2.4 Root space decomposition

Let L denote a semisimple Lie algebra in this section. We will study the detailed structure of L through its adjoint representation.

2.4.1 Maximal toral subalgebra and root space decomposition

The semisimple Lie algera L contains the semisimple part and nilpotent part of all its elements. Since L is not nilpotent, Engel's theorem ensures that there is a non-nilpotent $x \in L$, which has a nonzero semisimple part $x_{s} \in L$. Hence $F x_{s}$ is a nonzero subalgebra consisting of semisimple elements, called a toral subalgebra. So there exists a nonzero maximal toral subalgebra in L.

The following result is a rough analogy to Engel's theorem.
Lem 2.16. A toral subalgebra of L is abelian.
Proof. Suppose T is a toral subalgebra of L. We need $\operatorname{ad}_{T} x=0$ for all $x \in T$. The semisimplicity of x implies that $\operatorname{ad}_{T} x$ is diagonalizable. If $\operatorname{ad}_{T} x$ has a nonzero eigenvalue α, then there is nonzero $y \in T$ such that $[x, y]=\alpha y$. Then $\left(\operatorname{ad}_{T} y\right)^{2}(x)=[y,[y, x]]=0$. However, y is also semisimple, and $\operatorname{ad}_{T} y$ is diagonalizable. We can express x as a linear combination of linear independent eigenvectors $\left\{x_{i}\right\}$ of $\operatorname{ad}_{T} y$:

$$
x=\sum_{i} a_{i} x_{i}, \quad a_{i} \neq 0, \quad \operatorname{ad}_{T} y\left(x_{i}\right)=\lambda_{i} x_{i} .
$$

Then $0=\left(\operatorname{ad}_{T} y\right)^{2}(x)=\sum_{i} a_{i} \lambda_{i}^{2} x_{i}$, which implies that all $\lambda_{i}=0$. Therefore, $-\alpha y=\left(\operatorname{ad}_{T} y\right)(x)=$ $\sum_{i} a_{i} \lambda_{i} x_{i}=0$, which is a contradiction. So T must be abelian.

Now fix a maximal toral subalgebra H of L. Then $\operatorname{ad}_{L} H$ is a commuting family of semsimple elements. So $\operatorname{ad}_{L} H$ is simiultaneously diagonalizable (exercise). L is the direct sum of some common eigenspaces of $\operatorname{ad}_{L} H$:

$$
\begin{equation*}
L_{\alpha}=\{x \in L \mid[h, x]=\alpha(h) x\}, \quad \alpha \in H^{*} . \tag{2.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
H \subseteq L_{0}=C_{L}(H), \quad \text { the centralizer of } H \text { in } L \tag{2.5}
\end{equation*}
$$

Each nonzero $\alpha \in H^{*}$ for which $L_{\alpha} \neq 0$ is called a root; the set of all roots is denoted by Φ. Then we get the root space decomposition:

$$
\begin{equation*}
L=C_{L}(H) \oplus \coprod_{\alpha \in \Phi} L_{\alpha} . \tag{2.6}
\end{equation*}
$$

Ex. Suppose $L=\mathfrak{s l}(\ell+1, \mathrm{~F})$. Let $h_{i}:=e_{i, i}-e_{i+1, i+1}$ for $i \in[\ell]$. Then $H:=\sum_{i \in[\ell]} \mathrm{F} h_{i}$ is a maximal torus subalgebra of L, and $C_{L}(H)=H$. Denote by $\epsilon_{i} \in H^{*}$ the linear functional that takes the i-th diagonal entry of elements of H. Then each $e_{i j}(i, j \in[\ell+1], i \neq j)$ is a common eigenvector for elements of H, such that for $h \in H,\left(\operatorname{ad}_{L} h\right)\left(e_{i j}\right)=\left[h, e_{i j}\right]=\left(\epsilon_{i}-\epsilon_{j}\right)(h) e_{i j}$. Therefore, $\mathfrak{s l}(\ell+1, \mathrm{~F})$ has the root space decomposition (exercise)

$$
\begin{aligned}
\mathfrak{s l}(\ell+1, \mathrm{~F}) & =H \oplus \coprod_{\substack{i \neq j \\
i, j \in[\ell+1]}} \mathrm{Fe} e_{i j}, \quad \text { where } \\
\text { the set of roots } \Phi & :=\left\{\epsilon_{i}-\epsilon_{j} \mid i, j \in[\ell+1], i \neq j\right\} .
\end{aligned}
$$

Thm 2.17. 1. For $\alpha, \beta \in H^{*},\left[L_{\alpha}, L_{\beta}\right] \subseteq L_{\alpha+\beta}$. In particular, if $\alpha \neq 0$ and $x \in L_{\alpha}$, then $\operatorname{ad} x$ is nilpotent.
2. If $\alpha, \beta \in H^{*}$ and $\alpha+\beta \neq 0$, then $L_{\alpha} \perp L_{\beta}$ relative to the Killing form κ of L.

