1.1 Definitions and Examples

1. Verify that F^{3} with the cross-product \times is a Lie algebra.
2. Verify that the matrix form of elements of D_{ℓ} (associate with $s=\left[\begin{array}{cc}0 & I_{\ell} \\ I_{\ell} & 0\end{array}\right]$) is $x=$ $\left[\begin{array}{cc}m & n \\ p & q\end{array}\right]$ where $q=-m^{t}, n^{t}=-n$, and $p^{t}=-p$. Then verify the dimension of D_{ℓ}.
3. (1.1.10)
(a) Show that A_{1}, B_{1}, C_{1} are all isomorphic, and D_{1} is the one dimensional Lie algebra;
(b) show that B_{2} is isomorphic to C_{2};
(c) show that D_{3} is isomorphic to A_{3};
(d) what can you say about D_{2} ?
4. (1.1.11) Verify that the commutator of two derivations of an F-algebra is again a derivation, whereas the ordinary product need not be.

1.2 Ideals and homomorphisms

1. Let L be a Lie algebra. Show that for $z \in L$ and $\delta \in \operatorname{Der}(L)$, we have $[\delta, \operatorname{ad} z]=\operatorname{ad} \delta(z)$. In particular, ad L is an ideal of $\operatorname{Der}(L)$.
2. Prove that $\mathfrak{s l}(2, F)$ is a simple Lie algebra if char $F \neq 2$.
3. (optional) Suppose $\mathbf{F}=\mathbf{R}$ or \mathbf{C}, L is a matrix Lie algebra, and G is the matrix group generated by $\{\exp (t x) \mid t \in \mathbf{R}, x \in L\}$. Prove that the linear map ϕ_{g}, defined by

$$
\phi_{g}(x)=g x g^{-1} \quad \text { for } \quad x \in L,
$$

is in $\operatorname{Aut}(L)$, and $\left\{\phi_{g} \mid g \in G\right\}$ is a normal subgroup of $\operatorname{Aut}(L)$.
4. Prove that $\mathfrak{t}(n, F)$ and $\mathfrak{d}(n, F)$ are self-normalizing subalgebras of $\mathfrak{g l}(n, F)$, whereas $\mathfrak{n}(n, F)$ has normalizer $\mathfrak{t}(n, F)$.
1.3 Nilpotent Lie algebras

1. Show that $\mathfrak{t}(n, F)$, the Lie algebra of $n \times n$ upper triangular matrices, is not nilpotent.
2. Prove that L is nilpotent iff ad L is nilpotent.
3. Prove that the sum of two nilpotent ideal of a Lie algebra L is again a nilpotent ideal. Therefore, L possesses a unique maximal nilpotent ideal.
4. Suppose K is an ideal of a Lie algebra L such that L / K is nilpotent and $\left.\operatorname{ad} x\right|_{K}$ is nilpotent for all $x \in L$. Prove that L is nilpotent.

1.4 Solvable Lie Algebras

1. Prove that the Lie algebra $\mathfrak{t}(n, F)$ of $n \times n$ upper triangular matrices is solvable.
2. Let I be an ideal of L. Then each member of the derived series or descending central series of I is also an ideal of L.
3. Prove that L is solvable if and only if there exists a chain of subalgebras

$$
L=L_{0} \supset L_{1} \supset L_{2} \supset \cdots \supset L_{k}=0
$$

such that L_{i+1} is an ideal of L_{i} and such that each quotient L / L_{i+1} is abelian.
4. Let V be a finite dimensional vector space. Show that for any $x, y, z \in \mathfrak{g l}(V)$, we have $\operatorname{Tr}([x, y] z)=\operatorname{Tr}(x[y, z])$
5. Let \mathcal{U} be a finite dimensional F-algebra, and $\delta \in \operatorname{Der} \mathcal{U}$. Prove that for any $n \in \mathbf{Z}^{+}$and $x, y \in \mathcal{U}$,

$$
(\delta-(a+b) \cdot 1)^{n}(x y)=\sum_{i=0}^{n}\binom{n}{i}\left((\delta-a \cdot 1)^{n-i} x\right) \cdot\left((\delta-b \cdot 1)^{i} y\right) .
$$

6. If $x, y \in$ End V commute, prove that $(x+y)_{s}=x_{s}+y_{s}$, and $(x+y)_{n}=x_{n}+y_{n}$. Show by example that this can fail if x, y fail to commute. [Hint: show first that x, y semisimple (resp. nilpotent) implies $x+y$ semisimple (resp. nilpotent).]
7. Consider the Lie algebra L with a basis $\{x, y, z\}$ defined by:

$$
[x, y]=z, \quad[x, z]=y, \quad[y, z]=0 .
$$

Verify by using Cartan's Criterion on this basis that L is solvable.

