2.4 Root space decomposition

Let L denote a semisimple Lie algebra in this section. We will study the detailed structure of L through its adjoint representation.

2.4.1 Maximal toral subalgebra and root space decomposition

The semisimple Lie algera L contains the semisimple part and nilpotent part of all its elements. Since L is not nilpotent, Engel's theorem ensures that there is a non-nilpotent $x \in L$, which has a nonzero semisimple part $x_s \in L$. Hence Fx_s is a nonzero subalgebra consisting of semisimple elements, called a **toral** subalgebra. So there exists a nonzero **maximal toral subalgebra** in L. The following result is a rough analogy to Engel's theorem.

Lem 2.16. A toral subalgebra of L is abelian.

Proof. Suppose T is a toral subalgebra of L. We need ad $_Tx = 0$ for all $x \in T$. The semisimplicity of x implies that ad $_Tx$ is diagonalizable. If ad $_Tx$ has a nonzero eigenvalue α , then there is nonzero $y \in T$ such that $[x, y] = \alpha y$. Then $(\text{ad }_Ty)^2(x) = [y, [y, x]] = 0$. However, y is also semisimple, and ad $_Ty$ is diagonalizable. We can express x as a linear combination of linear independent eigenvectors $\{x_i\}$ of ad $_Ty$:

$$x = \sum_{i} a_i x_i, \qquad a_i \neq 0, \quad \operatorname{ad}_T y(x_i) = \lambda_i x_i.$$

Then $0 = (\operatorname{ad}_T y)^2(x) = \sum_i a_i \lambda_i^2 x_i$, which implies that all $\lambda_i = 0$. Therefore, $-\alpha y = (\operatorname{ad}_T y)(x) = \sum_i a_i \lambda_i x_i = 0$, which is a contradiction. So T must be abelian.

Now fix a maximal toral subalgebra H of L. Then $\operatorname{ad}_{L}H$ is a commuting family of semsimple elements. So $\operatorname{ad}_{L}H$ is similateously diagonalizable (exercise). L is the direct sum of some common eigenspaces of $\operatorname{ad}_{L}H$:

$$L_{\alpha} = \{ x \in L \mid [h, x] = \alpha(h)x \}, \qquad \alpha \in H^*.$$

$$(2.4)$$

In particular,

$$H \subseteq L_0 = C_L(H),$$
 the centralizer of H in L . (2.5)

Each nonzero $\alpha \in H^*$ for which $L_{\alpha} \neq 0$ is called a **root**; the set of all roots is denoted by Φ . Then we get the **root space decomposition**:

$$L = C_L(H) \oplus \coprod_{\alpha \in \Phi} L_{\alpha}.$$
 (2.6)

Ex. Suppose $L = \mathfrak{sl}(\ell+1, F)$. Let $h_i := e_{i,i} - e_{i+1,i+1}$ for $i \in [\ell]$. Then $H := \sum_{i \in [\ell]} Fh_i$ is a maximal

torus subalgebra of L, and $C_L(H) = H$. Denote by $\epsilon_i \in H^*$ the linear functional that takes the *i*-th diagonal entry of elements of H. Then each e_{ij} $(i, j \in [\ell + 1], i \neq j)$ is a common eigenvector for elements of H, such that for $h \in H$, $(ad_L h)(e_{ij}) = [h, e_{ij}] = (\epsilon_i - \epsilon_j)(h)e_{ij}$. Therefore, $\mathfrak{sl}(\ell + 1, F)$ has the root space decomposition (exercise)

$$\mathfrak{sl}(\ell+1, \mathbf{F}) = H \oplus \coprod_{\substack{i \neq j \\ i, j \in [\ell+1]}} \mathbf{F}e_{ij}, \quad where$$

the set of roots $\Phi := \{\epsilon_i - \epsilon_j \mid i, j \in [\ell+1], i \neq j\}.$

- **Thm 2.17.** 1. For $\alpha, \beta \in H^*$, $[L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta}$. In particular, if $\alpha \neq 0$ and $x \in L_{\alpha}$, then $\operatorname{ad} x$ is nilpotent.
 - 2. If $\alpha, \beta \in H^*$ and $\alpha + \beta \neq 0$, then $L_{\alpha} \perp L_{\beta}$ relative to the Killing form κ of L.

