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3.2 Simple Roots and Weyl Group

In this section, we fix a root system Φ of rank ℓ in a euclidean space E, with Weyl group W.

3.2.1 Bases and Weyl chambers

Def. A subset ∆ of Φ is called a base if:

(B1) ∆ is a basis of E,

(B2) Every root β ∈ Φ can be written as β =
∑
α∈∆

kαα with integral coefficients kα all nonnegative

or all nonpositive.

When a base ∆ exists, clearly |∆| = ℓ.

• The roots in ∆ are called simple roots.

• The height of a root β =
∑
α∈∆

kαα is htβ :=
∑
α∈∆

kα.

• Define a partial order ≻ in E, such that λ ≻ µ iff λ − µ is a sum of positive roots or 0.
Then every root β ∈ Φ has either β ≻ 0 (positive) or β ≺ 0 (negative) .

• The collection of positive roots (resp. negative roots) relative to ∆ is denoted Φ+ (resp. Φ−).
Obviously, Φ = Φ+ ⊔ Φ−.

Ex. Find a base for each of the root systems with ℓ = 1 or 2. Determine the heights and partial
orders of the roots w.r.t. the base.

Lem 3.4. If ∆ is a base of Φ, then for any α ̸= β in ∆, (α, β) ≤ 0 and α− β is not a root.

Proof. By (B2), α− β cannot be a root. Therefore (α, β) ≤ 0 by Lemma 3.3.

We will proves the existence and constructs all possible bases of Φ.

Def. 1. A vector γ ∈ E is called regular if γ ∈ E −
∪
α∈Φ

Pα, that is, no α ∈ Φ such that

(γ, α) = 0; otherwise, γ is called singular.

2. For γ ∈ E, define

Φ+(γ) := {α ∈ Φ | (γ, α) > 0},

which consists of the roots lying on the positive side of Pγ.

3. Call α ∈ Φ+(γ) decomposable if α = β1 + β2 for some βi ∈ Φ+(γ), indecomposable
otherwise.

Thm 3.5. Let γ ∈ E be regular. Then the set ∆(γ) of all indecomposable roots in Φ+(γ) is a base
of Φ, and every base is obtainable in this manner.

Proof. It is proceeded in steps.
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1. Each root in Φ+(γ) is a nonnegative Z-linear combination of ∆(γ). Otherwise some α ∈ Φ+(γ)
cannot be so written; choose α that minimizes (γ, α). Obviously, α ̸∈ ∆(γ), so α = β1 + β2
for some βi ∈ Φ+(γ), whence (γ, α) = (γ, β1) + (γ, β2). The regularity of γ implies that
(γ, βi) < (γ, α), so that β1 and β2 must be Z-linear combinations of ∆(γ), whence α also is,
which is a contradiction.

2. If α, β ∈ ∆(γ) and α ̸= β, then (α, β) ≤ 0. Otherwise α−β ∈ Φ by Lemma 3.3. If α−β ∈ Φ+,
then α = (α− β) + β is decomposable, contradicting α ∈ ∆(γ); otherwise β −α ∈ Φ+, which
implies the contradiction that β = (β − α) + α is decomposable.

3. ∆(γ) is a linearly independent set. Otherwise
∑
rαα = 0 for α ∈ ∆(γ), rα ∈ R and some

rα ̸= 0. Seperating the positive coefficientss from the negative ones, we may rewrite it as∑
sαα =

∑
tββ, where sα, tβ > 0, and the sets of α’s and β’s are disjoint. Let ϵ :=

∑
sαα.

Then

0 ≤ (ϵ, ϵ) =
∑
α,β

sαtβ(α, β) ≤ 0.

So that ϵ = 0 and 0 = (γ, ϵ) =
∑
sα(γ, α). The regularity of γ forces all sα = 0. Similarly, all

tβ = 0. (The argument shows that any set of vectors lying strictly on one side of a hyperplane
in E and forming pairwise obtuse angles must be linearly independent.)

4. ∆(γ) is a base of Φ. The regularity of γ implies that Φ = Φ+(γ) ∪ −Φ+(γ). By (1), ∆(γ)
satisfies (B2) and spans Φ+(γ), whence it spans Φ and E.

