3.3 Classification of Simple Lie Algebras

3.3.1 Cartan matrices, Coxeter graphs, and Dynkin diagrams

Fix an ordering $\left(\alpha_{1}, \cdots, \alpha_{\ell}\right)$ of the simple roots. The matrix $\left[\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right]$ is called the Cartan matrix of Φ, and the entries $\left\langle\alpha_{i}, \alpha_{j}\right\rangle$ are called Cartan integers.

Thm 3.19. The Cartan matix of Φ determines Φ up to isomorphism. Precisely, if $\Phi^{\prime} \subseteq E^{\prime}$ is another root system with a base $\Delta^{\prime}=\left\{\alpha_{1}^{\prime}, \cdots, \alpha_{\ell}^{\prime}\right\}$, such that $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=\left\langle\alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right\rangle$ for $1 \leq i, j \leq$ ℓ, then the bijection $\alpha_{i} \mapsto \alpha_{i}^{\prime}$ extends to an isomorphism $\phi: E \rightarrow E^{\prime}$ mapping Φ to Φ^{\prime} and $\langle\phi(\alpha), \phi(\beta)\rangle=\langle\alpha, \beta\rangle$ for all $\alpha, \beta \in \Phi$.

Proof. For $\alpha, \beta \in \Delta$,

$$
\sigma_{\phi(\alpha)}(\phi(\beta))=\phi(\beta)-\langle\phi(\beta), \phi(\alpha)\rangle \phi(\alpha)=\phi(\beta)-\langle\beta, \alpha\rangle \phi(\alpha)=\phi(\beta-\langle\beta, \alpha\rangle \alpha)=\phi\left(\sigma_{\alpha}(\beta)\right) .
$$

So $\sigma_{\phi(\alpha)}=\phi \circ \sigma_{\alpha} \circ \phi^{-1}$. The Weyl groups \mathcal{W} and \mathcal{W}^{\prime} are generated by simple reflections. So $\sigma \mapsto \phi \circ \sigma \circ \phi^{-1}$ gives the isomorphism of \mathcal{W} and \mathcal{W}^{\prime}. Every root $\beta \in \Phi$ is conjugate under \mathcal{W} to a simple root, say $\beta=\sigma(\alpha)$ for $\alpha \in \Delta$. Then $\phi(\beta)=\left(\phi \circ \sigma \circ \phi^{-1}\right)(\phi(\alpha)) \in \Phi^{\prime}$. So ϕ maps Φ onto Φ^{\prime}. Moreover, the formula for a reflection shows that ϕ preserves all Cartan integers.

Given the ordered base $\left(\alpha_{1}, \cdots, \alpha_{\ell}\right)$ of Φ, the Coxeter graph of Φ is a graph having ℓ vertices, with the i th joined to the j th $(i \neq j)$ by $\left\langle\alpha_{i}, \alpha_{j}\right\rangle\left\langle\alpha_{j}, \alpha_{i}\right\rangle$ edges. Clearly, $\left\langle\alpha_{i}, \alpha_{j}\right\rangle\left\langle\alpha_{j}, \alpha_{i}\right\rangle \in\{0,1,2,3\}$, and it is greater than 1 only if α_{i} and α_{j} have different root lengths.

When a double or triple edge occurs in the Coxeter graph, we may add an arrow pointing the the shorter of the two roots. The resulting figure is called the Dynkin diagram of Φ.

A root system is irreducible iff its Coxeter graph (resp. Dynkin diagram) is connected.
Ex. The Cartan matrix for rank 1 root system A_{1} is [2]. The Cartan matrices for root systems of rank 2 are:

$$
A_{1} \times A_{1}:\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad A_{2}:\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], \quad B_{2}:\left[\begin{array}{cc}
2 & -2 \\
-1 & 2
\end{array}\right], \quad G_{2}:\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right] .
$$

Work out the corresponding Coxeter graphs and Dynkin diagrams. (exercise)

3.3.2 Classification of irreducible root systems

Let $\Phi=\Phi_{1} \sqcup \Phi_{2} \sqcup \cdots \sqcup \Phi_{t}$ be the decomposition of Φ into irreducible root systems, $\Delta=\Delta_{1} \sqcup$ $\Delta_{2} \sqcup \cdots \sqcup \Delta_{t}$ the corresponding partition of Δ, and E_{i} the span of Δ_{i}. Then E has the orthogonal direct sum $E=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{t}$; each Φ_{i} is an irreducible root system in E_{i} with base Δ_{i} and Weyl group \mathcal{W}_{i} generated by all $\sigma_{\alpha}\left(\alpha \in \Delta_{i}\right)$. The Coxetor graph (resp. Dynkin diagram) of Φ is the disjoint union of those of Φ_{i}. Moreover, $\mathcal{W}=\mathcal{W}_{1} \times \mathcal{W}_{2} \times \cdots \times \mathcal{W}_{t}$; so each E_{i} is \mathcal{W}-invariant.