Proof. Let $\alpha, \beta \in H^*$, $h \in H$, $x \in L_{\alpha}$, $y \in L_{\beta}$ be arbitrary.

1.

ad
$$h([x, y]) = [[h, x], y] + [x, [h, y]] = \alpha(h)[x, y] + \beta(h)[x, y] = (\alpha + \beta)(h)[x, y].$$

So $[L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta}$. If $\alpha \neq 0$ and $x \in L_{\alpha}$, then ad x is nilpotent according to the root space decomposition of L.

2. If $\alpha + \beta \neq 0$, then

$$\begin{split} \kappa([h,x],y) &= -\kappa([x,h],y) = -\kappa(x,[h,y]) &\Rightarrow & \alpha(h)\kappa(x,y) = -\beta(h)\kappa(x,y) \\ &\Rightarrow & (\alpha+\beta)(h)\kappa(x,y) = 0 \quad \text{for any } h \in H \\ &\Rightarrow & \kappa(x,y) = 0. \end{split}$$

Hence $L_{\alpha} \perp L_{\beta}$ relative to the Killing form κ of L.

Theorem 2.17 and the nondegeneracy of κ in L imply $\kappa(L_{\alpha}, L_{-\alpha}) \neq 0$ and the following result.

Cor 2.18. The restriction of the Killing form to $L_0 = C_L(H)$ is nondegenerate.

Proof. In the root space decomposition $L = C_L(H) \oplus \prod_{\alpha \in \Phi} L_\alpha$, $C_L(H) = L_0$ is orthogonal to all L_α for $\alpha \in \Phi$ relative to κ . Since κ is nondegenerate on L, it must be nondegenerate on $C_L(H)$ as well.

Remark. The restriction of κ to C is $\kappa(x, y) = Tr(\operatorname{ad} x \operatorname{ad} y)$ for $x, y \in C$, instead of $\kappa'(x, y) = Tr(\operatorname{ad}_{C} x \operatorname{ad}_{C} y)$. In fact, H is in the radical of κ' , so that κ' is dengerate.

Ex. We verify Theorem 2.17 for $L = \mathfrak{sl}(\ell + 1, F)$ with the root space decomposition:

$$\mathfrak{sl}(\ell+1,\mathrm{F}) = H \oplus \coprod_{\substack{i \neq j \ i,j \in [\ell+1]}} \mathrm{F}e_{ij}$$

1. The root space $Fe_{ij} = L_{\epsilon_i - \epsilon_j}$. We have

$$[L_{\epsilon_i-\epsilon_j}, L_{\epsilon_p-\epsilon_q}] = [Fe_{ij}, Fe_{pq}] = \delta_{jp}Fe_{iq} - \delta_{qi}Fe_{pj} = \begin{cases} 0 & \text{if } p \neq j, \ q \neq i \\ Fe_{iq} & \text{if } p = j, \ q \neq i \\ Fe_{pj} & \text{if } p \neq j, \ q = i \\ F(e_{ii} - e_{jj}) & \text{if } p = j, \ q = i \end{cases} \subseteq L_{\epsilon_i-\epsilon_j+\epsilon_p-\epsilon_q}$$

2. In $\mathfrak{sl}(\ell+1, F)$, it is known that $\kappa(x, y) = 2(\ell+1)\operatorname{Tr}(xy)$. We can examine the orthogonal relationship of the root spaces, using the basis

$$\mathcal{B} := \{ h_i \mid i \in [\ell] \} \cup \{ e_{ij} \mid i, j \in [\ell+1], i \neq j \}.$$