5. Each base ∆ of Φ has the form ∆(γ) for some regular γ ∈ E. Given ∆, select γ ∈ E so that
(γ, α) > 0 for all α ∈ ∆. Then γ is regular and Φ+ ⊆ Φ+(γ), Φ− ⊆ −Φ+(γ). So Φ+ = Φ+(γ),
and ∆ must consist of indecomposable elements. Hence ∆ ⊆ ∆(γ), which forces ∆ = ∆(γ)
since both are bases of E.

The hyperplanes Pα (α ∈ Φ) partition E into finitely many regions; the connected components

of E −
∪
α∈Φ

Pα are called the (open) Weyl chambers of E. Each regular γ ∈ E belongs to exactly

one Weyl chamber, denoted C(γ).

Lem 3.6. Weyl chambers are in 1-1 correspondence with bases, such that C(γ) ↔ ∆(γ) for any
regular γ ∈ E.

Proof. Two chambers C(γ) = C(γ′) iff γ and γ′ lie on the same side of each hyperplane Pα (α ∈ Φ),
iff Φ+(γ) = Φ+(γ′), iff ∆(γ) = ∆(γ′).

Write C(∆) = C(γ) if ∆ = ∆(γ), and call it the fundamental Weyl chamber relative to ∆.
So C(∆) is the open convex set intersected by all positive sides of Pα (α ∈ ∆), with Pα (α ∈ ∆) as
boundary wall; a vector β ∈ C(∆) iff (β, α) > 0 for all α ∈ ∆.

The reflections in the Weyl groupW can send a Weyl chamber onto any neighborhood chamber,
whence W acts transitively onto Weyl chambers. It implies that W acts transitively on the bases:
for any σ ∈ W, γ ∈ E regular, α ∈ E,

(σγ, σα) = (γ, α), σ(∆(γ)) = ∆(σ(γ)), σ(C(γ)) = C(σ(γ)).
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3.2.2 Further properties of simple roots

Let ∆ be a base of a root system Φ in E. We list some useful auxiliary results on simple roots.

Lem 3.7. If α is a non-simple positive root, then there is β ∈ ∆ such that α− β is a positive root.

Proof. If (α, β) ≤ 0 for all β ∈ ∆, then ∆ ∪ {α} is a set of vectors lying strictly on one side (i.e.
Φ+(γ)) of a hyperplane and be pairwise obtuse. Therefore, ∆ ∪ {α} is a linearly independent set,
which is absurd. Hence (α, β) > 0 for some β ∈ ∆, so that α− β ∈ Φ. Clearly α− β ∈ Φ+.

Cor 3.8. Each positive root β ∈ Φ+ can be written as α1 + α2 + · · ·+ αk (αi ∈ ∆, not necessarily
distinct) such that each partial sum α1 + · · ·+ αi is a positive root.

Proof. Use the lemma and induction on htβ.

Lem 3.9. For any simple root α ∈ ∆, the reflection σα permutes the positive roots other than α.

Proof. Let β ∈ Φ+ − {α} be expressed as β =
∑

γ∈∆ kγγ (kγ ∈ N). Then kµ > 0 for some
µ ∈ ∆−{α}. The root σα(β) = β−⟨β, α⟩α has a term kµµ with positive coefficient kµ. Therefore,
σα(β) ∈ Φ+; moreover, σα(β) ̸= α since σα(−α) = α.

Cor 3.10. Let δ =
1

2

∑
β≻0

β. Then σα(β) = δ − α for all α ∈ ∆.

Lem 3.11. Let σ1, · · · , σt ∈ ∆ (not necessarily distinct). Write σi = σαi. If σ1 · · ·σt−1(αt) ≺ 0,
then there is an index 1 ≤ s < t such that

σ1 · · ·σt = σ1 · · ·σs−1σs+1 · · ·σt−1.

