Chapter 3

Root Systems

3.1 Introduction

3.1.1 Reflections in a euclidean space

A eucludean space E is a finite dimensional vector space endowed with an inner product (,) (i.e. a positive definite symmetric bilinear form). The main objective of this chapter is the root systems in a fixed euclidean space E.

Every vector $\alpha \in E$ has an orthogonal complement in E: $P_{\alpha} := \alpha^{\perp} = \{\beta \in E \mid (\alpha, \beta) = 0\}$, which has codimension 1 and is called a **hyperplane**. There is a unique $\sigma_{\alpha} \in \text{End}(E)$ s.t.

$$\sigma_{\alpha}(\alpha) = -\alpha, \qquad \sigma_{\alpha}|_{P_{\alpha}} = id_{P_{\alpha}}.$$
(3.1)

In other words, $\sigma_{\alpha} \in \text{End}(E)$ satisfies that $\sigma_{\alpha}^2 = 1$, σ_{α} has P_{α} as +1-eigenspace and $\mathbf{R}\alpha$ as -1eigenspace. σ_{α} is called a **reflection**. Obviously, σ_{α} preserves the lengths of vectors in E, so that σ_{α} preserves (,).

Every $\beta \in E$ can be decomposed as

$$\beta = \left(\beta - \frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha\right) + \frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha, \qquad \left(\beta - \frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha\right) \perp \alpha.$$

Then the explicit form of σ_{α} is given by:

$$\sigma_{\alpha}(\beta) = \sigma_{\alpha} \left(\beta - \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha \right) + \sigma_{\alpha} \left(\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha \right) = \left(\beta - \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha \right) - \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$$
$$= \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha.$$
(3.2)

We define

$$\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \tag{3.3}$$

which is linear in the first component. So $\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha$.

Lem 3.1. Suppose Φ is a finite set that spans E, and all reflections σ_{α} ($\alpha \in \Phi$) leave Φ invariant. If $\sigma \in GL(E)$ leaves Φ invariant, sends a nonzero $\alpha \in \Phi$ to $-\alpha$, and fixes pointwise a hyperplane P of E, then $\sigma = \sigma_{\alpha}$.

Proof. Let $\tau = \sigma \sigma_{\alpha}$.

- 1. τ acts as identity on $\mathbf{R}\alpha$ as well as on $E/\mathbf{R}\alpha$. So all eigenvalues of τ are 1.
- 2. $\tau(\Phi) = \Phi$, so that τ permutes the elements of Φ . There exists $k \in \mathbb{Z}^+$ such that τ^k fixes all elements of Φ . Then $\tau^k = 1$ since Φ spans E. So τ is diagonalizable.

Overall, $\tau = 1$ and $\sigma = \sigma_{\alpha}^{-1} = \sigma_{\alpha}$.

3.1.2 Root systems

Def. A root system of euclidean space E is a subset Φ of E that statisfies:

- (R1) Φ is finite, spans E, and does not contain 0.
- (R2) If $\alpha \in \Phi$, then $\mathbf{R}\alpha \cap \Phi = \{\pm \alpha\}$.
- (R3) If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant.
- (R4) If $\alpha, \beta \in \Phi$, then $\langle \beta, \alpha \rangle \in \mathbf{Z}$.

Def. The group \mathcal{W} generated by reflections $\{\sigma_{\alpha} \mid \alpha \in \Phi\}$ is a finite subgroup of permutations of Φ . We call \mathcal{W} the **Weyl group** of Φ .

Ex. For semisimple Lie algebras L, the Φ we obtained in the last section are root systems.

Lem 3.2. Let Φ be a root system in E, with Weyl group \mathcal{W} . If $\sigma \in GL(E)$ leaves Φ invariant, then $\sigma\sigma_{\alpha}\sigma^{-1} = \sigma_{\sigma(\alpha)}$ for all $\alpha \in \Phi$, and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$ for all $\alpha, \beta \in \Phi$.