(a) $\kappa(h_i, h_i) = 4(\ell + 1), \ \kappa(h_i, h_{i+1}) = -2(\ell + 1), \ \kappa(h_i, h_j) = 0 \text{ for } |j - i| > 1.$ In particular, a basis dual to $\{h_i \mid i \in [\ell]\}$ consists of

$$g_i := \frac{\ell + 1 - i}{2(\ell + 1)^2} \sum_{s=1}^{i} e_{ss} - \frac{i}{2(\ell + 1)^2} \sum_{t=i+1}^{\ell + 1} e_{tt}.$$
(2.7)

We can verify that $\kappa(h_i, g_j) = \delta_{ij}$.

$$\begin{array}{ll} (b) \ \kappa(h_i, e_{pq}) = 2(\ell+1) \mathrm{Tr}(h_i e_{pq}) = 2(\ell+1)(\epsilon_p - \epsilon_q)(h_i) \mathrm{Tr}(e_{pq}) = 0. \ So \ H \perp \mathrm{F}e_{pq}. \\ (c) \ \kappa(e_{ij}, e_{pq}) = 2(\ell+1) \mathrm{Tr}(e_{ij} e_{pq}) = \begin{cases} 2(\ell+1), & (p,q) = (j,i), \\ 0, & otherwise. \end{cases} \\ So \ \mathrm{F}e_{ij} \perp \mathrm{F}e_{pq} \ whenever \ (p,q) \neq (j,i). \end{cases}$$

The above case study shows that $L_{\alpha} \perp L_{\beta}$ whenever $\alpha + \beta \neq 0$.

Thm 2.19. Any maximal toral subalgebra H of L satisfies that $H = C_L(H)$.

Proof. The proof is proceeded in several steps:

(1) C contains the semisimple and nilpotent parts of its elements. If $x \in C$, then $\operatorname{ad} x(H) \subseteq H$, so that

$$\operatorname{ad} x_s(H) = (\operatorname{ad} x)_s(H) \subseteq H, \quad \operatorname{ad} x_n(H) = (\operatorname{ad} x)_n(H) \subseteq H.$$

Hence $x_s, x_n \in C$.

- (2) All semisimple elements of C lie in H. If $x \in C$ is semisimple, then H + Fx is an abelian subalgebra consisting of semisimple elements. Since H is a maximal toral subalgbra, we have H + Fx = H and thus $x \in H$.
- (3) C is nilpotent. For any $x \in C$, $x = x_s + x_n$. The semisimple part x_s lies in H, so that $\operatorname{ad}_C x_s = 0$, and thus $\operatorname{ad}_C x = \operatorname{ad}_C x_n$ is nilpotent. By Engel's Theorem, C is nilpotent.
- (4) The restriction of κ to H is nondegenerate. Let $\kappa(h, H) = 0$ for some $h \in H$; we show that h = 0. If $x \in C$ is nilpotent, then ad x is nilpotent and commutes with ad h (since [x, h] = 0). So ad x ad h is nilpotent and $\kappa(x, h) = \text{Tr}(\text{ad } x \text{ ad } h) = 0$. By (1) and (2), we see that $\kappa(h, C) = 0$, which forces h = 0 by the nondegeneracy of κ on C.
- (5) *C* is abelian. Otherwise $[C, C] \neq 0$, *C* being nilpotent by (3). Then $Z(C) \cap [C, C] \neq 0$, since the nilpotent ad *C*-action on [C, C] annihilates a nonzero element *z*, which must be in $Z(C) \cap [C, C]$. The associativity of κ implies that $\kappa(H, [C, C]) = 0$. The nondegeneracy of κ on *H* by (4) implies that $H \cap [C, C] = 0$. So $z \notin H$, and its nilpotent part $z_n \in C - \{0\}$. Then ad z_n is nilpotent and commutes with ad *C*, so that $\kappa(z_n, C) = 0$, contarary to the nondegeneracy of κ on *C* (Corollary 2.18).
- (6) C = H. Otherwise C contains a nonzero nilpotent element x by (1), (2). Then $\operatorname{ad} x$ is nilpotent, and [x, C] = 0 by (5) implies that $\kappa(x, C) = \operatorname{Tr}(\operatorname{ad} x \operatorname{ad} C) = 0$, contrary to the nondegeneracy of κ on C.