Proof. Let $\alpha, \beta \in H^{*}, h \in H, x \in L_{\alpha}, y \in L_{\beta}$ be arbitrary.
1.

$$
\operatorname{ad} h([x, y])=[[h, x], y]+[x,[h, y]]=\alpha(h)[x, y]+\beta(h)[x, y]=(\alpha+\beta)(h)[x, y] .
$$

So $\left[L_{\alpha}, L_{\beta}\right] \subseteq L_{\alpha+\beta}$. If $\alpha \neq 0$ and $x \in L_{\alpha}$, then ad x is nilpotent according to the root space decomposition of L.
2. If $\alpha+\beta \neq 0$, then

$$
\begin{aligned}
\kappa([h, x], y)=-\kappa([x, h], y)=-\kappa(x,[h, y]) & \Rightarrow \alpha(h) \kappa(x, y)=-\beta(h) \kappa(x, y) \\
& \Rightarrow(\alpha+\beta)(h) \kappa(x, y)=0 \text { for any } h \in H \\
& \Rightarrow \kappa(x, y)=0 .
\end{aligned}
$$

Hence $L_{\alpha} \perp L_{\beta}$ relative to the Killing form κ of L.
Theorem 2.17 and the nondegeneracy of κ in L imply $\kappa\left(L_{\alpha}, L_{-\alpha}\right) \neq 0$ and the following result.
Cor 2.18. The restriction of the Killing form to $L_{0}=C_{L}(H)$ is nondegenerate.
Proof. In the root space decomposition $L=C_{L}(H) \oplus \coprod_{\alpha \in \Phi} L_{\alpha}, C_{L}(H)=L_{0}$ is orthogonal to all L_{α} for $\alpha \in \Phi$ relative to κ. Since κ is nondegenerate on L, it must be nondegenerate on $C_{L}(H)$ as well.

Remark. The restriction of κ to C is $\kappa(x, y)=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)$ for $x, y \in C$, instead of $\kappa^{\prime}(x, y)=$ $\operatorname{Tr}\left(\operatorname{ad}_{C} x \operatorname{ad}_{C y} y\right)$. In fact, H is in the radical of κ^{\prime}, so that κ^{\prime} is dengerate.

Ex. We verify Theorem 2.17 for $L=\mathfrak{s l}(\ell+1, \mathrm{~F})$ with the root space decomposition:

$$
\mathfrak{s l}(\ell+1, \mathrm{~F})=H \oplus \coprod_{\substack{i \neq j \\ i, j \in[\ell+1]}} \mathrm{F} e_{i j}
$$

1. The root space $\mathrm{F} e_{i j}=L_{\epsilon_{i}-\epsilon_{j}}$. We have

$$
\left[L_{\epsilon_{i}-\epsilon_{j}}, L_{\epsilon_{p}-\epsilon_{q}}\right]=\left[\mathrm{F} e_{i j}, \mathrm{~F} e_{p q}\right]=\delta_{j p} \mathrm{~F} e_{i q}-\delta_{q i} \mathrm{~F} e_{p j}=\left\{\begin{array}{ll}
0 & \text { if } p \neq j, q \neq i \\
\mathrm{~F} e_{i q} & \text { if } p=j, q \neq i \\
\mathrm{~F} e_{p j} & \text { if } p \neq j, q=i \\
\mathrm{~F}\left(e_{i i}-e_{j j}\right) & \text { if } p=j, q=i
\end{array}\right\} \subseteq L_{\epsilon_{i}-\epsilon_{j}+\epsilon_{p}-\epsilon_{q} .}
$$

2. In $\mathfrak{s l}(\ell+1, \mathrm{~F})$, it is known that $\kappa(x, y)=2(\ell+1) \operatorname{Tr}(x y)$. We can examine the orthogonal relationship of the root spaces, using the basis

$$
\mathcal{B}:=\left\{h_{i} \mid i \in[\ell]\right\} \cup\left\{e_{i j} \mid i, j \in[\ell+1], i \neq j\right\} .
$$

