3.2 Simple Roots and Weyl Group

In this section, we fix a root system Φ of rank ℓ in a euclidean space E, with Weyl group \mathcal{W}.

3.2.1 Bases and Weyl chambers

Def. A subset Δ of Φ is called a base $i f$:
(B1) Δ is a basis of E,
(B2) Every root $\beta \in \Phi$ can be written as $\beta=\sum_{\alpha \in \Delta} k_{\alpha} \alpha$ with integral coefficients k_{α} all nonnegative or all nonpositive.

When a base Δ exists, clearly $|\Delta|=\ell$.

- The roots in Δ are called simple roots.
- The height of a root $\beta=\sum_{\alpha \in \Delta} k_{\alpha} \alpha$ is ht $\beta:=\sum_{\alpha \in \Delta} k_{\alpha}$.
- Define a partial order \succ in E, such that $\lambda \succ \mu$ iff $\lambda-\mu$ is a sum of positive roots or 0 . Then every root $\beta \in \Phi$ has either $\beta \succ 0$ (positive) or $\beta \prec 0$ (negative).
- The collection of positive roots (resp. negative roots) relative to Δ is denoted Φ^{+}(resp. Φ^{-}). Obviously, $\Phi=\Phi^{+} \sqcup \Phi^{-}$.

Ex. Find a base for each of the root systems with $\ell=1$ or 2 . Determine the heights and partial orders of the roots w.r.t. the base.

Lem 3.4. If Δ is a base of Φ, then for any $\alpha \neq \beta$ in $\Delta,(\alpha, \beta) \leq 0$ and $\alpha-\beta$ is not a root.
Proof. By (B2), $\alpha-\beta$ cannot be a root. Therefore $(\alpha, \beta) \leq 0$ by Lemma 3.3.
We will proves the existence and constructs all possible bases of Φ.
Def. 1. A vector $\gamma \in E$ is called regular if $\gamma \in E-\bigcup_{\alpha \in \Phi} P_{\alpha}$, that is, no $\alpha \in \Phi$ such that $(\gamma, \alpha)=0$; otherwise, γ is called singular.
2. For $\gamma \in E$, define

$$
\Phi^{+}(\gamma):=\{\alpha \in \Phi \mid(\gamma, \alpha)>0\}
$$

which consists of the roots lying on the positive side of P_{γ}.
3. Call $\alpha \in \Phi^{+}(\gamma)$ decomposable if $\alpha=\beta_{1}+\beta_{2}$ for some $\beta_{i} \in \Phi^{+}(\gamma)$, indecomposable otherwise.

Thm 3.5. Let $\gamma \in E$ be regular. Then the set $\Delta(\gamma)$ of all indecomposable roots in $\Phi^{+}(\gamma)$ is a base of Φ, and every base is obtainable in this manner.

Proof. It is proceeded in steps.

1. Each root in $\Phi^{+}(\gamma)$ is a nonnegative \mathbf{Z}-linear combination of $\Delta(\gamma)$. Otherwise some $\alpha \in \Phi^{+}(\gamma)$ cannot be so written; choose α that minimizes (γ, α). Obviously, $\alpha \notin \Delta(\gamma)$, so $\alpha=\beta_{1}+\beta_{2}$ for some $\beta_{i} \in \Phi^{+}(\gamma)$, whence $(\gamma, \alpha)=\left(\gamma, \beta_{1}\right)+\left(\gamma, \beta_{2}\right)$. The regularity of γ implies that $\left(\gamma, \beta_{i}\right)<(\gamma, \alpha)$, so that β_{1} and β_{2} must be \mathbf{Z}-linear combinations of $\Delta(\gamma)$, whence α also is, which is a contradiction.
2. If $\alpha, \beta \in \Delta(\gamma)$ and $\alpha \neq \beta$, then $(\alpha, \beta) \leq 0$. Otherwise $\alpha-\beta \in \Phi$ by Lemma 3.3. If $\alpha-\beta \in \Phi^{+}$, then $\alpha=(\alpha-\beta)+\beta$ is decomposable, contradicting $\alpha \in \Delta(\gamma)$; otherwise $\beta-\alpha \in \Phi^{+}$, which implies the contradiction that $\beta=(\beta-\alpha)+\alpha$ is decomposable.
3. $\Delta(\gamma)$ is a linearly independent set. Otherwise $\sum r_{\alpha} \alpha=0$ for $\alpha \in \Delta(\gamma), r_{\alpha} \in \mathbf{R}$ and some $r_{\alpha} \neq 0$. Seperating the positive coefficientss from the negative ones, we may rewrite it as $\sum s_{\alpha} \alpha=\sum t_{\beta} \beta$, where $s_{\alpha}, t_{\beta}>0$, and the sets of α 's and β 's are disjoint. Let $\epsilon:=\sum s_{\alpha} \alpha$. Then