Now the root space decomposition of L becomes

$$L = H \oplus \coprod_{\alpha \in \Phi} L_{\alpha} \tag{2.8}$$

where $L_0 = H = C_L(H)$; every $h \in H$ is semisimple; for $\alpha \in \Phi$, every $x \in L_\alpha$ is nilpotent; relative to the Killing form κ , $L_\alpha \perp L_\beta$ for any $\alpha + \beta \neq 0$.

Cor 2.20. The restriction of κ to $H = C_L(H)$ is nondegenerate.

The corollary implies that there is a bijection $H^* \to H$ such that every $\alpha \in H^*$ corresponds to the unique $t_{\alpha} \in H$ that satisfies

$$\alpha(h) = \kappa(t_{\alpha}, h) \quad \text{for all } h \in H.$$
(2.9)

Ex. The Lie algebra $L = \mathfrak{sl}(\ell + 1, F)$ has the root system $\Phi = \{\epsilon_i - \epsilon_j \mid i, j \in [\ell + 1], i \neq j\}$. Let us compute t_α for $\alpha = \epsilon_i - \epsilon_j$. Recall that we have $\kappa(x, y) = 2(\ell + 1)\operatorname{Tr}(xy)$ for $L = \mathfrak{sl}(\ell + 1, F)$. Suppose $t_\alpha = \sum_{k=1}^{\ell+1} t_k e_{kk} \in H$, then for any $h = \sum_{k=1}^{\ell+1} s_k e_{kk} \in H$, we have

$$\kappa(t_{\alpha}, h) = 2(\ell+1) \sum_{k=1}^{\ell+1} t_k s_k = \alpha(h) = (\epsilon_i - \epsilon_j)(h) = s_i - s_j.$$

Therefore,

$$t_{\epsilon_i - \epsilon_j} = \frac{1}{2(\ell + 1)}(e_{ii} - e_{jj})$$

2.4.2 Properties of the Root Space Decomposition

The root space decomposition and the Killing form imply a rich structure of L.

Thm 2.21. The Φ , H, and L_{α} have the following properties:

- 1. Φ spans H^* .
- 2. If $\alpha \in \Phi$, then $-\alpha \in \Phi$; both L_{α} and $L_{-\alpha}$ have dimension 1; for $x \in L_{\alpha}$, $y \in L_{-\alpha}$, we have

$$[x, y] = \kappa(x, y)t_{\alpha}. \tag{2.10}$$

In particular, $[L_{\alpha}, L_{-\alpha}] = Ft_{\alpha}$. The t_{α} satisfies that $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0$. For any nonzero $x_{\alpha} \in L_{\alpha}$, there exists unique $y_{\alpha} \in L_{-\alpha}$ such that $S_{\alpha} := \text{span}(x_{\alpha}, y_{\alpha}, h_{\alpha}) := [x_{\alpha}, y_{\alpha}]$ is a simple subalgebra of L isomorphic to $\mathfrak{sl}(2, F)$ via

$$x_{\alpha} \mapsto \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \qquad y_{\alpha} \mapsto \begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}, \qquad h_{\alpha} \mapsto \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}.$$
 (2.11)

Moreover, $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})} = -h_{-\alpha}$ is independent of the choice of x_{α} .

