfrak{gl}(V)$ of all its elements, and the abstract and usual Jordan decompositions in L coincide.

Proof. Let $x \in L$ be arbitrary, with Jordan decomposition $x = x_s + x_n$ in $\mathfrak{gl}(V)$. We show that $x_s, x_n \in L$, which implies that the abstract and usual Jordan decompositions in L coincide (why?). The inclusion homomorphism $L \hookrightarrow \mathfrak{gl}(V)$ makes V an L-module. For any L-submodule W of V, define

$$L_W := \{ y \in \mathfrak{gl}(V) \mid y(W) \subset W \text{ and } \operatorname{Tr}(y|_W) = 0 \}.$$

Then $x \in L_W$ and therefore $x_s, x_n \in L_W$ since x_s and x_n are polynomials of x without constant terms. Let

$$N := N_{\mathfrak{gl}(V)}(L) = \{ y \in \mathfrak{gl}(V), | [y, L] \subset L \}.$$

Similarly, $x \in N$ implies that $x_s, x_n \in N$. Let L' be the intersection of N with all spaces L_W . Then L' is an L-module via adjoint action, and $L \subset L' \subset N$. We have $x_s, x_n \in L'$.

Next we show that L = L'. Weyl's theorem implies that $L' = L \oplus M$ for an L-submodule M. Then $[L, M] \subset [L, N] \cap M \subset L \cap M = 0$. So every $y \in M$ commutes with L. However, Weyl's theorem implies that V is a direct sum of irreducible L-submodules, and Schur's Lemma shows that y acts as a scalar on each irreducible L-submodule W so that $y|_W = 0$ as $y \in L_W$. Therefore, y = 0 and thus M = 0. We get $x_s, x_n \in L' = L$.

More preservation properties of the Jordan decomposition are listed below.

Prop 2.11. Let L be a semisimple Lie algebra.

- 1. Direct sum: suppose $L = L_1 \oplus \cdots \oplus L_t$ is a direct sum of ideals. Then the abs. Jordan decomposition of $x = \sum_{i=1}^{t} x^{(i)}$ $(x^{(i)} \in L_i)$ in L is exactly $x = x_s + x_n$, where $x_s = \sum_{i=1}^{t} x_s^{(i)}$, $x_n = \sum_{i=1}^{t} x_n^{(i)}$, and $x^{(i)} = x_s^{(i)} + x_n^{(i)}$ is the abs. Jordan decomposition of each $x^{(i)}$ in L_i .
- 2. Homomorphism: if $\phi : L \to L'$ is a homomorphism between semisimple Lie algebras L and L', and $x = x_s + x_n$ is the abs. Jordan decomposition of x in L, then $\phi(x) = \phi(x_s) + \phi(x_n)$ is the abs. Jordan decomposition of $\phi(x)$ in $\phi(L)$ as well as in L'.
- 3. Representation: if $\phi : L \to \mathfrak{gl}(V)$ is a finite dimensional representation of L, and $x = x_s + x_n$ is the abs. Jordan decomposition of x in L, then $\phi(x) = \phi(x_s) + \phi(x_n)$ is the Jordan decomposition of $\phi(x)$ in $\mathfrak{gl}(V)$.

Proof. 1. (exercise in the last section.)

2. $\phi(L) \simeq L/\operatorname{Ker} \phi$ where $\operatorname{Ker} \phi$ is an ideal of L. By complete reducibility of semisimple Lie algebras, we have $L \simeq \operatorname{Ker} \phi \oplus \phi(L)$. The abs. Jordan decomposition of $\phi(x)$ in $\phi(L)$ is then $\phi(x) = \phi(x_s) + \phi(x_n)$ from part 1.

Now $\phi(L) \subset L'$. WLOG, we may assume that $L \subset \mathfrak{gl}(V)$ for some finite dimensional V. Then the abs. Jordan decompositions in $\phi(L)$ and L' both coincide with the Jordan decomposition in $\mathfrak{gl}(V)$. Therefore, $\phi(x) = \phi(x_s) + \phi(x_n)$ is the abs. Jordan decomposition of $\phi(x)$ in L'.

3. It follows from part 2 and the proceeding theorem.

2.2.5 Reductive Lie Algebras

A Lie algebra L for which $\operatorname{Rad} L = Z(L)$ is called **reductive**. (Examples: L abelian, L semisimple, $L = \mathfrak{gl}(n, F)$.)

Thm 2.12. The following are equivalent for a Lie algebra L:

- 1. L is reductive.
- 2. $L = Z(L) \oplus [L, L] = Z(L) \oplus L_1 \oplus \cdots \oplus L_t$ where [L, L] is semisimple, and L_1, \cdots, L_t are simple ideals of L.
- 3. L is a completely reducible ad L-module.

Proof.

- $1 \Rightarrow 3$: If L is reductive, then ad $L \simeq L/Z(L) = L/\text{Rad } L$ is semisimple. Weyl Theorem implies that L is a completely reducible ad L-module induced by the inclusion homomorphism ad $L \hookrightarrow \mathfrak{gl}(L)$.
- $3 \Rightarrow 2$: Suppose L is a completely reducible ad L-module, say $L = \bigoplus_{i=1}^{k} L_i$ where each L_i is a simple ad L-submodule. For any L_i , if dim $L_i = 1$, then ad L acts trivially on L_i , so that $L_i \subset Z(L)$; if dim $L_i > 1$, then L_i is a simple ideal of L and ad L acts faithfully on L_i , so that $L_i =$ ad $L(L_i) \subset [L, L]$. Overall, Z(L) is the direct sum of those L_i with dim $L_i = 1$, [L, L] is the direct sum of those L_i with dim $L_i = 1$, [L, L] is the direct sum of those L_i with dim $L_i > 1$, and $[L, L] \simeq L/Z(L)$ is semisimple.

 $2 \Rightarrow 1$: It is obvious.

For a reductive Lie algebra $L = Z(L) \oplus [L, L]$, its Killing form has radical S = Z(L), and

$$\kappa_L = \kappa_{Z(L)} \oplus \kappa_{[L,L]} = 0|_{Z(L)} \oplus \kappa_{[L,L]}.$$

The derivation algebra of a reductive L is (<u>exercise</u>)

$$\operatorname{Der} L = \operatorname{End} \left(Z(L) \right) \oplus \operatorname{ad} L$$