$$
0 \leq(\epsilon, \epsilon)=\sum_{\alpha, \beta} s_{\alpha} t_{\beta}(\alpha, \beta) \leq 0 .
$$

So that $\epsilon=0$ and $0=(\gamma, \epsilon)=\sum s_{\alpha}(\gamma, \alpha)$. The regularity of γ forces all $s_{\alpha}=0$. Similarly, all $t_{\beta}=0$. (The argument shows that any set of vectors lying strictly on one side of a hyperplane in E and forming pairwise obtuse angles must be linearly independent.)
4. $\Delta(\gamma)$ is a base of Φ. The regularity of γ implies that $\Phi=\Phi^{+}(\gamma) \cup-\Phi^{+}(\gamma)$. By (1), $\Delta(\gamma)$ satisfies (B2) and spans $\Phi^{+}(\gamma)$, whence it spans Φ and E.
5. Each base Δ of Φ has the form $\Delta(\gamma)$ for some regular $\gamma \in E$. Given Δ, select $\gamma \in E$ so that $(\gamma, \alpha)>0$ for all $\alpha \in \Delta$. Then γ is regular and $\Phi^{+} \subseteq \Phi^{+}(\gamma), \Phi^{-} \subseteq-\Phi^{+}(\gamma)$. So $\Phi^{+}=\Phi^{+}(\gamma)$, and Δ must consist of indecomposable elements. Hence $\Delta \subseteq \Delta(\gamma)$, which forces $\Delta=\Delta(\gamma)$ since both are bases of E.

The hyperplanes $P_{\alpha}(\alpha \in \Phi)$ partition E into finitely many regions; the connected components of $E-\bigcup_{\alpha \in \Phi} P_{\alpha}$ are called the (open) Weyl chambers of E. Each regular $\gamma \in E$ belongs to exactly one Weyl chamber, denoted $\mathcal{C}(\gamma)$.

Lem 3.6. Weyl chambers are in 1-1 correspondence with bases, such that $\mathcal{C}(\gamma) \leftrightarrow \Delta(\gamma)$ for any regular $\gamma \in E$.

Proof. Two chambers $\mathcal{C}(\gamma)=\mathcal{C}\left(\gamma^{\prime}\right)$ iff γ and γ^{\prime} lie on the same side of each hyperplane $P_{\alpha}(\alpha \in \Phi)$, iff $\Phi^{+}(\gamma)=\Phi^{+}\left(\gamma^{\prime}\right)$, iff $\Delta(\gamma)=\Delta\left(\gamma^{\prime}\right)$.

Write $\mathcal{C}(\Delta)=\mathcal{C}(\gamma)$ if $\Delta=\Delta(\gamma)$, and call it the fundamental Weyl chamber relative to Δ. So $\mathcal{C}(\Delta)$ is the open convex set intersected by all positive sides of $P_{\alpha}(\alpha \in \Delta)$, with $P_{\alpha}(\alpha \in \Delta)$ as boundary wall; a vector $\beta \in \mathcal{C}(\Delta)$ iff $(\beta, \alpha)>0$ for all $\alpha \in \Delta$.