(a) $\kappa\left(h_{i}, h_{i}\right)=4(\ell+1), \kappa\left(h_{i}, h_{i+1}\right)=-2(\ell+1), \kappa\left(h_{i}, h_{j}\right)=0$ for $|j-i|>1$. In particular, a basis dual to $\left\{h_{i} \mid i \in[\ell]\right\}$ consists of

$$
\begin{equation*}
g_{i}:=\frac{\ell+1-i}{2(\ell+1)^{2}} \sum_{s=1}^{i} e_{s s}-\frac{i}{2(\ell+1)^{2}} \sum_{t=i+1}^{\ell+1} e_{t t} . \tag{2.7}
\end{equation*}
$$

We can verify that $\kappa\left(h_{i}, g_{j}\right)=\delta_{i j}$.
(b) $\kappa\left(h_{i}, e_{p q}\right)=2(\ell+1) \operatorname{Tr}\left(h_{i} e_{p q}\right)=2(\ell+1)\left(\epsilon_{p}-\epsilon_{q}\right)\left(h_{i}\right) \operatorname{Tr}\left(e_{p q}\right)=0$. So $H \perp \mathrm{~F} e_{p q}$.
(c) $\kappa\left(e_{i j}, e_{p q}\right)=2(\ell+1) \operatorname{Tr}\left(e_{i j} e_{p q}\right)= \begin{cases}2(\ell+1), & (p, q)=(j, i), \\ 0, & \text { otherwise } .\end{cases}$

So $\mathrm{Fe}_{i j} \perp \mathrm{~F} e_{p q}$ whenever $(p, q) \neq(j, i)$.
The above case study shows that $L_{\alpha} \perp L_{\beta}$ whenever $\alpha+\beta \neq 0$.
Thm 2.19. Any maximal toral subalgebra H of L satisfies that $H=C_{L}(H)$.
Proof. The proof is proceeded in several steps:
(1) C contains the semisimple and nilpotent parts of its elements. If $x \in C$, then $\operatorname{ad} x(H) \subseteq H$, so that

$$
\operatorname{ad} x_{s}(H)=(\operatorname{ad} x)_{s}(H) \subseteq H, \quad \operatorname{ad} x_{n}(H)=(\operatorname{ad} x)_{n}(H) \subseteq H
$$

Hence $x_{s}, x_{n} \in C$.
(2) All semisimple elements of C lie in H. If $x \in C$ is semisimple, then $H+F x$ is an abelian subalgebra consisting of semisimple elements. Since H is a maximal toral subalgbra, we have $H+F x=H$ and thus $x \in H$.
(3) C is nilpotent. For any $x \in C, x=x_{s}+x_{n}$. The semisimple part x_{s} lies in H, so that $\operatorname{ad}_{C} x_{s}=0$, and thus $\operatorname{ad}_{C} x=\operatorname{ad}_{C} x_{n}$ is nilpotent. By Engel's Theorem, C is nilpotent.
(4) The restriction of κ to H is nondegenerate. Let $\kappa(h, H)=0$ for some $h \in H$; we show that $h=0$. If $x \in C$ is nilpotent, then ad x is nilpotent and commutes with ad h (since $[x, h]=0$). So ad x ad h is nilpotent and $\kappa(x, h)=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} h)=0$. By (1) and (2), we see that $\kappa(h, C)=0$, which forces $h=0$ by the nondegeneracy of κ on C.
(5) C is abelian. Otherwise $[C, C] \neq 0, C$ being nilpotent by (3). Then $Z(C) \cap[C, C] \neq 0$, since the nilpotent ad C-action on $[C, C]$ annihilates a nonzero element z, which must be in $Z(C) \cap[C, C]$. The associativity of κ implies that $\kappa(H,[C, C])=0$. The nondegeneracy of κ on H by (4) implies that $H \cap[C, C]=0$. So $z \notin H$, and its nilpotent part $z_{n} \in C-\{0\}$. Then $\operatorname{ad} z_{n}$ is nilpotent and commutes with ad C, so that $\kappa\left(z_{n}, C\right)=0$, contarary to the nondegeneracy of κ on C (Corollary 2.18).
(6) $C=H$. Otherwise C contains a nonzero nilpotent element x by (1), (2). Then ad x is nilpotent, and $[x, C]=0$ by (5) implies that $\kappa(x, C)=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} C)=0$, contrary to the nondegeneracy of κ on C.
Now the root space decomposition of L becomes

$$
\begin{equation*}
L=H \oplus \coprod_{\alpha \in \Phi} L_{\alpha} \tag{2.8}
\end{equation*}
$$

where $L_{0}=H=C_{L}(H)$; every $h \in H$ is semisimple; for $\alpha \in \Phi$, every $x \in L_{\alpha}$ is nilpotent; relative to the Killing form $\kappa, L_{\alpha} \perp L_{\beta}$ for any $\alpha+\beta \neq 0$.

