Chapter 3

Root Systems

3.1 Introduction

3.1.1 Reflections in a euclidean space

A eucludean space E is a finite dimensional vector space endowed with an inner product (,) (i.e. a positive definite symmetric bilinear form). The main objective of this chapter is the root systems in a fixed euclidean space E.

Every vector $\alpha \in E$ has an orthogonal complement in $E: P_{\alpha}:=\alpha^{\perp}=\{\beta \in E \mid(\alpha, \beta)=0\}$, which has codimension 1 and is called a hyperplane. There is a unique $\sigma_{\alpha} \in \operatorname{End}(E)$ s.t.

$$
\begin{equation*}
\sigma_{\alpha}(\alpha)=-\alpha,\left.\quad \sigma_{\alpha}\right|_{P_{\alpha}}=i d_{P_{\alpha}} . \tag{3.1}
\end{equation*}
$$

In other words, $\sigma_{\alpha} \in \operatorname{End}(E)$ satisfies that $\sigma_{\alpha}^{2}=1, \sigma_{\alpha}$ has P_{α} as +1 -eigenspace and $\mathbf{R} \alpha$ as -1eigenspace. σ_{α} is called a reflection. Obviously, σ_{α} preserves the lengths of vectors in E, so that σ_{α} preserves (,).

Every $\beta \in E$ can be decomposed as

$$
\beta=\left(\beta-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha\right)+\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha, \quad\left(\beta-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha\right) \perp \alpha
$$

Then the explicit form of σ_{α} is given by:

$$
\begin{align*}
\sigma_{\alpha}(\beta) & =\sigma_{\alpha}\left(\beta-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha\right)+\sigma_{\alpha}\left(\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha\right)=\left(\beta-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha\right)-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha \\
& =\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha . \tag{3.2}
\end{align*}
$$

We define

$$
\begin{equation*}
\langle\beta, \alpha\rangle:=\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \tag{3.3}
\end{equation*}
$$

which is linear in the first component. So $\sigma_{\alpha}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha$.
Lem 3.1. Suppose Φ is a finite set that spans E, and all reflections $\sigma_{\alpha}(\alpha \in \Phi)$ leave Φ invariant. If $\sigma \in \mathrm{GL}(E)$ leaves Φ invariant, sends a nonzero $\alpha \in \Phi$ to $-\alpha$, and fixes pointwise a hyperplane P of E, then $\sigma=\sigma_{\alpha}$.

Proof. Let $\tau=\sigma \sigma_{\alpha}$.

1. τ acts as identity on $\mathbf{R} \alpha$ as well as on $E / \mathbf{R} \alpha$. So all eigenvalues of τ are 1 .
2. $\tau(\Phi)=\Phi$, so that τ permutes the elements of Φ. There exists $k \in \mathbf{Z}^{+}$such that τ^{k} fixes all elements of Φ. Then $\tau^{k}=1$ since Φ spans E. So τ is diagonalizable.
Overall, $\tau=1$ and $\sigma=\sigma_{\alpha}^{-1}=\sigma_{\alpha}$.

3.1.2 Root systems

Def. A root system of euclidean space E is a subset Φ of E that statisfies:
(R1) Φ is finite, spans E, and does not contain 0 .
(R2) If $\alpha \in \Phi$, then $\mathbf{R} \alpha \cap \Phi=\{ \pm \alpha\}$.
(R3) If $\alpha \in \Phi$, the reflection σ_{α} leaves Φ invariant.
(R4) If $\alpha, \beta \in \Phi$, then $\langle\beta, \alpha\rangle \in \mathbf{Z}$.
Def. The group \mathcal{W} generated by reflections $\left\{\sigma_{\alpha} \mid \alpha \in \Phi\right\}$ is a finite subgroup of permutations of Φ. $W e$ call \mathcal{W} the Weyl group of Φ.