The reflections in the Weyl group \mathcal{W} can send a Weyl chamber onto any neighborhood chamber, whence \mathcal{W} acts transitively onto Weyl chambers. It implies that \mathcal{W} acts transitively on the bases: for any $\sigma \in \mathcal{W}, \gamma \in E$ regular, $\alpha \in E$,

$$
(\sigma \gamma, \sigma \alpha)=(\gamma, \alpha), \quad \sigma(\Delta(\gamma))=\Delta(\sigma(\gamma)), \quad \sigma(\mathcal{C}(\gamma))=\mathcal{C}(\sigma(\gamma))
$$

3.2.2 Further properties of simple roots

Let Δ be a base of a root system Φ in E. We list some useful auxiliary results on simple roots.
Lem 3.7. If α is a non-simple positive root, then there is $\beta \in \Delta$ such that $\alpha-\beta$ is a positive root.
Proof. If $(\alpha, \beta) \leq 0$ for all $\beta \in \Delta$, then $\Delta \cup\{\alpha\}$ is a set of vectors lying strictly on one side (i.e. $\left.\Phi^{+}(\gamma)\right)$ of a hyperplane and be pairwise obtuse. Therefore, $\Delta \cup\{\alpha\}$ is a linearly independent set, which is absurd. Hence $(\alpha, \beta)>0$ for some $\beta \in \Delta$, so that $\alpha-\beta \in \Phi$. Clearly $\alpha-\beta \in \Phi^{+}$.

Cor 3.8. Each positive root $\beta \in \Phi^{+}$can be written as $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\left(\alpha_{i} \in \Delta\right.$, not necessarily distinct) such that each partial sum $\alpha_{1}+\cdots+\alpha_{i}$ is a positive root.

Proof. Use the lemma and induction on ht β.
Lem 3.9. For any simple root $\alpha \in \Delta$, the reflection σ_{α} permutes the positive roots other than α.
Proof. Let $\beta \in \Phi^{+}-\{\alpha\}$ be expressed as $\beta=\sum_{\gamma \in \Delta} k_{\gamma} \gamma\left(k_{\gamma} \in \mathbf{N}\right)$. Then $k_{\mu}>0$ for some $\mu \in \Delta-\{\alpha\}$. The root $\sigma_{\alpha}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha$ has a term $k_{\mu} \mu$ with positive coefficient k_{μ}. Therefore, $\sigma_{\alpha}(\beta) \in \Phi^{+}$; moreover, $\sigma_{\alpha}(\beta) \neq \alpha$ since $\sigma_{\alpha}(-\alpha)=\alpha$.

Cor 3.10. Let $\delta=\frac{1}{2} \sum_{\beta \succ 0} \beta$. Then $\sigma_{\alpha}(\beta)=\delta-\alpha$ for all $\alpha \in \Delta$.
Lem 3.11. Let $\sigma_{1}, \cdots, \sigma_{t} \in \Delta$ (not necessarily distinct). Write $\sigma_{i}=\sigma_{\alpha_{i}}$. If $\sigma_{1} \cdots \sigma_{t-1}\left(\alpha_{t}\right) \prec 0$, then there is an index $1 \leq s<t$ such that

$$
\sigma_{1} \cdots \sigma_{t}=\sigma_{1} \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}
$$

Proof. Write $\beta_{i}=\sigma_{i+1} \cdots \sigma_{t-1}\left(\alpha_{t}\right), 0 \leq i \leq t-2, \beta_{t-1}=\alpha_{t}$. Then $\beta_{0} \prec 0$ and $\beta_{t-1} \succ 0$. We can find the least index s such that $\beta_{s} \succ 0$. Then $\sigma_{s}\left(\beta_{s}\right)=\beta_{s-1} \prec 0$, and Lemma 3.9 implies $\beta_{s}=\alpha_{s}$. Recall that $\sigma_{\sigma(\alpha)}=\sigma \sigma_{\alpha} \sigma^{-1}$ for $\sigma \in \mathcal{W}$ and $\alpha \in \Phi$ (Lemma 3.2). Therefore,

