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2.4 Root space decomposition

Let L denote a semisimple Lie algebra in this section. We will study the detailed structure of L
through its adjoint representation.

2.4.1 Maximal toral subalgebra and root space decomposition

The semisimple Lie algera L contains the semisimple part and nilpotent part of all its elements.

Since L is not nilpotent, Engel’s theorem ensures that there is a non-nilpotent z € L, which has

a nonzero semisimple part s € L. Hence Fxg is a nonzero subalgebra consisting of semisimple

elements, called a toral subalgebra. So there exists a nonzero maximal toral subalgebra in L.
The following result is a rough analogy to Engel’s theorem.

Lem 2.16. A toral subalgebra of L is abelian.

Proof. Suppose T is a toral subalgebra of L. We need ad 7 = 0 for all € T. The semisimplicity
of x implies that ad rx is diagonalizable. If ad 7z has a nonzero eigenvalue «, then there is nonzero
y € T such that [z,y] = ay. Then (ad 7y)%(z) = [y, [y, z]] = 0. However, y is also semisimple, and
ad 7y is diagonalizable. We can express x as a linear combination of linear independent eigenvectors
{z;} of ad ry:
= Zaixi, a; 70, adpy(z;) = \iz;.
(2

Then 0 = (ad 7y)*(z) = Zai)\gazi, which implies that all \; = 0. Therefore, —ay = (ad ry)(z) =
Z a; \ix; = 0, which is a contradiction. So 1" must be abelian. ]

]

Now fix a maximal toral subalgebra H of L. Then ad p H is a commuting family of semsimple
elements. So ad H is simiultaneously diagonalizable (exercise). L is the direct sum of some
common eigenspaces of ad p H:

Lo ={z € L|[h,z|=a(h)z}, ac€ H. (2.4)

In particular,
H C Ly=CL(H), the centralizer of H in L. (2.5)

Each nonzero aw € H* for which L, # 0 is called a root; the set of all roots is denoted by ®. Then
we get the root space decomposition:

L=CrH)® [] La- (2.6)
acd
Ex. Suppose L =sl({+ 1,F). Let h; :=e;; — €i41,i+1 fori € [(]. Then H := Z Fh; is a mazimal
€[4

torus subalgebra of L, and C(H) = H. Denote by ¢; € H* the linear functional that takes the i-th
diagonal entry of elements of H. Then each e;; (i,j € [{+ 1], i # j) is a common eigenvector for
elements of H, such that for h € H, (ad Lh)(eij) = [h, eij] = (€; — €j)(h)esj. Therefore, sl(¢ + 1,F)
has the root space decomposition (exercise)

sit+1,F) = Ho H Fe;;, where

i#]
ijeli+1]
the set of roots ® = {e —¢j|i,j€[l+1], i#j}.
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Thm 2.17. 1. For o, 8 € H*, [Lo,Lg] C Loypg. In particular, if a # 0 and x € L, then ad x
is nilpotent.

2. If a,8 € H* and o+ 3 # 0, then Lo L Lg relative to the Killing form s of L.
Proof. Let o, € H*, h € H, x € Lo, y € Lg be arbitrary.

1.
ad h([z, y]) = [[h, 2], y] + [z, [h, 9] = a(h)[z, y] + B(R)[x, y] = (o + B) ()2, y].

So [La, Lg) € Laypg. If @ # 0 and « € Ly, then ad « is nilpotent according to the root space
decomposition of L.

2. If a+ B #0, then

w(lh,z],y) = =k([z,hl,y) = —r(z, [hy]) = alh)k(z,y) = —B(h)k(z,y)
= (a+P)(h)k(z,y) =0 forany he H
= k(z,y) =0.

Hence L, L Lg relative to the Killing form « of L. O
Theorem and the nondegeneracy of k in L imply (L, L_y) # 0 and the following result.
Cor 2.18. The restriction of the Killing form to Ly = C(H) is nondegenerate.

Proof. In the root space decomposition L = Cp(H) & H Lo, Cr(H) = Ly is orthogonal to all L,

acd
for o € ® relative to . Since s is nondegenerate on L, it must be nondegenerate on Cr(H) as

well. .

Remark. The restriction of k to C is k(z,y) = Tr(adx ady) for x,y € C, instead of k'(z,y) =
Tr(ad cx ad cy). In fact, H is in the radical of k', so that ' is dengerate.