Cor 2.20. The restriction of κ to $H=C_{L}(H)$ is nondegenerate.
The corollary implies that there is a bijection $H^{*} \rightarrow H$ such that every $\alpha \in H^{*}$ corresponds to the unique $t_{\alpha} \in H$ that satisfies

$$
\begin{equation*}
\alpha(h)=\kappa\left(t_{\alpha}, h\right) \quad \text { for all } h \in H \tag{2.9}
\end{equation*}
$$

Ex. The Lie algebra $L=\mathfrak{s l}(\ell+1, \mathrm{~F})$ has the root system $\Phi=\left\{\epsilon_{i}-\epsilon_{j} \mid i, j \in[\ell+1], i \neq j\right\}$. Let us compute t_{α} for $\alpha=\epsilon_{i}-\epsilon_{j}$. Recall that we have $\kappa(x, y)=2(\ell+1) \operatorname{Tr}(x y)$ for $L=\mathfrak{s l}(\ell+1, \mathrm{~F})$. Suppose $t_{\alpha}=\sum_{k=1}^{\ell+1} t_{k} e_{k k} \in H$, then for any $h=\sum_{k=1}^{\ell+1} s_{k} e_{k k} \in H$, we have

$$
\kappa\left(t_{\alpha}, h\right)=2(\ell+1) \sum_{k=1}^{\ell+1} t_{k} s_{k}=\alpha(h)=\left(\epsilon_{i}-\epsilon_{j}\right)(h)=s_{i}-s_{j} .
$$

Therefore,

$$
t_{\epsilon_{i}-\epsilon_{j}}=\frac{1}{2(\ell+1)}\left(e_{i i}-e_{j j}\right) .
$$

2.4.2 Properties of the Root Space Decomposition

The root space decomposition and the Killing form imply a rich structure of L.
Thm 2.21. The Φ, H, and L_{α} have the following properties:

1. Φ spans H^{*}.
2. If $\alpha \in \Phi$, then $-\alpha \in \Phi$; both L_{α} and $L_{-\alpha}$ have dimension 1; for $x \in L_{\alpha}, y \in L_{-\alpha}$, we have

$$
\begin{equation*}
[x, y]=\kappa(x, y) t_{\alpha} . \tag{2.10}
\end{equation*}
$$

In particular, $\left[L_{\alpha}, L_{-\alpha}\right]=\mathrm{F} t_{\alpha}$. The t_{α} satisfies that $\alpha\left(t_{\alpha}\right)=\kappa\left(t_{\alpha}, t_{\alpha}\right) \neq 0$. For any nonzero $x_{\alpha} \in L_{\alpha}$, there exists unique $y_{\alpha} \in L_{-\alpha}$ such that $S_{\alpha}:=\operatorname{span}\left(x_{\alpha}, y_{\alpha}, h_{\alpha}:=\left[x_{\alpha}, y_{\alpha}\right]\right)$ is a simple subalgebra of L isomorphic to $\mathfrak{s l}(2, \mathrm{~F})$ via

$$
x_{\alpha} \mapsto\left[\begin{array}{ll}
0 & 1 \tag{2.11}\\
0 & 0
\end{array}\right], \quad y_{\alpha} \mapsto\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad h_{\alpha} \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Moreover, $h_{\alpha}=\frac{2 t_{\alpha}}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}=-h_{-\alpha}$ is independent of the choice of x_{α}.
3. If $\alpha \in \Phi$, then $\mathrm{F} \alpha \cap \Phi=\{ \pm \alpha\}$.
4. If $\alpha, \beta \in \Phi$, then $\beta\left(h_{\alpha}\right) \in \mathbf{Z}$, and $\beta-\beta\left(h_{\alpha}\right) \alpha \in \Phi$. (The numbers $\beta\left(h_{\alpha}\right)$ are called $\mathbf{C a r t a n}$ integers.)
5. Let $\alpha, \beta \in \Phi, \beta \neq \pm \alpha$. Let r, q be (resp.) the largest integers for which $\beta-r \alpha, \beta+q \alpha$ are roots. Then all $\beta+i \alpha \in \Phi$ for $-r \leq i \leq q$, and the Cartan integer $\beta\left(h_{\alpha}\right)=r-q$.
6. If $\alpha, \beta, \alpha+\beta \in \Phi$, then $\left[L_{\alpha}, L_{\beta}\right]=L_{\alpha+\beta}$.