$$
\sigma_{s}=\sigma_{\alpha_{s}}=\sigma_{\beta_{s}}=\sigma_{\sigma_{s+1} \cdots \sigma_{t-1}\left(\alpha_{t}\right)}=\left(\sigma_{s+1} \cdots \sigma_{t-1}\right) \sigma_{t}\left(\sigma_{t-1} \cdots \sigma_{s+1}\right),
$$

which leads to $\sigma_{1} \cdots \sigma_{t}=\sigma_{1} \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$.
Cor 3.12. If $\sigma \in \mathcal{W}$ is expressed as $\sigma=\sigma_{1} \cdots \sigma_{t}$, where σ_{i} are reflections corresponding to simple roots and t is minimal, then $\sigma\left(\alpha_{t}\right) \prec 0$.

3.2.3 The Weyl Group

We have made the one-to-one correspondence between bases and Weyl chambers of Φ. Now we show that the Weyl group \mathcal{W} is generated by all "simple relfections", and \mathcal{W} acts simply transitively on Weyl chambers and bases.

Thm 3.13. Let Δ be a base of Φ.

1. If $\gamma \in E$ is regular, then there is $\sigma \in \mathcal{W}$ such that $(\sigma(\gamma), \alpha)>0$ for all $\alpha \in \Delta$. So \mathcal{W} acts transitively on Weyl chambers.
2. If Δ^{\prime} is another base of Φ, then $\sigma\left(\Delta^{\prime}\right)=\Delta$ for some $\sigma \in \mathcal{W}$. So \mathcal{W} acts transitively on bases.
3. If α is any root, then there is $\sigma \in \mathcal{W}$ such that $\sigma(\alpha) \in \Delta$.
4. \mathcal{W} is generated by $\sigma_{\alpha}(\alpha \in \Delta)$.
5. If $\sigma \in \Delta$ satsifies that $\sigma(\Delta)=\Delta$, then $\sigma=1$. So \mathcal{W} acts simply transitively on bases.

Proof. Let \mathcal{W}^{\prime} denote the subgroup generated by all $\sigma_{\alpha}(\alpha \in \Delta)$. We prove the first three statements for \mathcal{W}^{\prime} first; then show that $\mathcal{W}^{\prime}=\mathcal{W}$.

1. Let $\delta=\frac{1}{2} \sum_{\beta \succ 0} \beta$ and choose $\sigma \in \mathcal{W}^{\prime}$ for which $(\sigma(\gamma), \delta)$ is maximal. For every $\alpha \in \Delta$, we have $\sigma_{\alpha} \sigma \in \mathcal{W}^{\prime}$ so that

$$
(\sigma(\gamma), \delta) \geq\left(\sigma_{\alpha} \sigma(\gamma), \delta\right)=\left(\sigma(\gamma), \sigma_{\alpha}(\delta)\right)=(\sigma(\gamma), \delta-\alpha)=(\sigma(\gamma), \delta)-(\sigma(\gamma), \alpha)
$$

Hence $(\sigma(\gamma), \alpha)=\left(\gamma, \sigma^{-1}(\alpha)\right)>0$ since γ is regular.
2. \mathcal{W}^{\prime} permutes the Weyl chambers, hence it also permutes the bases.
3. It suffices to show that each root belongs to at least one base. For any root $\alpha \in \Phi$, we can choose γ closed enough to P_{α} such that $(\gamma, \alpha)=\epsilon>0$, but $|(\gamma, \beta)|>\epsilon$ for all $\beta \in \Phi-\{ \pm \alpha\}$. Then $\alpha \in \Delta(\gamma)$ by the construction of base $\Delta(\gamma)$.
4. For each $\alpha \in \Phi$, there exists $\sigma \in \mathcal{W}^{\prime}$ such that $\beta=\sigma(\alpha) \in \Delta$. Then $\sigma_{\alpha}=\sigma_{\sigma^{-1}(\beta)}=\sigma^{-1} \sigma_{\beta} \sigma \in$ \mathcal{W}^{\prime}. Therefore, \mathcal{W}^{\prime} contains all reflections $\sigma_{\alpha}(\alpha \in \Phi)$ and hence $\mathcal{W}^{\prime}=\mathcal{W}$.
5. If $\sigma \in \Delta$ satsifies that $\sigma(\Delta)=\Delta$ but $\sigma \neq 1$, then σ can be expressed as a product of simple reflection(s) with minimal length, say $\sigma=\sigma_{1} \cdots \sigma_{t}$ where $\sigma_{i}:=\sigma_{\alpha_{i}}, \alpha_{i} \in \Delta$. Then Corollary 3.12 shows that $\sigma\left(\alpha_{t}\right) \prec 0$, which is a contradiction.