Proof. Write βi = σi+1 · · ·σt−1(αt), 0 ≤ i ≤ t − 2, βt−1 = αt. Then β0 ≺ 0 and βt−1 ≻ 0. We can
find the least index s such that βs ≻ 0. Then σs(βs) = βs−1 ≺ 0, and Lemma 3.9 implies βs = αs.
Recall that σσ(α) = σσασ

−1 for σ ∈ W and α ∈ Φ (Lemma 3.2). Therefore,

σs = σαs = σβs = σσs+1···σt−1(αt) = (σs+1 · · ·σt−1)σt(σt−1 · · ·σs+1),

which leads to σ1 · · ·σt = σ1 · · ·σs−1σs+1 · · ·σt−1.

Cor 3.12. If σ ∈ W is expressed as σ = σ1 · · ·σt, where σi are reflections corresponding to simple
roots and t is minimal, then σ(αt) ≺ 0.

3.2.3 The Weyl Group

We have made the one-to-one correspondence between bases and Weyl chambers of Φ. Now we
show that the Weyl groupW is generated by all “simple relfections”, andW acts simply transitively
on Weyl chambers and bases.

Thm 3.13. Let ∆ be a base of Φ.

1. If γ ∈ E is regular, then there is σ ∈ W such that (σ(γ), α) > 0 for all α ∈ ∆. So W acts
transitively on Weyl chambers.

2. If ∆′ is another base of Φ, then σ(∆′) = ∆ for some σ ∈ W. So W acts transitively on bases.

3. If α is any root, then there is σ ∈ W such that σ(α) ∈ ∆.
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4. W is generated by σα (α ∈ ∆).

5. If σ ∈ ∆ satsifies that σ(∆) = ∆, then σ = 1. So W acts simply transitively on bases.

Proof. LetW ′ denote the subgroup generated by all σα (α ∈ ∆). We prove the first three statements
for W ′ first; then show that W ′ =W.

1. Let δ =
1

2

∑
β≻0

β and choose σ ∈ W ′ for which (σ(γ), δ) is maximal. For every α ∈ ∆, we have

σασ ∈ W ′ so that

(σ(γ), δ) ≥ (σασ(γ), δ) = (σ(γ), σα(δ)) = (σ(γ), δ − α) = (σ(γ), δ)− (σ(γ), α).

Hence (σ(γ), α) = (γ, σ−1(α)) > 0 since γ is regular.

2. W ′ permutes the Weyl chambers, hence it also permutes the bases.

3. It suffices to show that each root belongs to at least one base. For any root α ∈ Φ, we can
choose γ closed enough to Pα such that (γ, α) = ϵ > 0, but |(γ, β)| > ϵ for all β ∈ Φ− {±α}.
Then α ∈ ∆(γ) by the construction of base ∆(γ).

4. For each α ∈ Φ, there exists σ ∈ W ′ such that β = σ(α) ∈ ∆. Then σα = σσ−1(β) = σ−1σβσ ∈
W ′ . Therefore, W ′ contains all reflections σα (α ∈ Φ) and hence W ′ =W.

5. If σ ∈ ∆ satsifies that σ(∆) = ∆ but σ ̸= 1, then σ can be expressed as a product of simple
reflection(s) with minimal length, say σ = σ1 · · ·σt where σi := σαi , αi ∈ ∆. Then Corollary
3.12 shows that σ(αt) ≺ 0, which is a contradiction.

Some additiona properties of Weyl group actions are listed below (See [Humphrey] for the
proofs). When σ ∈ W is expressed as σα1 · · ·σαt (αi ∈ ∆, t minimal), we call it a reduced
expression, and call ℓ(σ) := t the length of σ relative to ∆; we define ℓ(1) := 0. Define

n(σ) = number of positive roots α for which σ(α) ≺ 0.

Lem 3.14. For all σ ∈ W, ℓ(σ) = n(σ).

The next lemma shows that each vector in E isW-conjugate to precisely one point of the closure
of fundamental Weyl chamber C(∆).

Lem 3.15. Let λ, µ ∈ C(∆). If σλ = µ for some σ ∈ W, then σ is a product of simple reflections
which fix λ. In particular λ = µ.

Ex. Discuss the simply transitive W-actions on Weyl chambers and bases for root systems A2.