Proof. 1. If Φ does not span H^{*}, there exists a nonzero $h \in H$ s.t. $\alpha(h)=0 \forall \alpha \in \Phi$. So $\left[h, L_{\alpha}\right]=0 \forall \alpha \in \Phi$. Moreover, $[h, H]=0$. Hence $h \in Z(\mathrm{~L})=0$, a contradiction.
2. If $\alpha \in \Phi$ but $-\alpha \notin \Phi$, then $\alpha+\beta \neq 0$ for any $\beta=0$ or $\beta \in \Phi$, so that $\kappa\left(L_{\alpha}, L_{\beta}\right)=0$. Thus $\kappa\left(L_{\alpha}, L\right)=0$, contradicting the nondegeneracy of κ. So $-\alpha \in \Phi$.
Suppose $x \in L_{\alpha}, y \in L_{-\alpha}$ are nonzero. Then for any $h \in H$,

$$
\begin{aligned}
\kappa\left(h,[x, y]-\kappa(x, y) t_{\alpha}\right) & =\kappa(h,[x, y])-\kappa\left(h, \kappa(x, y) t_{\alpha}\right) \\
& =\kappa([h, x], y)-\kappa(x, y) \kappa\left(h, t_{\alpha}\right)=\alpha(h) \kappa(x, y)-\alpha(h) \kappa(x, y)=0 .
\end{aligned}
$$

Therefore, $[x, y]=\kappa(x, y) t_{\alpha}$. The relation also holds if one of x and y is zero. Now $\kappa\left(L_{\alpha}, L_{-\alpha}\right) \neq 0$ since otherwise $\kappa\left(L_{\alpha}, L\right)=0$, a contradiction to nondegeneracy of κ. So $\left[L_{\alpha}, L_{-\alpha}\right]=\mathrm{F} t_{\alpha}$.
If $0=\kappa\left(t_{\alpha}, t_{\alpha}\right)=\alpha\left(t_{\alpha}\right)$, then $\left[t_{\alpha}, x\right]=0=\left[t_{\alpha}, y\right]$. The Lie subalgebra $S=\operatorname{span}\left(x, y, t_{\alpha}\right)$ is solvable. So ad ${ }_{L} S$ is solvable, and Lie's theorem implies that $\operatorname{ad}_{L} t_{\alpha} \in \operatorname{ad}_{L}[S, S]$ is nilpotent. Then t_{α} is nilpotent. However, $t_{\alpha} \in H$ is semisimple. We have $t_{\alpha}=0$, a contradiction. Hence $\kappa\left(t_{\alpha}, t_{\alpha}\right) \neq 0$.
For any nonzero $x_{\alpha} \in L_{\alpha}$, let $y_{\alpha} \in L_{-\alpha}$ such that $\kappa\left(x_{\alpha}, y_{\alpha}\right)=\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}$; let $h_{\alpha}:=\left[x_{\alpha}, y_{\alpha}\right]$. Clearly

$$
h_{\alpha}=\frac{2 t_{\alpha}}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}=-h_{-\alpha}, \quad\left[h_{\alpha}, x_{\alpha}\right]=\alpha\left(h_{\alpha}\right) x_{\alpha}=2 x_{\alpha}, \quad\left[h_{\alpha}, y_{\alpha}\right]=-2 y_{\alpha} .
$$

