2.3 Representation of $\mathfrak{sl}(2, F)$

The representations of $\mathfrak{sl}(2, F)$ play an important role in the study of semisimple Lie algebras. In this section, we consider the finite dimensional representations of $L := \mathfrak{sl}(2, F)$, whose standard basis consists of

$$h := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad x := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad y := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

such that

$$[h, x] = 2x,$$
 $[h, y] = -2y,$ $[x, y] = h,$

Let V be an arbitrary L-module. Since h is semisimple in L, the preservation of Jordan decomposition implies that h acts diagonally on V. So V is a direct sum of eigenspaces

$$V_{\lambda} := \{ v \in V \mid h.v = \lambda v \}$$

We let $V_{\lambda} = 0$ if λ is not an eigenvalue of the *h*-action on *V*. Whenever $V_{\lambda} \neq 0$, we call λ a weight of *h* in *V* and V_{λ} a weight space.

Lem 2.13. If $v \in V_{\lambda}$, then $x \cdot v \in V_{\lambda+2}$ and $y \cdot v \in V_{\lambda-2}$.

Proof.
$$h.(x.v) = [h, x].v + x.(h.v) = 2x.v + \lambda x.v = (\lambda + 2)x.v.$$
 Similarly for y .

Since dim $V < \infty$ and $V = \prod_{\lambda \in F} V_{\lambda}$, there exists $\lambda \in F$ such that $V_{\lambda} \neq 0$ but $V_{\lambda+2} = 0$; this weight λ is called a **highest weight**, and any nonzero vector $v \in V_{\lambda}$ is called a **maximal vector**

of weight λ , where $v \neq 0$ but $x \cdot v = 0$. We will see that a highest weight is a nonnegative integer.

Every L-module is a direct sum of irreducible submodules. The following theorem completely classifies all irreducible L-modules.

Thm 2.14. Let $\phi : L \to \mathfrak{gl}(V)$ be an irreducible representation of $L = \mathfrak{sl}(2, F)$, and dim $V = m + 1 < \infty$. Then there exists a basis $\mathcal{B} = \{v_0, v_1, \cdots, v_m\}$ of V, such that $\phi(h)$, $\phi(x)$ and $\phi(y)$ have the following matrix forms relative to the basis \mathcal{B} :

$$\phi(h) \stackrel{\mathcal{B}}{\approx} \begin{bmatrix} m & & & & \\ m-2 & & & \\ & & \ddots & & \\ & & & -(m-2) & \\ & & & & -m \end{bmatrix}, \quad \phi(x) \stackrel{\mathcal{B}}{\approx} \begin{bmatrix} 0 & m & & & \\ 0 & \ddots & & \\ & & \ddots & 2 & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix}, \quad \phi(y) \stackrel{\mathcal{B}}{\approx} \begin{bmatrix} 0 & & & & \\ 1 & 0 & & \\ 2 & \ddots & & \\ & & \ddots & 0 & \\ & & & m & 0 \end{bmatrix}$$

In particular,

- 1. For $m \in \mathbf{N}$, (up to isomorphism) there exists exactly one irreducible L-module of dimension m+1, denoted by V(m).
- 2. V(m) is a direct sum of weight spaces relative to h: $V = \bigoplus_{i=0}^{m} V_{m-2i}$ (the irreducibility of V(m) is done in homework). V(m) has the highest weight m, and V(m) has a unique (up to nonzero scalar multiplies) maximal vector in V_m .

Proof. Let λ be a highest weight and choose a maximal vector $v_0 \in V_{\lambda} - \{0\}$. Set $v_{-1} = 0$ and $v_i = (1/i!)y^i \cdot v_0$ for $i \ge 0$. Lemma 2.13 implies that

$$h.v_i = (\lambda - 2i)v_i. \tag{2.1}$$

The definition of v_i implies that

$$y.v_i = (i+1)v_{i+1}.$$
(2.2)

We use induction on i to prove that

$$x \cdot v_i = (\lambda - i + 1)v_{i-1} \quad \text{for } i \ge 0.$$
 (2.3)

The case i = 0 is obviously true. For i > 0,

$$ix_{i} = x.y.v_{i-1} = [x, y].v_{i-1} + y.x.v_{i-1} \stackrel{I.H.}{=} h.v_{i-1} + (\lambda - i + 2)y.v_{i-2}$$
$$= (\lambda - 2i + 2)v_{i-1} + (\lambda - i + 2)(i - 1)v_{i-1} = i(\lambda - i + 1)v_{i-1}.$$

Divide both sides by i to complete the induction process.