Ex. For semisimple Lie algebras L, the Φ we obtained in the last section are root systems.
Lem 3.2. Let Φ be a root system in E, with Weyl group \mathcal{W}. If $\sigma \in \operatorname{GL}(E)$ leaves Φ invariant, then $\sigma \sigma_{\alpha} \sigma^{-1}=\sigma_{\sigma(\alpha)}$ for all $\alpha \in \Phi$, and $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle$ for all $\alpha, \beta \in \Phi$.
Proof. First, σ permutes Φ; so does σ^{-1}. Hence $\sigma \sigma_{\alpha} \sigma^{-1}$ leaves Φ invariant. Second, $\sigma \sigma_{\alpha} \sigma^{-1}$ fixes the hyperplane $\sigma\left(P_{\alpha}\right)$, and

$$
\sigma \sigma_{\alpha} \sigma^{-1}(\sigma(\alpha))=\sigma \sigma_{\alpha}(\alpha)=-\sigma(\alpha)
$$

Therefore, Lemma 3.1 implies that $\sigma \sigma_{\alpha} \sigma^{-1}=\sigma_{\sigma(\alpha)}$. Moreover,

$$
\begin{aligned}
\sigma_{\sigma(\alpha)}(\sigma(\beta)) & =\sigma(\beta)-\langle\sigma(\beta), \sigma(\alpha)\rangle \sigma(\alpha) \\
\sigma \sigma_{\alpha} \sigma^{-1}(\sigma(\beta)) & =\sigma(\beta-\langle\beta, \alpha\rangle \alpha)=\sigma(\beta)-\langle\beta, \alpha\rangle \sigma(\alpha) .
\end{aligned}
$$

Thus $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle$.
For a root system Φ, any pair $\alpha, \beta \in \Phi$ should make $\langle\alpha, \beta\rangle,\langle\beta, \alpha\rangle \in \mathbf{Z}$. Let $\theta \in[0, \pi]$ be the angle between α and β. Then

$$
\langle\alpha, \beta\rangle\langle\beta, \alpha\rangle=\frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)}=4 \cos ^{2} \theta \in \mathbf{Z} .
$$

The possible values of $4 \cos ^{2} \theta$ are: $0,1,2,3,4$. Therefore, when $\beta \neq \pm \alpha$, the angle θ could be $\pi / 2, \pi / 3,2 \pi / 3, \pi / 4,3 \pi / 4, \pi / 6,5 \pi / 6$. Table 1 (p.45) lists all possible combinations in a root system.

Table 1.

$\langle\alpha, \beta\rangle$	$\langle\beta, \alpha\rangle$	θ	$\\|\beta\\|^{2} /\\|\alpha\\|^{2}$
0	0	$\pi / 2$	undetermined
1	1	$\pi / 3$	1
-1	-1	$2 \pi / 3$	1
1	2	$\pi / 4$	2
-1	-2	$3 \pi / 4$	2
1	3	$\pi / 6$	3
-1	-3	$5 \pi / 6$	3

Def. We call $\ell:=\operatorname{dim} E$ the rank of the root system Φ.
Ex. The only rank 1 root system is:
(A1):

We can associate it with the root system of $\mathfrak{s l}(2, \mathrm{~F})$.
Ex. The rank 2 root systems include 4 cases: (see p.44)
B_{2}

G_{2}

first two could be associate with the root systems of $\mathfrak{s l}(2, \mathrm{~F}) \times \mathfrak{s l}(2, \mathrm{~F})$ and $\mathfrak{s l}(3, \mathrm{~F})$ respectively.
Table 1 also implies the following lemma:
Lem 3.3. Suppose $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$. If $(\alpha, \beta)>0$, then $\alpha-\beta$ is a root. If $(\alpha, \beta)<0$, then $\alpha+\beta$ is a root.

Proof. If $(\alpha, \beta)>0$, then $\langle\alpha, \beta\rangle>0$. Table 1 shows that at least one of $\langle\alpha, \beta\rangle$ and $\langle\beta, \alpha\rangle$ equals 1 . If $\langle\alpha, \beta\rangle=1$, then $\sigma_{\beta}(\alpha)=\alpha-\beta \in \Phi$. Similarly, if $\langle\beta, \alpha\rangle=1$, then $\sigma_{\alpha}(\beta)=\beta-\alpha \in \Phi$, so that $\alpha-\beta \in \Phi$. The proof is similar for $(\alpha, \beta)<0$.

As an application, if $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$, and $r, q \in \mathbf{N}$ are the largest integers such that $\beta-r \alpha$ and $\beta+q \alpha$ are roots, then we can use the lemma to show that $\beta+i \alpha \in \Phi$ for any integer i with $-r \leq i \leq q$ (why?). By $\sigma_{\alpha}(\beta+q \alpha)=\beta-r \alpha$, we will get $r-q=\langle\beta, \alpha\rangle$, so that any α-string through β has length at most 4 (since we can start at an extreme vector with $r=0$ or $q=0$).