Some additiona properties of Weyl group actions are listed below (See [Humphrey] for the proofs). When $\sigma \in \mathcal{W}$ is expressed as $\sigma_{\alpha_{1}} \cdots \sigma_{\alpha_{t}}\left(\alpha_{i} \in \Delta, t\right.$ minimal), we call it a reduced expression, and call $\ell(\sigma):=t$ the length of σ relative to Δ; we define $\ell(1):=0$. Define
$n(\sigma)=$ number of positive roots α for which $\sigma(\alpha) \prec 0$.
Lem 3.14. For all $\sigma \in \mathcal{W}, \ell(\sigma)=n(\sigma)$.
The next lemma shows that each vector in E is \mathcal{W}-conjugate to precisely one point of the closure of fundamental Weyl chamber $\overline{\mathcal{C}(\Delta)}$.

Lem 3.15. Let $\lambda, \mu \in \overline{\mathcal{C}(\Delta)}$. If $\sigma \lambda=\mu$ for some $\sigma \in \mathcal{W}$, then σ is a product of simple reflections which fix λ. In particular $\lambda=\mu$.

Ex. Discuss the simply transitive \mathcal{W}-actions on Weyl chambers and bases for root systems A_{2}.

3.2.4 Irreducible Root Systems

A root system Φ (resp. a base Δ) is called irreducible if it cannot be partitioned into the union of two proper orthogonal subsets, i.e. each root in one subset is orthogonal to each root in the other. Φ is irreducible iff any base Δ is. Every root system can be expressed as a product of irreducible root systems.

Lem 3.16. Let Φ be irreducible. Then \mathcal{W} acts irreducibly on E. In particular, the \mathcal{W}-orbit of a root α spans E.

Proof. Suppose $E^{\prime} \subseteq E$ is nonzero \mathcal{W}-invariant subspace of E. Let $E^{\prime \prime}:=\left(E^{\prime}\right)^{\perp}$. Then $E=E^{\prime} \oplus E^{\prime \prime}$. For any $\alpha \in \Phi$, the reflection σ_{α} has $\operatorname{dim} 1$ eigenspace $\mathbf{C} \alpha$ and $\operatorname{dim}(\ell-1)$ eigenspace P_{α}. On the other hand, E^{\prime} is σ_{α}-invariant, so that E^{\prime} is spanned by some eigenvectors of σ_{α}. If $\alpha \notin E^{\prime}$, then all eigenvectors of σ_{α} correspond to -1 eigenvalue, whence $E^{\prime} \subseteq P_{\alpha}$ and $\alpha \in E^{\prime \prime}$. This shows that every root in Φ is either in E^{\prime} or in $E^{\prime \prime}$. However, Φ is irreducible. Therefore $E^{\prime \prime}=0$ and $E^{\prime}=E$.

Lem 3.17. Let Φ be irreducible. Then at most two root lengths occur in Φ, and all roots of a given length are conjugate under \mathcal{W}.

Proof. Let $\alpha, \beta \in \Phi$ be arbitrary roots. Since $\mathcal{W}(\beta)$ spans E (Lemma 3.16), there is $\sigma \in \mathcal{W}$ such that $\sigma(\beta)$ is not orthogonal to α. If $(\alpha, \beta) \neq 0$, the possible ratios of squared root lengths of α, β are $1,2,3,1 / 2,1 / 3$. Hence it is impossible to have three different root lengthes in Φ.