The equality $h.v_i = (\lambda - 2i)v_i$ shows that $v_i \in V_{\lambda-2i}$. Hence the nonzero v_i are linearly independent. By dim $V < \infty$, there exists $n \in \mathbb{N}$ such that $v_n \neq 0$ but $v_{n+1} = 0$. Then v_0, v_1, \dots, v_n are linearly independent, and they span a nonzero *L*-submodule of *V*, which must be *V* itself due to irreducibility of *V*. So n = m. By (2.3), $0 = x.v_{m+1} = (\lambda - m)v_m$, so that $\lambda = m$. Overall (2.1), (2.2), and (2.3) lead to the desired matrix forms of $\phi(h)$, $\phi(x)$, and $\phi(y)$ w.r.t. the basis $\{v_0, v_1, \dots, v_m\}$.

The structure of any finite dimensional L-module can be determined by its weight spaces as follow:

Cor 2.15. Let $L = \mathfrak{sl}(2, F)$, and V a finite dimensional L-module.

- 1. The eigenvalues of h on V are all integers, and each occur along its negative with equal number of times.
- 2. Suppose V is decomposed into a direct sum of irreducible submodules: $V \simeq \sum_{m \in \mathbb{N}} a_m V(m)$.

Then the total number of irreducible summands is

$$\sum_{m \in \mathbf{N}} a_m = \dim V_0 + \dim V_1;$$

for $m \in \mathbf{N}$, the number of copies of V(m) in V is

$$a_m = \dim V_m - \dim V_{m+2}.$$

Proof. ($\underline{\text{exercise}}$)

In brief, given a finite dimension representation $\phi : L \to \mathfrak{gl}(V)$, the *h*-action on *V* uniquely determines the weight spaces V_{λ} , their dimensions dim V_{λ} , and the multiplicities a_m of irreducible summands V(m), in the representation ϕ .

Ex. 1. In the natural representation $\phi_1 : L \to \mathfrak{gl}(F^2)$, the standard basis $\mathcal{B}_1 := \{e_1, e_2\}$ of F^2 consists of eigenvectors of $\phi_1(h)$, and the matrix form $\phi_1(h) \stackrel{\mathcal{B}_1}{\approx} \operatorname{diag}(1, -1)$. Therefore, the L-module $F^2 \simeq V(1)$.

- 2. In the adjoint representation $ad : L \to \mathfrak{gl}(L)$, the basis $\mathcal{B}_2 := \{x, h, y\}$ of L consists of eigenvectors of ad h, and the matrix form $ad h \approx^{\mathcal{B}_2} \operatorname{diag}(2, 0, -2)$. Therefore, the L-module $L \simeq V(2)$.
- 3. Consider the tensor representation $\phi_1 \otimes \text{ad} : L \to \mathfrak{gl}(F^2 \otimes L)$. Then $F^2 \otimes L$ has a basis consisting of eigenvectors of $(\phi_1 \otimes \text{ad})(h)$:

$$\mathcal{B}_1 \times \mathcal{B}_2 = \{ e_1 \otimes x, e_1 \otimes h, e_1 \otimes y, e_2 \otimes x, e_2 \otimes h, e_2 \otimes y \},\$$

and the matrix form of the h-action w.r.t. this basis is

$$(\phi_1 \otimes \operatorname{ad})(h) \stackrel{\mathcal{B}_1 \times \mathcal{B}_2}{\approx} \operatorname{diag}(3, 1, -1, 1, -1, -3).$$

Then

$$(\dim V_0, \dim V_1, \dim V_2, \dim V_3, \dim V_4, \dim V_5, \cdots) = (0, 2, 0, 1, 0, 0, \cdots).$$

We get $a_1 = 1$, $a_3 = 1$, and the other $a_k = 0$. Hence the L-module $F^2 \otimes L = V(1) \oplus V(3)$.