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2.2 Complete reducibility of representations

In this section, all representations are finite dimensional. We will study a semisimple Lie algebra
L by means of its adjoint representation in later sections.

2.2.1 Representations and Modules

Def. Let L be a Lie algebra. A vector space V endowed with an operation L × V → V (denoted
(x, v) 7→ x.v or xv) is call an L-module if it satisfies the following axioms (a, b ∈ F, x, y ∈
L, v, w ∈ V ):

M1. (ax+ by).v = a(x.v) + b(y.v),

M2. x.(av + bw) = a(x.v) + b(x.w),

M3. [x, y].v = x.y.v − y.x.v.

Prop 2.5. An L-module V is equivalent to an L-representation ρ : L→ gl(V ) by means of:

x.v ←→ ρ(x)(v) for x ∈ L, v ∈ V.

Every L-submodule W of V corresponds to a subrepresentation L→ gl(W ).

Ex. The adjoint representation ad : L→ gl(V ) establishes L as an L-module: x.y = adx(y) = [x, y]
for x ∈ L (Lie algebra), y ∈ L (vector space). I is submodule of L iff I is an ideal of L.

Def. An L-module V (equiv. representation) is called irreducible if it has precisely two L-
submodules: itself and 0. The L-module V is called completely reducible if V is a direct sum
of irreducible L-modules, or equivalently, if each L-submodule W of V possesses a complement
L-submodule W ′ such that V = W ⊕W ′ (exercise).

Ex. Let L be a Lie algebra.

1. Every one dimensional L-module is irreducible, but a zero dimensional L-module is not irre-
ducible;

2. L is simple iff L is an irreducible L-module, and L is semisimple iff L is completely reducible,
w.r.t. the adjoint representation of L. (exercise)

Def. A linear map of L-modules, φ : V → W , is called a homomorphism of L-modules if
φ(x.v) = x.φ(v) for any x ∈ L and v ∈ V . An isomorphism of L-modules associates with a pair
of equivalent representations of L.

Other than direct sums, new L-modules can be constructed from the dual, tensors, and homo-
morphisms (exercises: show that they each satisfies the axioms M1, M2, and M3 for L-modules):

1. Dual: Let V be an L-module. The dual space V ∗ = Hom F (V, F ) becomes an L-module
(called the dual or contragredient) such that for x ∈ L, f ∈ V ∗, v ∈ V ,

(x.f)(v) = −f(x.v).

2. Tensor: Let V and W be L-modules. The tensor product space V ⊗F W (or simply V ⊗W )
becomes an L-module such that for any x ∈ L, v ∈ V and w ∈W ,

x.(v ⊗ w) = x.v ⊗ w + v ⊗ x.w.
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3. Homomorphism and Endomorphism: Let V and W be L-modules. There is a standard
isomorphism of vector spaces Ψ : V ∗ ⊗F W → Hom F (V,W ) defined by:

Ψ(δ ⊗ w)(v) := δ(v)w, δ ∈ V ∗, w ∈W, v ∈ V.
The isomorphism Ψ makes Hom (V,W ) an L-module by:

(x.f)(v) = x.f(v)− f(x.v), x ∈ L, f ∈ Hom (V,W ), v ∈ V.
In particular, when W = V , then End (V ) ' V ∗ ⊗ V also becomes an L-module. (exercise)

The space of all bilinear forms on L is also an L-module (see Exercise 6.8 of Humphrey.)

2.2.2 Casimir element of a representation

Let L be semisimple, φ : L → gl(V ) a faithful (i.e. 1-1) representation of L. Then the bilinear
form

β(x, y) := Tr (φ(x)φ(y))

is symmetric, associative, and nondegenerate (similar to the Killing form where φ = ad ).
Fix a basis (x1, · · · , xn) of L; there is a unique dual basis (y1, · · · , yn) relative to β, such that

β(xi, yj) = δij . Define the Casimir element of φ by:

cφ :=

n∑
i=1

φ(xi)φ(yi) ∈ EndV.

Lem 2.6. Suppose L is semisimple and φ : L → gl(V ) is a faithful representation. Then the
Casimir element cφ commutes with every endomorphism in φ(L).

Proof. Given x ∈ L, let [x, xj ] =
∑

k ajkxk and [x, yi] =
∑

j bijyj . The symmetry and associativity
of β imply that

aji + bij = β([x, xj ], yi) + β([x, yi], xj) = β(yi, [x, xj ])− β([yi, x], xj) = 0 ∀i, j.
We show that cφ commutes with every endomorphism in φ(L), using the identity [X,Y Z] =
[X,Y ]Z + Y [X,Z] for X,Y, Z ∈ EndV . For x ∈ L,

[φ(x), cφ] =
∑
i

[φ(x), φ(xi)]φ(yi) +
∑
i

φ(xi)[φ(x), φ(yi)]

=
∑
i,j

aijφ(xj)φ(yi) +
∑
i,j

bijφ(xi)φ(yj)

=
∑
i,j

(aji + bij)φ(xi)φ(yj) = 0.