Now suppose α and β have equal length. If $\alpha \notin \mathcal{W}(\beta)$, we may assume $(\alpha, \beta) \neq 0$ (otherwise, replace β by $\sigma(\beta)$ for some $\sigma \in \mathcal{W}$.) Then $\langle\alpha, \beta\rangle=\langle\beta, \alpha\rangle= \pm 1$. Replacing β (if needed) by $-\beta=\sigma_{\beta}(\beta)$, we may asusme that $\langle\alpha, \beta\rangle=1$. Then

$$
\left(\sigma_{\alpha} \sigma_{\beta} \sigma_{\alpha}\right)(\beta)=\left(\sigma_{\alpha} \sigma_{\beta}\right)(\beta-\alpha)=\sigma_{\alpha}(-\beta-\alpha+\beta)=\alpha
$$

which contradicts $\alpha \notin \mathcal{W}(\beta)$. Therefore $\alpha \in \mathcal{W}(\beta)$.
When Φ is irreducible with two distinct root lengths, we call them long roots and short roots respectively.

When Φ is irreducible, each closed Weyl chamber contains exactly one root of each root length. (exercise)

Lem 3.18. Let Φ be irreducible. Then there is a unique maximal root β relative to \prec. In particular, for any $\alpha \in \Phi, \alpha \neq \beta$ implies ht $\alpha<h t \beta$, and $(\beta, \alpha) \geq 0$ for all $\alpha \in \Delta$; if $\beta=\sum_{\alpha \in \Delta} k_{\alpha} \alpha$, then all $k_{\alpha}>0$. Moreover, if Φ has two distinct root lengths, then β is a long root.

Proof. Let $\beta=\sum_{\alpha \in \Delta} k_{\alpha} \alpha$ be a maximal root relative to \prec. Then $\beta \succ 0$, so that each $k_{\alpha} \geq 0$. Denote

$$
\Delta_{1}=\left\{\alpha \in \Delta \mid k_{\alpha}>0\right\}, \quad \Delta_{2}=\left\{\alpha \in \Delta \mid k_{\alpha}=0\right\}
$$

Then $\Delta=\Delta_{1} \sqcup \Delta_{2}$. If $\Delta_{2} \neq \emptyset$, then by the irreducibility of Φ and Δ, we can find $\alpha_{1} \in \Delta_{1}$ and $\alpha_{2} \in \Delta_{2}$ such that $\left(\alpha_{1}, \alpha_{2}\right)<0$. Therefore, $\left(\beta, \alpha_{2}\right)<0$, whence $\beta+\alpha_{2} \in \Phi$, a contradiction to the maximality of β. So all $k_{\alpha}>0$.

The above argument shows that $(\beta, \alpha) \geq 0$ for all $\alpha \in \Delta$. Moreover, at least one $(\beta, \alpha)>0$ since β is a positive linear combination of all $\alpha \in \Delta$.

Now if β^{\prime} is another maximal root, then $\left(\beta, \beta^{\prime}\right)>0$ so that $\beta-\beta^{\prime}$ is a root unless $\beta=\beta^{\prime}$. However, $\beta-\beta^{\prime}$ cannot be a root since otherwise $\beta \prec \beta^{\prime}$ or $\beta^{\prime} \prec \beta$. Therefore, $\beta=\beta^{\prime}$ is unique.

Finally, if Φ has two root lengths, then for any $\alpha \in \overline{\mathcal{C}(\Delta)}$, we have $\beta-\alpha \succ 0$, so that $(\gamma, \beta-\alpha) \geq 0$ for any $\gamma \in \overline{\mathcal{C}(\Delta)}$. Let $\gamma:=\beta$, then $(\beta, \beta) \geq(\beta, \alpha)$; let $\gamma:=\alpha$, then $(\beta, \alpha) \geq(\alpha, \alpha)$. Therefore, $(\beta, \beta) \geq(\alpha, \alpha)$. Since every root is \mathcal{W}-conjugate to a root in $\overline{\mathcal{C}(\Delta)}$ with the same root length, β must be a long root.