So the Lie subalgebra $S_{\alpha}:=\operatorname{span}\left(x_{\alpha}, y_{\alpha}, h_{\alpha}\right)$ is isomorphic to $\mathfrak{s l}(2, \mathrm{~F})$ via 2.11.
Consider the subspace M of L spanned by H along with all root spaces of the form $L_{c \alpha}$ $\left(c \in \mathrm{~F}^{*}\right) . M$ is a S_{α}-submodule so that it is a direct sum of irreducible S_{α}-modules $V(m)$ for $m \in \mathbf{Z}^{+}$. The $\operatorname{Ker} \alpha$ is a codimension 1 subspace in H complement to $\mathrm{F} h_{\alpha}$, that is, $\operatorname{Ker} \alpha \oplus \mathrm{F} h_{\alpha}=H$. Since S_{α} acts trivially on $\operatorname{Ker} \alpha$, the $V(m)$ components of M with even integers m is $S_{\alpha} \oplus$ Ker α. In particular, $2 \alpha \notin \Phi$. Then $\frac{1}{2} \alpha \notin \Phi$ as well (otherwise, replacing α by $\frac{1}{2} \alpha$ and we will get contradiction). So M doesn't have $V(m)$ summands for odd integers m. Hence

$$
\begin{equation*}
M=S_{\alpha} \oplus \operatorname{Ker} \alpha \tag{2.12}
\end{equation*}
$$

In particular, $\operatorname{dim} L_{\alpha}=\operatorname{dim} L_{-\alpha}=1$.
3. It is obvious by 2.12).
4. For $\beta \in \Phi$, we consider the S_{α}-action on L_{β}. The subspace

$$
\begin{equation*}
M_{\beta}:=\sum_{i \in \mathbf{Z}} L_{\beta+i \alpha} \tag{2.13}
\end{equation*}
$$

is a S_{α}-module of L. In particular, L_{β} is a weight space of h_{α} with the weight $\beta\left(h_{\alpha}\right)$, which must be in \mathbf{Z}. Then $-\beta\left(h_{\alpha}\right) \in \mathbf{Z}$ is also a weight of M_{β}. Since $-\beta\left(h_{\alpha}\right)=\left(\beta-\beta\left(h_{\alpha}\right) \alpha\right)\left(h_{\alpha}\right)$, we have $\beta-\beta\left(h_{\alpha}\right) \alpha \in \Phi$.
5. Now assume $\beta \neq \pm \alpha$ in the above paragraph. Then no $\beta+i \alpha$ can be 0 . Each root space is one dimensional, and the integral weights appearing in M_{β} has the form $(\beta+i \alpha)\left(h_{\alpha}\right)=\beta\left(h_{\alpha}\right)+2 i$, which covers 0 or 1 exactly once. Therefore, M_{β} is an irreducible S_{α}-module. Let r, q be (resp.) the largest integers for which $\beta-r \alpha, \beta+q \alpha$ are roots. Then all $\beta+i \alpha \in \Phi$ for $-r \leq i \leq q$. The highest (resp. lowest) weight is $(\beta+q \alpha)\left(h_{\alpha}\right)=\beta\left(h_{\alpha}\right)+2 q$ (resp. $\beta\left(h_{\alpha}\right)-2 r$.) The symmetry of weights implies that $\beta\left(h_{\alpha}\right)+2 q+\beta\left(h_{\alpha}\right)-2 r=0$, that is, $\beta\left(h_{\alpha}\right)=r-q$. We call $\beta-r \alpha, \cdots, \beta, \cdots, \beta+q \alpha$ the α-string through β.
6. In the S_{α}-module M_{β}, obviously $\left[L_{\alpha}, L_{\beta}\right]=L_{\alpha+\beta}$.

Consider F $=\mathbf{C}$ case. Let

$$
E:=\sum_{\alpha \in \Phi} \mathbf{R} \alpha
$$

be the real span of Φ. Then $E \subseteq H^{*}$ with $\operatorname{dim}_{\mathbf{R}} E=\operatorname{dim}_{\mathrm{F}} H^{*}$ since Φ spans H^{*}. We may tranfer the nondegenerate Killing form from H to H^{*} by

$$
\begin{equation*}
(\gamma, \delta):=\kappa\left(t_{\gamma}, t_{\delta}\right) \quad \text { for all } \gamma, \delta \in H^{*} \tag{2.14}
\end{equation*}
$$

Some properties of Φ can be rephrased as follow.
Thm 2.22. Let (Φ, E) be defined from (L, H) as above. Then:

1. Φ spans E, and $0 \notin \Phi$.
2. If $\alpha \in \Phi$, then $-\alpha \in \Phi$, and no other scalar multiple of α is in Φ.
3. If $\alpha, \beta \in \Phi$, then $\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \Phi$, where $\frac{2(\beta, \alpha)}{(\alpha, \alpha)}=\beta\left(h_{\alpha}\right) \in \mathbf{Z}$ is a Cartan integer.

The set Φ is called a root system in E. We will completely classify all (Φ, E) for simple Lie algebras in the next Chapter.