Therefore, cφ commutes with φ(L).

When φ is an irreducible representation, we have cφ = dimL/dimV (a scalar in EndV ) due to
the following result and the fact that Tr cφ =

∑n
i=1 Tr (φ(xi)φ(yi)) = n = dimL:

Thm 2.7 (Schur’s Lemma). Let φ : L → gl(V ) be irreducible. Then the only endomorphism of V
commuting with all φ(x) (x ∈ L) are the scalars.

Proof. Suppose y ∈ gl(V ) commutes with matrices in φ(L). Let λ be an eigenvalue of y and Vλ the
eigenspace of y relative to λ. For any x ∈ L and v ∈ Vλ,

y(φ(x).v) = φ(x)(y.v) = λφ(x).v =⇒ φ(x).v ∈ Vλ.
In other words, Vλ is an L-submodule of V . Since Vλ 6= 0 and V is irreducible, we have Vλ = V .
Therefore, y = λ is a scalar matrix.
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2.2.3 Weyl’s Theorem

Lem 2.8. Let φ : L→ gl(V ) be a finite dimensional representation of a semisimple Lie algebra L.
Then φ(L) ⊂ sl(V ). In particular, L acts trivially on any one dimensional L-module.

Proof. Since L is semisimple, we have φ(L) = φ([L,L]) ⊂ [φ(L), φ(L)] ⊂ sl(V ).

Thm 2.9 (Weyl). Every finite dimensional representation φ : L → gl(V ) of a semisimple Lie
algebra L is completely reducible, that is, φ is a direct sum of irreducible representations of L.

Proof. (exercise)It suffices to show that every L-submodule W of V processes a complementary
L-submodule X such that V = W ⊕X.

First we deal with the case where W is codimension one. There are two subcases:

1. W is irreducible: Assume that L acts faithfully on V (otherwise, we replace L by L/Kerφ).
Then L.W ⊂ W , and L acts trivially on the one-dimensional L-module V/W . The Casimir
element c := cφ is a linear combination of products of elements φ(x). Therefore, c(W ) ⊂ W
and c acts trivially on V/W . Moreover, c commutes with φ(L). For any x ∈ L and v ∈ Ker c,

c(x.v) = cφ(x)(v) = φ(x)c(v) = 0 ⇒ x.v ∈ Ker c.

Hence Ker c is an L-submodule of V . The action of c on the irreducible L-module W is a
nonzero scalar. Therefore, Ker c has dimension one, and we have V = W ⊕Ker c as desired.

2. W is not irreducible: We apply induction on dimW . Let W ′ ⊂W be a nonzero L-submodule.
Then W/W ′ is a condimension one submodule of V/W ′. By induction hypothesis, V/W ′ =

W/W ′⊕ W̃/W ′ where W̃/W ′ is a module with dimension one. Now W ′ has codimension one

in W̃ . By induction hypothesis, W̃ = W ′ ⊕ X where X is a submodule of dimension one.
Then V = W ⊕X since W ∩X = 0.

Next, we consider a general L-submodule W . The space Hom (V,W ) is an L-module. Denote

V = {f ∈ Hom (V,W ) | f |W = a for some a ∈ F},
W = {f ∈ Hom (V,W ) | f |W = 0} ⊂ V.

Both V and W are subspaces of Hom (V,W ), and W has codimension one in V. For any x ∈ L,
f ∈ V, and w ∈W ,

(x.f)(w) = x.f(w)− f(x.w) = a(x.w)− a(x.w) = 0.

So L.V ⊂ W, and both V and W are L-submodules of Hom (V,W ). By proceeding discussion, V
has a one-dimensional submodule (say, Fg where g : V → W has g|W = 1W ) complementary to
W. Then L acts trivially on Fg, so that 0 = (x.g)(v) = x.g(v) − g(x.v) for v ∈ V . Therefore,
g : V → W is an L-module homomorphism, and Ker g is an L-submodule of V . Since g maps V
into W (so that dim Ker g ≥ dim(V/W )), and g acts as 1W on W (so that W ∩Ker g = 0), we have
V = W ⊕Ker g.

Ex. We know that every semisimple L is a direct sum of simple ideals: L = L1 ⊕ L2 ⊕ · · · ⊕ Lt.
Then the adjoint representation ad : L → gl(L) is decomposed into a direct sum of irreducible
representations: L = L1 ⊕ L2 ⊕ · · · ⊕ Lt, since each simple ideal is irreducible w.r.t. the adjoint
action.
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2.2.4 Preservation of Jordan decomposition

A direct application of Weyl’s Theorem lies in the Jordan decomposition.

Thm 2.10. Let L ⊂ gl(V ) be semisimple, V finite dimensional. Then L contains the semisimple
and nilpotent parts in gl(V ) of all its elements, and the abstract and usual Jordan decompositions
in L coincide.

