- 1.1 Definitions and Examples
 - 1. Verify that F^3 with the cross-product \times is a Lie algebra.
 - 2. Verify that the matrix form of elements of D_{ℓ} (associate with $s = \begin{bmatrix} 0 & I_{\ell} \\ I_{\ell} & 0 \end{bmatrix}$) is $x = \begin{bmatrix} 0 & I_{\ell} \\ I_{\ell} & 0 \end{bmatrix}$) is $x = \begin{bmatrix} 0 & I_{\ell} \\ I_{\ell} & 0 \end{bmatrix}$)

 $\begin{bmatrix} m & n \\ p & q \end{bmatrix}$ where $q = -m^t$, $n^t = -n$, and $p^t = -p$. Then verify the dimension of D_ℓ .

- 3.(1.1.10)
 - (a) Show that A_1, B_1, C_1 are all isomorphic, and D_1 is the one dimensional Lie algebra;
 - (b) show that B_2 is isomorphic to C_2 ;
 - (c) show that D_3 is isomorphic to A_3 ;
 - (d) what can you say about D_2 ?
- 4. (1.1.11) Verify that the commutator of two derivations of an *F*-algebra is again a derivation, whereas the ordinary product need not be.

- 1.2 Ideals and homomorphisms
 - 1. Let L be a Lie algebra. Show that for $z \in L$ and $\delta \in \text{Der}(L)$, we have $[\delta, \text{ad } z] = \text{ad } \delta(z)$. In particular, ad L is an ideal of Der(L).
 - 2. Prove that $\mathfrak{sl}(2, F)$ is a simple Lie algebra if char $F \neq 2$.
 - 3. (optional) Suppose $F = \mathbf{R}$ or \mathbf{C} , L is a matrix Lie algebra, and G is the matrix group generated by $\{\exp(tx) \mid t \in \mathbf{R}, x \in L\}$. Prove that the linear map ϕ_g , defined by

$$\phi_g(x) = gxg^{-1} \quad \text{for} \quad x \in L,$$

is in Aut (L), and $\{\phi_g \mid g \in G\}$ is a normal subgroup of Aut (L).

4. Prove that $\mathfrak{t}(n, F)$ and $\mathfrak{d}(n, F)$ are self-normalizing subalgebras of $\mathfrak{gl}(n, F)$, whereas $\mathfrak{n}(n, F)$ has normalizer $\mathfrak{t}(n, F)$.

1.3 Nilpotent Lie algebras

- 1. Show that $\mathfrak{t}(n, F)$, the Lie algebra of $n \times n$ upper triangular matrices, is not nilpotent.
- 2. Prove that L is nilpotent iff ad L is nilpotent.
- 3. Prove that the sum of two nilpotent ideal of a Lie algebra L is again a nilpotent ideal. Therefore, L possesses a unique maximal nilpotent ideal.
- 4. Suppose K is an ideal of a Lie algebra L such that L/K is nilpotent and $\operatorname{ad} x|_K$ is nilpotent for all $x \in L$. Prove that L is nilpotent.

1.4 Solvable Lie Algebras

- 1. Prove that the Lie algebra $\mathfrak{t}(n, F)$ of $n \times n$ upper triangular matrices is solvable.
- 2. Let I be an ideal of L. Then each member of the derived series or descending central series of I is also an ideal of L.
- 3. Prove that L is solvable if and only if there exists a chain of subalgebras

$$L = L_0 \supset L_1 \supset L_2 \supset \cdots \supset L_k = 0$$

such that L_{i+1} is an ideal of L_i and such that each quotient L/L_{i+1} is abelian.

- 4. Let V be a finite dimensional vector space. Show that for any $x, y, z \in \mathfrak{gl}(V)$, we have $\operatorname{Tr}([x, y]z) = \operatorname{Tr}(x[y, z])$
- 5. Let \mathcal{U} be a finite dimensional *F*-algebra, and $\delta \in \text{Der}\mathcal{U}$. Prove that for any $n \in \mathbb{Z}^+$ and $x, y \in \mathcal{U}$,

$$(\delta - (a+b) \cdot 1)^n (xy) = \sum_{i=0}^n \binom{n}{i} ((\delta - a \cdot 1)^{n-i} x) \cdot ((\delta - b \cdot 1)^i y)$$

- 6. If $x, y \in \text{End } V$ commute, prove that $(x+y)_s = x_s + y_s$, and $(x+y)_n = x_n + y_n$. Show by example that this can fail if x, y fail to commute. [Hint: show first that x, y semisimple (resp. nilpotent) implies x + y semisimple (resp. nilpotent).]
- 7. Consider the Lie algebra L with a basis $\{x, y, z\}$ defined by:

$$[x, y] = z,$$
 $[x, z] = y,$ $[y, z] = 0.$

Verify by using Cartan's Criterion on this basis that L is solvable.