Ex. We verify Theorem for L = sl({ + 1,F) with the root space decomposition:

sit+1,F)=He [[ Fey

i#£]
i,j€[6+1]
1. The root space Fe;j = Le,—;. We have
0 ifp#J, ¢#1i
Feiq ifp=17J, q#i
[LEi—Ej7L€p—€q] = [Feija Fe’Pq] = OjpFeiq—0oqgiFep; = Fe,; ifp4i g=i( Lei—€j+€p—5q'

Flei —ej;) ifp=3j, q=1i

2. In sl(¢ + 1,F), it is known that k(z,y) = 2(¢ + 1)Tr(zy). We can examine the orthogonal
relationship of the root spaces, using the basis

B:={h;|iec[l]}U{e|i,jel+1],i+#j}.
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(a) k(hi,hi) =4+ 1), k(hi, hiy1) = =2 + 1), k(hi, hj) =0 for |j —i| > 1. In particular,
a basis dual to {h; | i € [{]} consists of

1 as

1
= —— 5§ — —F————= . 2.
g 2(£+1)2 8216’ 2(€+1)2 t:lz—i_lett (2.7)

We can verify that k(hs, g;) = 6;j.
(b) K(hi,epq) =2(€ + 1)Tr(hiepq) = 2(£+ 1)(€p — €4)(hi)Tr(epg) = 0. So H L Feyy,.
2(0+1), (p,q) = (4,9),
0, otherwise.
So Fe;; L Fepy whenever (p,q) # (4,1).

(c) K(eij,epg) = 2(€+ 1)Tr(eijepq) =

The above case study shows that L, 1L Lg whenever o+ 3 # 0.
Thm 2.19. Any maximal toral subalgebra H of L satisfies that H = Cp(H).
Proof. The proof is proceeded in several steps:

(1) C contains the semisimple and nilpotent parts of its elements. If x € C, then adz(H) C H,
so that
adzs(H) = (adz)s(H) C H, adz,(H) = (adx),(H) C H.

Hence z4, z, € C.

(2) All semisimple elements of C lie in H. If x € C is semisimple, then H + F'z is an abelian
subalgebra consisting of semisimple elements. Since H is a maximal toral subalgbra, we have
H + Fx = H and thus x € H.

(3) C is nilpotent. For any = € C, x = x5 + x,. The semisimple part x4 lies in H, so that
ad cxs = 0, and thus ad cx = ad ¢x,, is nilpotent. By Engel’s Theorem, C' is nilpotent.

(4) The restriction of k to H is nondegenerate. Let k(h, H) = 0 for some h € H; we show that
h = 0. If x € C is nilpotent, then ad z is nilpotent and commutes with ad h (since [z, h] = 0).
So adz adh is nilpotent and x(z,h) = Tr(adz adh) = 0. By (1) and (2), we see that
k(h,C) = 0, which forces h = 0 by the nondegeneracy of x on C.

(5) C is abelian. Otherwise [C,C] # 0, C being nilpotent by (3). Then Z(C) N [C,C] # 0,
since the nilpotent ad C-action on [C, C] annihilates a nonzero element z, which must be in
Z(C)N[C,C]. The associativity of x implies that x(H, [C,C]) = 0. The nondegeneracy of
x on H by (4) implies that H N [C,C] = 0. So z ¢ H, and its nilpotent part z, € C — {0}.
Then ad z,, is nilpotent and commutes with ad C, so that k(z,,C) = 0, contarary to the
nondegeneracy of x on C' (Corollary .

(6) C = H. Otherwise C' contains a nonzero nilpotent element z by (1), (2). Then adx is
nilpotent, and [z,C] = 0 by (5) implies that x(z,C) = Tr (adx ad C') = 0, contrary to the
nondegeneracy of k on C. O

Now the root space decomposition of L becomes
L=He& [] La (2.8)
acd

where Lo = H = CL(H); every h € H is semisimple; for o € ®, every x € L, is nilpotent; relative
to the Killing form , L, L Lg for any a + 8 # 0.
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Cor 2.20. The restriction of k to H = CL,(H) is nondegenerate.

The corollary implies that there is a bijection H* — H such that every a € H* corresponds to
the unique t, € H that satisfies

a(h) = k(ta, h) for all h e H. (2.9)

Ex. The Lie algebra L = sl({ + 1,F) has the root system ® = {e; —¢; | i,j € [( +1], i # j}. Let
us compute to for a« = € — €j. Recall that we have k(x,y) = 2(¢ + 1)Tr(zy) for L = sl(¢ + 1,F).
Suppose to = Zf:;ll trexk € H, then for any h = Ziill sperr € H, we have

{41
Ktas D) =200+ 1) tpsp = a(h) = (e — ;) (h) = s; — s;.
k=1

Therefore,

tej—e; = m(ez‘z‘ — €j5)-

2.4.2 Properties of the Root Space Decomposition

The root space decomposition and the Killing form imply a rich structure of L.
Thm 2.21. The ®, H, and L, have the following properties:
1. ® spans H*.

2. If a € ®, then —a € ®; both L, and L_, have dimension 1; for x € Lo, y € L_,, we have

[,y] = K(2,y)ta. (2.10)

In particular, [Lo, L_o] = Fto. The t, satisfies that a(ty) = k(ta,ta) # 0. For any nonzero
Zo € Lg, there exists unique yo € L_q, such that Sy := span (Za, Yo, ha = [Ta, Ya]) is a simple
subalgebra of L isomorphic to sl(2,F) via

0 1 00 1 0
xa»—>[0 0], ya|—>[1 O]’ ha*—>[0 _J. (2.11)
2t

K(tasta)
3. If a € O, then FanN ® = {+a}.

Moreover, ho, = = —h_q s independent of the choice of x.