Thm 3.20. Φ decomposes uniquely as the union of irreducible root systems Φ_{i} in subspaces E_{i} of E such that $E=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{t}$ (orthogonal direct sum).

It remains to classify all irreducible root systems.
Thm 3.21. If Φ is an irreducible root system of rank ℓ, then its Dynkin diagram is one of the following (ℓ vertices in each case):

The corresponding Cartan matrices is in Table 1:
Table 1. Cartan matrices

Proof. If $\Delta=\left\{\alpha_{1}, \cdots, \alpha_{\ell}\right\}$ is an irreducible base, then the angle $\theta_{i j}$ between α_{i} and α_{j} has $\cos \theta_{i j} \leq$

0 and $4 \cos ^{2} \theta_{i j}=\left\langle\alpha_{i}, \alpha_{j}\right\rangle\left\langle\alpha_{j}, \alpha_{i}\right\rangle \in\{0,1,2,3\}$. Define an admissible set to be a set of linearly independent unit vectors $\mathcal{U}=\left\{e_{1}, \cdots, e_{n}\right\}$ such that

$$
\cos \delta_{i j}=\left(e_{i}, e_{j}\right) \leq 0 \quad \text { and } \quad 4\left(e_{i}, e_{j}\right)^{2} \in\{0,1,2,3\} \quad \text { for any } i \neq j
$$

Here $\delta_{i j}$ denotes the angle between e_{i} and e_{j}. We attach a graph Γ to \mathcal{U} such that e_{i} and e_{j} are joint by $4\left(e_{i}, e_{j}\right)^{2}$ edges. Obviously, every Coxeter graph is an admissible set \mathcal{U} with the graph Γ.

1. If some of the e_{i} are discarded, the remaining ones still form an admissible set.
2. The number of pairs of vertices in Γ connected by at least one edge is strictly less than n. Let $e=\sum_{i} e_{i}$, which is nonzero. Then

$$
0<(e, e)=n+\sum_{i<j} 2\left(e_{i}, e_{j}\right)
$$

The pair $\left(e_{i}, e_{j}\right)(i<j)$ is connected by at least one edge iff $4\left(e_{i}, e_{j}\right)^{2}=1,2,3$, iff $2\left(e_{i}, e_{j}\right) \leq$ -1 . The number of such pairs cannot exceed $n-1$.
3. Γ contains no cycles. Otherwise, a cycle Γ^{\prime} corresponds to an admissible set \mathcal{U}^{\prime} by (1), which violates (2) by replacing n with $\operatorname{Card} \mathcal{U}^{\prime}$.
4. No more than three edges can originate at a given vertex of Γ. Suppose $e \in \mathcal{U}$ has edges connected to $\eta_{1}, \cdots, \eta_{k} \in \mathcal{U}$. Then $4\left(e, \eta_{i}\right)^{2} \in\{1,2,3\}$ for all i. By (3), no two η 's can be connected; so $\left(\eta_{i}, \eta_{j}\right)=0$ for $i \neq j$, and $\left\{\eta_{1}, \cdots, \eta_{k}\right\}$ is an orthonormal set. The projection of e into $\operatorname{span}\left(\eta_{1}, \cdots, \eta_{k}\right)$ is $e^{\prime}=\sum_{i=1}^{k}\left(e, \eta_{i}\right) \eta_{i}$, which is different from e since $\left\{e, \eta_{1}, \cdots, \eta_{k}\right\} \subseteq \mathcal{U}$ is linearly independent. Therefore,

$$
4=4(e, e)>4\left(e^{\prime}, e^{\prime}\right)=\sum_{i=1}^{k} 4\left(e, \eta_{i}\right)^{2}
$$