- 3. If $\alpha \in \Phi$, then $F\alpha \cap \Phi = \{\pm \alpha\}$.
- 4. If $\alpha, \beta \in \Phi$, then $\beta(h_{\alpha}) \in \mathbb{Z}$, and $\beta \beta(h_{\alpha})\alpha \in \Phi$. (The numbers $\beta(h_{\alpha})$ are called Cartan integers.)
- 5. Let $\alpha, \beta \in \Phi$, $\beta \neq \pm \alpha$. Let r, q be (resp.) the largest integers for which $\beta r\alpha, \beta + q\alpha$ are roots. Then all $\beta + i\alpha \in \Phi$ for $-r \leq i \leq q$, and the Cartan integer $\beta(h_{\alpha}) = r q$.
- 6. If $\alpha, \beta, \alpha + \beta \in \Phi$, then $[L_{\alpha}, L_{\beta}] = L_{\alpha+\beta}$.
- *Proof.* 1. If Φ does not span H^* , there exists a nonzero $h \in H$ s.t. $\alpha(h) = 0 \ \forall \alpha \in \Phi$. So $[h, L_{\alpha}] = 0 \ \forall \alpha \in \Phi$. Moreover, [h, H] = 0. Hence $h \in Z(L) = 0$, a contradiction.

2. If $\alpha \in \Phi$ but $-\alpha \notin \Phi$, then $\alpha + \beta \neq 0$ for any $\beta = 0$ or $\beta \in \Phi$, so that $\kappa(L_{\alpha}, L_{\beta}) = 0$. Thus $\kappa(L_{\alpha}, L) = 0$, contradicting the nondegeneracy of κ . So $-\alpha \in \Phi$.

Suppose $x \in L_{\alpha}$, $y \in L_{-\alpha}$ are nonzero. Then for any $h \in H$,

$$\begin{split} \kappa(h,[x,y]-\kappa(x,y)t_{\alpha}) &= \kappa(h,[x,y])-\kappa(h,\kappa(x,y)t_{\alpha}) \\ &= \kappa([h,x],y)-\kappa(x,y)\kappa(h,t_{\alpha}) = \alpha(h)\kappa(x,y)-\alpha(h)\kappa(x,y) = 0. \end{split}$$

Therefore, $[x, y] = \kappa(x, y)t_{\alpha}$. The relation also holds if one of x and y is zero. Now $\kappa(L_{\alpha}, L_{-\alpha}) \neq 0$ since otherwise $\kappa(L_{\alpha}, L) = 0$, a contradiction to nondegeneracy of κ . So $[L_{\alpha}, L_{-\alpha}] = Ft_{\alpha}$.

If $0 = \kappa(t_{\alpha}, t_{\alpha}) = \alpha(t_{\alpha})$, then $[t_{\alpha}, x] = 0 = [t_{\alpha}, y]$. The Lie subalgebra $S = \operatorname{span}(x, y, t_{\alpha})$ is solvable. So $\operatorname{ad}_{L}S$ is solvable, and Lie's theorem implies that $\operatorname{ad}_{L}t_{\alpha} \in \operatorname{ad}_{L}[S, S]$ is nilpotent. Then t_{α} is nilpotent. However, $t_{\alpha} \in H$ is semisimple. We have $t_{\alpha} = 0$, a contradiction. Hence $\kappa(t_{\alpha}, t_{\alpha}) \neq 0$.

For any nonzero $x_{\alpha} \in L_{\alpha}$, let $y_{\alpha} \in L_{-\alpha}$ such that $\kappa(x_{\alpha}, y_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}$; let $h_{\alpha} := [x_{\alpha}, y_{\alpha}]$. Clearly

$$h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})} = -h_{-\alpha}, \quad [h_{\alpha}, x_{\alpha}] = \alpha(h_{\alpha})x_{\alpha} = 2x_{\alpha}, \quad [h_{\alpha}, y_{\alpha}] = -2y_{\alpha}$$

So the Lie subalgebra $S_{\alpha} := \operatorname{span}(x_{\alpha}, y_{\alpha}, h_{\alpha})$ is isomorphic to $\mathfrak{sl}(2, F)$ via (2.11).