4. If a,p € @, then B(hy) € Z, and B — B(hq)a € . (The numbers S(hy) are called Cartan

integers. )

5. Let a, B € @, f # +a. Letr, q be (resp.) the largest integers for which  — ra, + qa are
roots. Then all 5+ ia € ® for —r < i < q, and the Cartan integer 5(hy) =1 — q.

6. If o, B,ac+ B € ®, then [La, Lg] = Lot 3.

Proof. 1. If ® does not span H*, there exists a nonzero h € H s.t. a(h) = 0 Va € ®. So
[h, Lo] = 0 Voo € . Moreover, [h, H] = 0. Hence h € Z(L) = 0, a contradiction.
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2. If o€ ® but —a € @, then o+  # 0 for any f =0 or 5 € ®, so that k(Lq, Lg) = 0. Thus

k(Lq, L) = 0, contradicting the nondegeneracy of k. So —a € ®.
Suppose x € Ly, y € L_,, are nonzero. Then for any h € H,

w(h [2,y] = k(2 9)ta) = (b, [2,y]) = K(h, 52, y)ta)
= k(b z],y) — w2, y)r(h, ta) = a(h)r(z, y) — a(h)r(z,y) = 0.
Therefore, [z,y] = k(x,y)to. The relation also holds if one of z and y is zero. Now

Kk(La, L—_o) # 0 since otherwise k(Ly, L) = 0, a contradiction to nondegeneracy of k. So
(Lo, L_o] = Fta.

If 0 = Kk(ta,ta) = a(ta), then [ty,x] = 0 = [ta,y]. The Lie subalgebra S = span(zx,y,t,) is
solvable. So ad 1S is solvable, and Lie’s theorem implies that ad rt, € ad [S, S] is nilpotent.
Then t, is nilpotent. However, t, € H is semisimple. We have ¢, = 0, a contradiction. Hence

K(ta,ta) # 0.

2
For any nonzero z, € Lg, let yo € L_, such that k(zq,ya) = W; let he = [Zas Yal-
Rlla, la
Clearly
ho = —2 L [hes 7a] = alhe) e = 200 [hes ya] = —2
oa = /ﬁ(tmta) = —as ary Lo = O\ N )T = 4T q, oy Ya] = Ya-

So the Lie subalgebra S, := span(zq, Yo, he) is isomorphic to sl(2, F) via (2.11]).

Consider the subspace M of L spanned by H along with all root spaces of the form L.,
(c € F*). M is a S,y-submodule so that it is a direct sum of irreducible S,-modules V' (m)
for m € Z*. The Kera is a codimension 1 subspace in H complement to Fh,, that is,
Kera @& Fh, = H. Since S, acts trivially on Ker o, the V(m) components of M with even
integers m is S, @ Ker . In particular, 2a. ¢ ®. Then %a ¢ ® as well (otherwise, replacing o
by 3o and we will get contradiction). So M doesn’t have V(m) summands for odd integers
m. Hence

M =S5, & Kera. (2.12)

In particular, dim L, = dim L_, = 1.

. It is obvious by (2.12)).

. For 8 € ®, we consider the Sy-action on Lg. The subspace

Mg =Y Lgyia (2.13)
iez

is a Sq-module of L. In particular, Lg is a weight space of h, with the weight 3(hy), which
must be in Z. Then —f(hy) € Z is also a weight of Mg. Since —f(hy) = (8 — B(ha)a)(ha),
we have 8 — B(hq)a € .

. Now assume 8 # +a in the above paragraph. Then no 5+i« can be 0. Each root space is one

dimensional, and the integral weights appearing in M3 has the form (5+ia)(ha) = B(ha)+21,
which covers 0 or 1 exactly once. Therefore, Mg is an irreducible S,-module. Let r, g be
(resp.) the largest integers for which § — ra, 8 + ga are roots. Then all 5+ ia € @ for
—r <14 < q. The highest (resp. lowest) weight is (8+qa)(ha) = B(ha)+2q (resp. B(ha)—2r.)
The symmetry of weights implies that B(ha) + 2¢ + S(ha) — 2r = 0, that is, B(he) =7 — q.
We call § —ra,---,3,---, B+ qa the a-string through 2.
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6. In the S,-module Mg, obviously [La, Lg] = Lq+g-

Consider F = C case. Let

E::ZRQ

acd

be the real span of ®. Then £ C H* with dimg F = dimp H* since ® spans H*. We may tranfer
the nondegenerate Killing form from H to H* by

(7,0) := K(ty, ts5) for all ~v,6 € H*. (2.14)
Some properties of ® can be rephrased as follow.
Thm 2.22. Let (9, E) be defined from (L, H) as above. Then:
1. ® spans E, and 0 ¢ ®.

2. If a € ®, then —a € ®, and no other scalar multiple of « is in P.

2(8, @) 2(B8, )

(o, ) (o, @)

The set @ is called a root system in E. We will completely classify all (®, E) for simple Lie
algebras in the next Chapter.

3. If a,8 € @, then § — € ®, where = B(ha) € Z is a Cartan integer.