Hence $k<4$.
5. By (4), the only connected graph of an admissible set which contains a triple edge is the Coxeter graph of G_{2}.
6. If $\left\{\eta_{1}, \cdots, \eta_{k}\right\} \subseteq \mathcal{U}$ has subgraph $\circ-\circ \cdots \circ-\circ$, let $\eta:=\sum_{i=1}^{k} \eta_{i}$, then the set

$$
\mathcal{U}^{\prime}=\left(\mathcal{U}-\left\{\eta_{1}, \cdots, \eta_{k}\right\}\right) \cup\{\eta\}
$$

is admissible. Clearly \mathcal{U}^{\prime} is linearly independent. We have

$$
(\eta, \eta)=k+\sum_{i=1}^{k-1}\left(\eta_{i}, \eta_{i+1}\right)=k-(k-1)=1
$$

Any $\iota \in \mathcal{U}-\left\{\eta_{1}, \cdots, \eta_{k}\right\}$ can be connected to at most one of $\eta_{1}, \cdots, \eta_{k}$ by (3); so $(\iota, \eta)=0$ or $(\iota, \eta)=\left(\iota, \eta_{i}\right)$ for some i; we still have $4(\iota, \eta)^{2} \in\{0,1,2,3\}$.
7. Γ contains no subgraph of' the form:

Otherwise, a set of the following graphs is admissible by (6):

which violates (4).
8. Any connected graph Γ of an admissible set has one of the following forms:

9. The only connected Γ of the second type in (8) is the Coxeter graph F_{4} or the Coxeter graph $B_{n}\left(=C_{n}\right)$.

Set $\epsilon=\sum_{i=1}^{p} i \epsilon_{i}$ and $\eta=\sum_{i=1}^{q} i \eta_{i}$. Direct calculation shows that
$(\epsilon, \epsilon)=\sum_{i=1}^{p} i^{2}-\sum_{i=1}^{p-1} i(i+1)=\frac{p(p+1)}{2}, \quad(\eta, \eta)=\frac{q(q+1)}{2}, \quad(\epsilon, \eta)^{2}=p^{2} q^{2}\left(\epsilon_{p}, \eta_{q}\right)^{2}=\frac{p^{2} q^{2}}{2}$.
The Schwartz Inequality implies that

$$
\frac{p^{2} q^{2}}{2}=(\epsilon, \eta)^{2}<(\epsilon, \epsilon)(\eta, \eta)=\frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2} .
$$

Therefore, $(p-1)(q-1)<2$. We have $p=q=2\left(F_{4}\right)$ or $p=1$ or $q=1\left(B_{n}\right)$.
10. The only connected Γ of the fourth type in (8) is the Coxeter graph D_{n} or the Coxeter graph $E_{n}(n=6,7,8)$

Set $\epsilon=\sum i \epsilon_{i}, \eta=\sum i \eta_{i}, \zeta=\sum i \zeta_{i}$. Then ϵ, η, ζ are mutually orthogonal, linearly independent, and ψ is not in their span. Let $\theta_{1}, \theta_{2}, \theta_{3}$ be the angles between ψ and ϵ, η, ζ, resp. Then (similar to (4)) the squared length of the projection of ψ onto $\operatorname{span}(\epsilon, \eta, \zeta)$ is

$$
\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}<1
$$

We have

$$
\cos ^{2} \theta_{1}=\frac{(\epsilon, \psi)^{2}}{(\epsilon, \epsilon)(\psi, \psi)}=\frac{(p-1)^{2}\left(\epsilon_{p-1}, \psi\right)^{2}}{(\epsilon, \epsilon)}=\frac{1}{2}\left(1-\frac{1}{p}\right) .
$$

Similarly for θ_{2}, θ_{2}. Adding, we get

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1
$$

WLOG, assume $1 / p \leq 1 / q \leq 1 / r$, or $p \geq q \geq r$. If $r=1$, we get A_{n}. Otherwise, it is impossible that $r \geq 3$; so $r=2$. Then $2 \leq q<4$. All possibilities of (p, q, r) are:

$$
(p, 2,2)=D_{n}, \quad(3,3,2)=E_{6}, \quad(4,3,2)=E_{7}, \quad(5,3,2)=E_{8}
$$

Finally, from the Coxeter graphs, we easily get the corresponding Dynkin diagrams.