Consider the subspace M of L spanned by H along with all root spaces of the form $L_{c\alpha}$ $(c \in F^*)$. M is a S_{α} -submodule so that it is a direct sum of irreducible S_{α} -modules V(m)for $m \in \mathbb{Z}^+$. The Ker α is a codimension 1 subspace in H complement to Fh_{α} , that is, Ker $\alpha \oplus Fh_{\alpha} = H$. Since S_{α} acts trivially on Ker α , the V(m) components of M with even integers m is $S_{\alpha} \oplus \text{Ker } \alpha$. In particular, $2\alpha \notin \Phi$. Then $\frac{1}{2}\alpha \notin \Phi$ as well (otherwise, replacing α by $\frac{1}{2}\alpha$ and we will get contradiction). So M doesn't have V(m) summands for odd integers m. Hence

$$M = S_{\alpha} \oplus \operatorname{Ker} \alpha. \tag{2.12}$$

In particular, dim $L_{\alpha} = \dim L_{-\alpha} = 1$.

- 3. It is obvious by (2.12).
- 4. For $\beta \in \Phi$, we consider the S_{α} -action on L_{β} . The subspace

$$M_{\beta} := \sum_{i \in \mathbf{Z}} L_{\beta + i\alpha} \tag{2.13}$$

is a S_{α} -module of L. In particular, L_{β} is a weight space of h_{α} with the weight $\beta(h_{\alpha})$, which must be in \mathbf{Z} . Then $-\beta(h_{\alpha}) \in \mathbf{Z}$ is also a weight of M_{β} . Since $-\beta(h_{\alpha}) = (\beta - \beta(h_{\alpha})\alpha)(h_{\alpha})$, we have $\beta - \beta(h_{\alpha})\alpha \in \Phi$.

5. Now assume $\beta \neq \pm \alpha$ in the above paragraph. Then no $\beta + i\alpha$ can be 0. Each root space is one dimensional, and the integral weights appearing in M_{β} has the form $(\beta + i\alpha)(h_{\alpha}) = \beta(h_{\alpha}) + 2i$, which covers 0 or 1 exactly once. Therefore, M_{β} is an irreducible S_{α} -module. Let r, q be (resp.) the largest integers for which $\beta - r\alpha$, $\beta + q\alpha$ are roots. Then all $\beta + i\alpha \in \Phi$ for $-r \leq i \leq q$. The highest (resp. lowest) weight is $(\beta + q\alpha)(h_{\alpha}) = \beta(h_{\alpha}) + 2q$ (resp. $\beta(h_{\alpha}) - 2r$.) The symmetry of weights implies that $\beta(h_{\alpha}) + 2q + \beta(h_{\alpha}) - 2r = 0$, that is, $\beta(h_{\alpha}) = r - q$. We call $\beta - r\alpha, \dots, \beta, \dots, \beta + q\alpha$ the α -string through β .

6. In the S_{α} -module M_{β} , obviously $[L_{\alpha}, L_{\beta}] = L_{\alpha+\beta}$.

Consider F = C case. Let

$$E:=\sum_{\alpha\in\Phi}\mathbf{R}\alpha$$

be the real span of Φ . Then $E \subseteq H^*$ with $\dim_{\mathbf{R}} E = \dim_{\mathbf{F}} H^*$ since Φ spans H^* . We may transfer the nondegenerate Killing form from H to H^* by

$$(\gamma, \delta) := \kappa(t_{\gamma}, t_{\delta}) \quad \text{for all } \gamma, \delta \in H^*.$$
 (2.14)

Some properties of Φ can be rephrased as follow.

Thm 2.22. Let (Φ, E) be defined from (L, H) as above. Then:

- 1. Φ spans E, and $0 \notin \Phi$.
- 2. If $\alpha \in \Phi$, then $-\alpha \in \Phi$, and no other scalar multiple of α is in Φ .

3. If
$$\alpha, \beta \in \Phi$$
, then $\beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \Phi$, where $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} = \beta(h_{\alpha}) \in \mathbf{Z}$ is a Cartan integer.

The set Φ is called a **root system** in *E*. We will completely classify all (Φ, E) for simple Lie algebras in the next Chapter.