
Chapter 3

Root Systems

3.1 Introduction

3.1.1 Reflections in a euclidean space

A eucludean space E is a finite dimensional vector space endowed with an inner product (, ) (i.e.
a positive definite symmetric bilinear form). The main objective of this chapter is the root systems
in a fixed euclidean space E.

Every vector α ∈ E has an orthogonal complement in E: Pα := α⊥ = {β ∈ E | (α, β) = 0},
which has codimension 1 and is called a hyperplane. There is a unique σα ∈ End (E) s.t.

σα(α) = −α, σα|Pα = idPα . (3.1)

In other words, σα ∈ End (E) satisfies that σ2α = 1, σα has Pα as +1-eigenspace and Rα as −1-
eigenspace. σα is called a reflection. Obviously, σα preserves the lengths of vectors in E, so that
σα preserves (, ).

Every β ∈ E can be decomposed as

β =

(
β − (β, α)

(α, α)
α

)
+

(β, α)

(α, α)
α,

(
β − (β, α)

(α, α)
α

)
⊥ α.

Then the explicit form of σα is given by:

σα(β) = σα

(
β − (β, α)

(α, α)
α

)
+ σα

(
(β, α)

(α, α)
α

)
=

(
β − (β, α)

(α, α)
α

)
− (β, α)

(α, α)
α

= β − 2(β, α)

(α, α)
α. (3.2)

We define

⟨β, α⟩ :=
2(β, α)

(α, α)
(3.3)

which is linear in the first component. So σα(β) = β − ⟨β, α⟩α.

Lem 3.1. Suppose Φ is a finite set that spans E, and all reflections σα (α ∈ Φ) leave Φ invariant.
If σ ∈ GL(E) leaves Φ invariant, sends a nonzero α ∈ Φ to −α, and fixes pointwise a hyperplane
P of E, then σ = σα.

Proof. Let τ = σσα.
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1. τ acts as identity on Rα as well as on E/Rα. So all eigenvalues of τ are 1.

2. τ(Φ) = Φ, so that τ permutes the elements of Φ. There exists k ∈ Z+ such that τk fixes all
elements of Φ. Then τk = 1 since Φ spans E. So τ is diagonalizable.

Overall, τ = 1 and σ = σ−1
α = σα.

3.1.2 Root systems

Def. A root system of euclidean space E is a subset Φ of E that statisfies:

(R1) Φ is finite, spans E, and does not contain 0.

(R2) If α ∈ Φ, then Rα ∩ Φ = {±α}.

(R3) If α ∈ Φ, the reflection σα leaves Φ invariant.

(R4) If α, β ∈ Φ, then ⟨β, α⟩ ∈ Z.

Def. The group W generated by reflections {σα | α ∈ Φ} is a finite subgroup of permutations of Φ.
We call W the Weyl group of Φ.

Ex. For semisimple Lie algebras L, the Φ we obtained in the last section are root systems.

Lem 3.2. Let Φ be a root system in E, with Weyl group W. If σ ∈ GL(E) leaves Φ invariant,
then σσασ

−1 = σσ(α) for all α ∈ Φ, and ⟨β, α⟩ = ⟨σ(β), σ(α)⟩ for all α, β ∈ Φ.

Proof. First, σ permutes Φ; so does σ−1. Hence σσασ
−1 leaves Φ invariant. Second, σσασ

−1 fixes
the hyperplane σ(Pα), and

σσασ
−1(σ(α)) = σσα(α) = −σ(α).

Therefore, Lemma 3.1 implies that σσασ
−1 = σσ(α). Moreover,

σσ(α)(σ(β)) = σ(β)− ⟨σ(β), σ(α)⟩σ(α),

σσασ
−1(σ(β)) = σ (β − ⟨β, α⟩α) = σ(β)− ⟨β, α⟩σ(α).

Thus ⟨β, α⟩ = ⟨σ(β), σ(α)⟩.

For a root system Φ, any pair α, β ∈ Φ should make ⟨α, β⟩, ⟨β, α⟩ ∈ Z. Let θ ∈ [0, π] be the
angle between α and β. Then

⟨α, β⟩⟨β, α⟩ =
2(α, β)

(β, β)

2(β, α)

(α, α)
= 4 cos2 θ ∈ Z.

The possible values of 4 cos2 θ are: 0, 1, 2, 3, 4. Therefore, when β ̸= ±α, the angle θ could be
π/2, π/3, 2π/3, π/4, 3π/4, π/6, 5π/6. Table 1 (p.45) lists all possible combinations in a root system.
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Def. We call ℓ := dimE the rank of the root system Φ.

Ex. The only rank 1 root system is:

We can associate it with the root system of sl(2,F).

Ex. The rank 2 root systems include 4 cases: (see p.44)

The
first two could be associate with the root systems of sl(2,F)× sl(2,F) and sl(3,F) respectively.

Table 1 also implies the following lemma:

Lem 3.3. Suppose α, β ∈ Φ and β ̸= ±α. If (α, β) > 0, then α − β is a root. If (α, β) < 0, then
α+ β is a root.

Proof. If (α, β) > 0, then ⟨α, β⟩ > 0. Table 1 shows that at least one of ⟨α, β⟩ and ⟨β, α⟩ equals 1.
If ⟨α, β⟩ = 1, then σβ(α) = α − β ∈ Φ. Similarly, if ⟨β, α⟩ = 1, then σα(β) = β − α ∈ Φ, so that
α− β ∈ Φ. The proof is similar for (α, β) < 0.

As an application, if α, β ∈ Φ and β ̸= ±α, and r, q ∈ N are the largest integers such that
β − rα and β + qα are roots, then we can use the lemma to show that β + iα ∈ Φ for any integer i
with −r ≤ i ≤ q (why?). By σα(β + qα) = β − rα, we will get r − q = ⟨β, α⟩, so that any α-string
through β has length at most 4 (since we can start at an extreme vector with r = 0 or q = 0).