3.2.4 Irreducible Root Systems

A root system Φ (resp. a base ∆) is called irreducible if it cannot be partitioned into the union of
two proper orthogonal subsets, i.e. each root in one subset is orthogonal to each root in the other.
Φ is irreducible iff any base ∆ is. Every root system can be expressed as a product of irreducible
root systems.

Lem 3.16. Let Φ be irreducible. Then W acts irreducibly on E. In particular, the W-orbit of a
root α spans E.
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Proof. Suppose E′ ⊆ E is nonzeroW-invariant subspace of E. Let E′′ := (E′)⊥. Then E = E′⊕E′′.
For any α ∈ Φ, the reflection σα has dim 1 eigenspace Cα and dim(ℓ − 1) eigenspace Pα. On the
other hand, E′ is σα-invariant, so that E′ is spanned by some eigenvectors of σα. If α ̸∈ E′, then
all eigenvectors of σα correspond to −1 eigenvalue, whence E′ ⊆ Pα and α ∈ E′′. This shows
that every root in Φ is either in E′ or in E′′. However, Φ is irreducible. Therefore E′′ = 0 and
E′ = E.

Lem 3.17. Let Φ be irreducible. Then at most two root lengths occur in Φ, and all roots of a given
length are conjugate under W.

Proof. Let α, β ∈ Φ be arbitrary roots. Since W(β) spans E (Lemma 3.16), there is σ ∈ W such
that σ(β) is not orthogonal to α. If (α, β) ̸= 0, the possible ratios of squared root lengths of α, β
are 1, 2, 3, 1/2, 1/3. Hence it is impossible to have three different root lengthes in Φ.

Now suppose α and β have equal length. If α ̸∈ W(β), we may assume (α, β) ̸= 0 (otherwise,
replace β by σ(β) for some σ ∈ W.) Then ⟨α, β⟩ = ⟨β, α⟩ = ±1. Replacing β (if needed) by
−β = σβ(β), we may asusme that ⟨α, β⟩ = 1. Then

(σασβσα)(β) = (σασβ)(β − α) = σα(−β − α+ β) = α,

which contradicts α ̸∈ W(β). Therefore α ∈ W(β).

When Φ is irreducible with two distinct root lengths, we call them long roots and short roots
respectively.

When Φ is irreducible, each closed Weyl chamber contains exactly one root of each root length.
(exercise)

Lem 3.18. Let Φ be irreducible. Then there is a unique maximal root β relative to ≺. In particular,
for any α ∈ Φ, α ̸= β implies htα < ht β, and (β, α) ≥ 0 for all α ∈ ∆; if β =

∑
α∈∆ kαα, then all

kα > 0. Moreover, if Φ has two distinct root lengths, then β is a long root.

Proof. Let β =
∑

α∈∆ kαα be a maximal root relative to ≺. Then β ≻ 0, so that each kα ≥ 0.
Denote

∆1 = {α ∈ ∆ | kα > 0}, ∆2 = {α ∈ ∆ | kα = 0}.

Then ∆ = ∆1 ⊔ ∆2. If ∆2 ̸= ∅, then by the irreducibility of Φ and ∆, we can find α1 ∈ ∆1 and
α2 ∈ ∆2 such that (α1, α2) < 0. Therefore, (β, α2) < 0, whence β + α2 ∈ Φ, a contradiction to the
maximality of β. So all kα > 0.

The above argument shows that (β, α) ≥ 0 for all α ∈ ∆. Moreover, at least one (β, α) > 0
since β is a positive linear combination of all α ∈ ∆.

Now if β′ is another maximal root, then (β, β′) > 0 so that β − β′ is a root unless β = β′.
However, β − β′ cannot be a root since otherwise β ≺ β′ or β′ ≺ β. Therefore, β = β′ is unique.

Finally, if Φ has two root lengths, then for any α ∈ C(∆), we have β−α ≻ 0, so that (γ, β−α) ≥ 0
for any γ ∈ C(∆). Let γ := β, then (β, β) ≥ (β, α); let γ := α, then (β, α) ≥ (α, α). Therefore,
(β, β) ≥ (α, α). Since every root is W-conjugate to a root in C(∆) with the same root length, β
must be a long root.