Proof. First, σ permutes Φ ; so does σ^{-1} . Hence $\sigma \sigma_{\alpha} \sigma^{-1}$ leaves Φ invariant. Second, $\sigma \sigma_{\alpha} \sigma^{-1}$ fixes the hyperplane $\sigma(P_{\alpha})$, and

$$\sigma\sigma_{\alpha}\sigma^{-1}(\sigma(\alpha)) = \sigma\sigma_{\alpha}(\alpha) = -\sigma(\alpha).$$

Therefore, Lemma 3.1 implies that $\sigma \sigma_{\alpha} \sigma^{-1} = \sigma_{\sigma(\alpha)}$. Moreover,

$$\sigma_{\sigma(\alpha)}(\sigma(\beta)) = \sigma(\beta) - \langle \sigma(\beta), \sigma(\alpha) \rangle \sigma(\alpha),$$

$$\sigma\sigma_{\alpha}\sigma^{-1}(\sigma(\beta)) = \sigma(\beta - \langle \beta, \alpha \rangle \alpha) = \sigma(\beta) - \langle \beta, \alpha \rangle \sigma(\alpha).$$

Thus $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$.

For a root system Φ , any pair $\alpha, \beta \in \Phi$ should make $\langle \alpha, \beta \rangle, \langle \beta, \alpha \rangle \in \mathbf{Z}$. Let $\theta \in [0, \pi]$ be the angle between α and β . Then

$$\langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)} = 4\cos^2 \theta \in \mathbf{Z}.$$

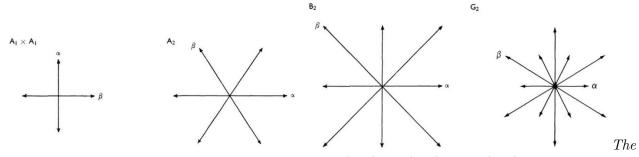
The possible values of $4\cos^2\theta$ are: 0,1,2,3,4. Therefore, when $\beta \neq \pm \alpha$, the angle θ could be $\pi/2, \pi/3, 2\pi/3, \pi/4, 3\pi/4, \pi/6, 5\pi/6$. Table 1 (p.45) lists all possible combinations in a root system. **Table 1.**

<α, β>	$\langle m m m m m m m m m m m m m $	θ	$\ oldsymbol{eta}\ ^2/\ oldsymbol{lpha}\ ^2$
0	0	$\pi/2$	undetermined
1	1	$\pi/3$	1
-1	-1	$2\pi/3$	1
1	2	$\pi/4$	2
-1	-2	$3\pi/4$	2
1	3		3
-1	-3	$\frac{\pi/6}{5\pi/6}$	3

Def. We call $\ell := \dim E$ the rank of the root system Φ .

Ex. The only rank 1 root system is:

Ex. The rank 2 root systems include 4 cases: (see p.44)



first two could be associate with the root systems of $\mathfrak{sl}(2, F) \times \mathfrak{sl}(2, F)$ and $\mathfrak{sl}(3, F)$ respectively.

Table 1 also implies the following lemma:

Lem 3.3. Suppose $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$. If $(\alpha, \beta) > 0$, then $\alpha - \beta$ is a root. If $(\alpha, \beta) < 0$, then $\alpha + \beta$ is a root.

Proof. If $(\alpha, \beta) > 0$, then $\langle \alpha, \beta \rangle > 0$. Table 1 shows that at least one of $\langle \alpha, \beta \rangle$ and $\langle \beta, \alpha \rangle$ equals 1. If $\langle \alpha, \beta \rangle = 1$, then $\sigma_{\beta}(\alpha) = \alpha - \beta \in \Phi$. Similarly, if $\langle \beta, \alpha \rangle = 1$, then $\sigma_{\alpha}(\beta) = \beta - \alpha \in \Phi$, so that $\alpha - \beta \in \Phi$. The proof is similar for $(\alpha, \beta) < 0$.

As an application, if $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$, and $r, q \in \mathbf{N}$ are the largest integers such that $\beta - r\alpha$ and $\beta + q\alpha$ are roots, then we can use the lemma to show that $\beta + i\alpha \in \Phi$ for any integer i with $-r \leq i \leq q$ (why?). By $\sigma_{\alpha}(\beta + q\alpha) = \beta - r\alpha$, we will get $r - q = \langle \beta, \alpha \rangle$, so that any α -string through β has length at most 4 (since we can start at an extreme vector with r = 0 or q = 0).