Proof. Let x ∈ L be arbitrary, with Jordan decomposition x = xs + xn in gl(V ). We show that
xs, xn ∈ L, which implies that the abstract and usual Jordan decompositions in L coincide (why?).
The inclusion homomorphism L ↪→ gl(V ) makes V an L-module. For any L-submodule W of V ,
define

LW := {y ∈ gl(V ) | y(W ) ⊂W and Tr (y|W ) = 0}.

Then x ∈ LW and therefore xs, xn ∈ LW since xs and xn are polynomials of x without constant
terms. Let

N := Ngl(V )(L) = {y ∈ gl(V ), | [y, L] ⊂ L}.

Similarly, x ∈ N implies that xs, xn ∈ N . Let L′ be the intersection of N with all spaces LW . Then
L′ is an L-module via adjoint action, and L ⊂ L′ ⊂ N . We have xs, xn ∈ L′.

Next we show that L = L′. Weyl’s theorem implies that L′ = L ⊕M for an L-submodule M .
Then [L,M ] ⊂ [L,N ] ∩M ⊂ L ∩M = 0. So every y ∈ M commutes with L. However, Weyl’s
theorem implies that V is a direct sum of irreducible L-submodules, and Schur’s Lemma shows
that y acts as a scalar on each irreducible L-submodule W so that y|W = 0 as y ∈ LW . Therefore,
y = 0 and thus M = 0. We get xs, xn ∈ L′ = L.

More preservation properties of the Jordan decomposition are listed below.

Prop 2.11. Let L be a semisimple Lie algebra.

1. Direct sum: suppsose L = L1 ⊕ · · · ⊕ Lt is a direct sum of ideals. Then the abs. Jordan

decomposition of x =
∑t

i=1 x
(i) (x(i) ∈ Li) in L is exactly x = xs + xn, where xs =

∑t
i=1 x

(i)
s ,

xn =
∑t

i=1 x
(i)
n , and x(i) = x

(i)
s + x

(i)
n is the abs. Jordan decomposition of each x(i) in Li.

2. Homomorphism: if φ : L → L′ is a homomorphism between semisimple Lie algebras L and
L′, and x = xs + xn is the abs. Jordan decomposition of x in L, then φ(x) = φ(xs) + φ(xn)
is the abs. Jordan decomposition of φ(x) in φ(L) as well as in L′.

3. Representation: if φ : L → gl(V ) is a finite dimensional representation of L, and x =
xs + xn is the abs. Jordan decomposition of x in L, then φ(x) = φ(xs) + φ(xn) is the Jordan
decomposition of φ(x) in gl(V ).

Proof. 1. (exercise in the last section.)

2. φ(L) ' L/Kerφ where Kerφ is an ideal of L. By complete reducibility of semisimple Lie
algebras, we have L ' Kerφ⊕ φ(L). The abs. Jordan decomposition of φ(x) in φ(L) is then
φ(x) = φ(xs) + φ(xn) from part 1.

Now φ(L) ⊂ L′. WLOG, we may assume that L ⊂ gl(V ) for some finite dimensional V . Then
the abs. Jordan decompositions in φ(L) and L′ both coincide with the Jordan decomposition
in gl(V ). Therefore, φ(x) = φ(xs) + φ(xn) is the abs. Jordan decomposition of φ(x) in L′.

3. It follows from part 2 and the proceeding theorem.
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2.2.5 Reductive Lie Algebras

A Lie algebra L for which RadL = Z(L) is called reductive. (Examples: L abelian, L semisimple,
L = gl(n, F ).)

Thm 2.12. The following are equivalent for a Lie algebra L:

1. L is reductive.

2. L = Z(L) ⊕ [L,L] = Z(L) ⊕ L1 ⊕ · · · ⊕ Lt where [L,L] is semisimple, and L1, · · · , Lt are
simple ideals of L.

3. L is a completely reducible adL-module.

Proof.

1⇒ 3: If L is reductive, then adL ' L/Z(L) = L/RadL is semisimple. Weyl Theorem implies that L
is a completely reducible adL-module induced by the inclusion homomorphism adL ↪→ gl(L).

3⇒ 2: Suppose L is a completely reducible adL-module, say L = ⊕ki=1Li where each Li is a simple
adL-submodule. For any Li, if dimLi = 1, then adL acts trivially on Li, so that Li ⊂ Z(L);
if dimLi > 1, then Li is a simple ideal of L and adL acts faithfully on Li, so that Li =
adL(Li) ⊂ [L,L]. Overall, Z(L) is the direct sum of those Li with dimLi = 1, [L,L] is the
direct sum of those Li with dimLi > 1, and [L,L] ' L/Z(L) is semisimple.

2⇒ 1: It is obvious.

For a reductive Lie algebra L = Z(L)⊕ [L,L], its Killing form has radical S = Z(L), and

κL = κZ(L) ⊕ κ[L,L] = 0|Z(L) ⊕ κ[L,L].

The derivation algebra of a reductive L is (exercise)

DerL = End (Z(L))⊕ adL.


